分析化学中的误差分析及数据处理

合集下载

分析化学中的误差及数据处理

分析化学中的误差及数据处理

0 0
0.0001 0.2176
100
0 0

0.05
0 0
(二)、精密度(precision)
精密度:几次平行测定结果之间的符合程度,用偏差衡量。 偏差:测定值与平均值的差值,用d 表示。
例如:在相同条件下,对某一量重复测定5次,结果如 偏下差:(1(绝相)2对对0).1偏偏00差差.,100,.200.,d0dr80,x.2xdx05i .,x0119x00,0.x1%205n.,120,.0dd08rx.n1,1,精1n精i密n密1 x度i度
E xT
100%
E ,准确度 Er ,准确度
例:用分析天平称量两物体的质量分别为2.1750g 、0.2175g, 若两者的真实质量各为2.1751g , 0.2176g, 则它们的E 和 Er?
解: 两者绝对误差都是 -0.0001g 相对误差:
0.0001 2.1751
100
0 0

0 .005
图 2-1 不同分析人员的分析结果
结论:
1. 精密度高是准确度高的前提; 2. 精密度高不一定准确度高;
系统误差!
精密度和准确度都高 — 结果可靠
例4 下面论述中正确的是( )B
A. 精密度高,准确度一定高 B. 准确度高,一定要求精密度高 C. 精密度高,系统误差一定小 D. 分析中,首先要求准确度,其次才是精密度
R2 A2 B2 C 2
四、提高分析结果准确度的方法
(一) 、选择合适的分析方法(灵敏度与准确度)
化学分析法:准确度较高,但灵敏度较低,适用 于常量组分的测定; 仪器分析方法:灵敏度较高,但准确度较低,适 用于微量组分的测定。
例如:测定某一铁含量为40.00%的标准试样,

分析化学实验中误差及分析数据的处理精讲

分析化学实验中误差及分析数据的处理精讲

分析化学实验中误差及分析数据的处理精讲误差在分析化学实验中扮演着非常重要的角色,它们可以帮助我们评估实验结果的可靠性和精确性。

本文将讨论实验误差的几种类型以及分析数据的处理方法。

首先,我们来看一下误差的分类。

实验误差可以分为系统误差和随机误差两种类型。

系统误差是由于实验设计或仪器故障等原因引起的,并且在多次实验中总是出现相同的偏差。

例如,如果使用的仪器的刻度有错误,或者实验操作中有不可避免的偏差,都会导致系统误差。

这种误差通常是可预测和可修正的,但需要在实验设计和执行过程中加以注意。

为了减小系统误差,我们可以使用标准校正曲线、多次测量和仪器校正等方法。

随机误差是由于实验条件或观察者等因素的变动引起的,并且在多次实验中会出现不同的偏差。

随机误差是不可预测的,它们可以通过多次重复实验来减小,同时使用统计学方法来估算其大小。

例如,如果我们多次测量同一样品的溶解度,由于溶解度的测量值会受到环境温度和湿度等因素的影响,每次测量的结果都会有所不同,这就是随机误差。

在实验数据的处理中,我们需要考虑误差的大小和如何将其纳入计算。

下面是一些常见的数据处理方法:1.均值:计算重复测量值的平均值。

这将有助于减小随机误差,并提供更可靠的结果。

对于有系统误差的情况,可以使用校正因子将均值修正为真实值。

2.方差:计算重复测量值的离散程度。

方差越大,数据的可靠性越低。

方差可以通过计算每个测量值与均值的差的平方,并将这些差值求和后除以测量次数来得到。

3.标准偏差:标准偏差是对方差的开方,它衡量了测量结果的均匀性。

标准偏差越小,数据的可靠性越高。

标准偏差可以通过方差的平方根来计算。

4.置信区间:置信区间是对测量结果的不确定性进行估计的方法。

通过构建一个置信区间,我们可以确定结果可能出现的范围。

置信区间的计算需要考虑样本大小、方差和置信水平等因素。

总之,分析化学实验中的误差是不可避免的,但我们可以通过合适的实验设计和数据处理方法来减小和评估误差的大小。

分析化学中的误差与数据处理

分析化学中的误差与数据处理

解:格鲁布斯法:x=20.06,s=0.073,

T计=
x6 x 20.20 20.06 1.92 s 0.073

T0.05,6=1.82< T计, 应舍去
20 .20 20 .07 x 6 x5 Q检验法:Q= x x = 20.20 20.00 0.65 6 1


解: Q = (xn-xn-1)/(xn-x1) = (29.24-29.08)/(29.24-28.97) = 0.59 Q(0.90,4) = 0.76>0.59 以10%的危险率保留29.24这个值 x= 29.08, s = 0.12 = x±ts/n1/2 = 29.08±2.35×0.12/41/2 = (29.08±0.14)(%) 90%的把握认为置信区间为 (28.94~29.22)% (t查表书61页)
3.5.3 格鲁布斯法:



步骤: 1、将测定值由小至大按顺序排列:x1,x2, x3,…xn-1,xn,其中可疑值为x1或xn 2、计算出该组数据的平均值x和标准偏差s. 3、计算统计量T: 1 若x1为可疑值,则T=
s
若xn为可疑值,
则T=
n
s
4、根据置信度P和测定次数n查表得 Ta,n,比较二者大小 。见P67
0.90的置信度)见P68


5、比较Q和Qp,n的大小:
若Q>Qp,n,则舍弃可疑值; 若Q<Qpn,则保留可疑值。
举例1、

对某试样进行四次分析结果 (%)如下:29.03,29.08,28.97,29.24, 试用Q检验法确定离群值 29.24%是否舍弃;并计算平均值 对平均值偏离较 大,则舍去;

分析化学(误差和分析数据的处理)

分析化学(误差和分析数据的处理)
2 2
S y Sz y z
2
2
23
分析天平称量时,单次的标准偏差为0.10mg,求减 量法称量时的标准偏差。
W W1 W2
2 2 2 S S1 S2 0 . 10 0 . 10 0.14mg 2
3.测量值的极值误差 在分析化学中,若需要估计整个过程可能出现的 最大误差时,可用极值误差来表示。它假设在最 不利的情况下各种误差都是最大的,而且是相互 累积的,计算出结果的误差当 然也是最大的,故称极值误差。
大概率 事件
5
若无明显过失,离群值不可随意舍弃, 常用的取舍检验方法有: (1)Q 检验法 1)将所有测定值由小到大排序, 其可疑值为X1或Xn
x1 , x 2 ,x n
2)求出极差
R X n X1
3)求出可疑值与其最邻近值之差 x2 - x1 或 xn - xn-1
4)求出统计量Q
6
x n x n 1 Q x n x1
5)查临界值QP,n

x 2 x1 Q x n x1
6) 若Q > QP.n,则舍去可疑值,否则应保留。
过失误 差造成
不同置信度下的Q值表
测定次数n 3 4 5 6 7 8 9
偶然 误差 所致 10
Q(90%) Q(95%)
Q(99%)
0.94 0.97
0.99
0.76 0.84
0.93
第一节
一、系统误差
误差
定义:由于某种确定的原因引起的误差,也称
可测误差
特点: 分类:
①重现性
②单向性
③可测性
溶解损失 终点误差
1.方法误差:

分析化学实验中误差及分析数据处理

分析化学实验中误差及分析数据处理

真值u与平均值之间的关系(平均值的置信区间)
x t sx
xt
sx n
讨论:
(1)置信区间的宽窄与置信度、测定次数和 测定值的精密度有关,当S小,n↑,置信区间 ↓,平均值越接近真值,平均值越可靠。 (2)置信度↑,置信区间↑,其区间包括真值 的可能性↑,一般将置信度定为95%或90%。
三、可疑测定值的取舍
的精密度
有限测定次数:
样本标准偏差:s
S
n
(xi x)2
i 1
n 1
f=n-1 -自由度,指独立变量的个数,可供选择的机会
样本相对标准偏差(变异系数): Sr,RSD或CV(变异系数)表示 实际工作中:常用样本相对标准偏差表示分析 结果的精密度
Sr s 100% x
请看下面两组测定值: 甲组:2.9 2.9 3.0 3.1 3.1 乙组:2.8 3.0 3.0 3.0 3.2
误差
绝对误差: 测量值与真值间的差值, 用 Ea表示
Ea= xi– T
式中xi为单次测定值。如果进行了数次平行测定, xi为
全部测定结果的算术平均值 X (测定平均值)
相对误差: 绝对误差占真值的百分比,用Er表示 Er = ( Ea / T ) ×100%(更为实用)
真值:客观存在,但绝对真值不可测
第一组 第二组
1.10 1.10
1.12 1.18
1.11 1.15
1.11 1.13
1.10 1.16
在实际分析中,真实值难以得到,常以多次平行测定结果 的算术平均值代替真实值。
2.偏差的表示方法 (一)绝对偏差 、平均偏差与相对平均偏差 绝对偏差(d)=个别测定值xi-测定平均值
有正负号,偏差的大小反映了精密度的好坏,即多次测定 结果相互吻合的程度

分析化学第二章误差与分析数据处理

分析化学第二章误差与分析数据处理
选择合适的分析方法
根据待测组分的性质和含量选择合适的分析 方法。
空白实验
通过扣除空白值来减小误差。
标准化样品分析
使用标准样品对实验过程进行质量控制。
回收率实验
通过添加已知量的标准物质来评估分析方法 的准确性。
04
有效数字及其运算规则
有效数字的定义与表示
01
有效数字是指测量或计算中能够反映被测量大小的部分数字 ,其位数与被测量的精密度有关。
数据统计
计算平均值、中位数、众数等统计量,以反映数据的集 中趋势和离散程度。
实验结果的评价与表达
误差分析
计算误差、偏差、相对误差 等,评估实验结果的可靠性

1
精密度与偏差
通过多次重复实验,评估实 验结果的精密度和偏差。
置信区间
根据实验数据,计算结果的 置信区间,反映结果的可靠 性。
结果表达
选择合适的单位和量纲,将 实验结果以表格、图表等形 式表达,便于分析和比较。
02
表示有效数字时,需保留一位不确定位,采用指数或修约的 形式表示。
03
有效数字的表示方法:科学记数法(a x 10^n)或一般表示法。
有效数字的运算规则
加减法
以小数点后位数最少的数字为标准,对 其他数字进行修约,然后再进行运算。
乘方和开方
运算结果的有效数字位数与原数相同。
乘除法
以有效数字位数最少的数为标准,对 其他数字进行修约,然后再进行运算。
THANKS
准确度检验
通过标准物质或标准方法对比,检验分析结 果的准确性。
线性检验
验证测量系统是否符合线性关系,确保数据 在一定范围内准确可靠。
范围检验
评估分析方法在一定浓度或含量范围内的适 用性。

分析化学中的误差与数据处理

分析化学中的误差与数据处理

科 人们所采用。
技 大 学
缺点:存在较大的误差。当4d法与其他检验 法矛盾时,应以其它方法为准。
步骤
(1)首先求出除异常值外的其余数据的平 均值x和平均偏差d;
天 津
(2)然后将异常值与平均值进行比较,如绝 对差值大于4d,则舍去,否则保留。




例 某药物中钴含量(μg/g)测定数据如 下:1.25,1.27,1.31,1.40 μg/g,问1.40是否保留?
例 某药物中钴含量(μg/g)测定数据如 下:1.25,1.27,1.31,1.40 μg/g,问1.40是否保留?
解 全部数据的平均值和平均偏差为:
x=1.31 s=0.066




大 学
查表T0.05,4=1.46,T<T表,保留。
3、Q检验法
<1>将测定值按递增顺序排列:x1, x2, … xn <2>计算统计量Q:
解:Q=(1.40-1.31)/(1.40-1.25)=0.60
天 查表n=4,Q0.90=0.76
津 科
Q<Q0.90

保留


注意
由于置信度升高会使置信区间加宽,所以置信度 为90%时应保留的数字在95%时也一定应保留。 在90%舍弃的数值,在95%时则不一定要舍弃, 应重新做Q检验。反之在95%该舍弃的数值,在 90%时一定舍弃。
n
n
yi b xi
a i1
i1 y b x
n
n
( x i x )( y i y )
b i1 n
天 津 科
(xi x )2
i1
技 式中x,y分别为x和y的平均值,a:截矩,b:

分析化学中的误差及数据处理

分析化学中的误差及数据处理

只允许一次修约,不能分次修约。
0.57
0.5749
× 0.575
0.58
22
有效数字的运算规则
注意:加减和乘除运算都是先修约数字再进行计算
1、加减法: 以小数点后位数最少的数据为准保留有效数字的位数。 根据是该数的绝对误差最大。 例:
50.1 + 1.45
0.5812
±0.1
±0.01 ±0.0001 (绝对误差)
(3)单位改变有效数字位数不变。 (4)pH、 pM 、 logK 等对数值取决于小数位数。如 pH=11.20 两位有效数字
(5)指数形式 [H+]=6.3×10-12 mol/L 两位有效数字
(6)自然数和常数可看成具有无限多位数(因不是测量得到,如倍数、分数关系)
m ◇分析天平(称至0.1mg): 12.8228g (6) , 0.0600g (3) ◇千分之一天平(称至0.001g): 0.235g (3) ◇1%天平(称至0.01g): 4.03g (3), 0.23g (2) ◇台秤(称至0.1g): 4.0g (2), 0.2g (1)
➢多次测量统计处理,遵从“正态分布”规律。 ➢ 随机误差无法避免。 ➢多次测量取平均值,可减小随机误差。
随机误差使分析结果在一定范围波动,其方向 、大小不固定,从而决定精密度的 好坏。
(4) 随机误差减免方法: 增加平行测定次数,取算术平均值。
17
有效数字及运算规则
有效数字
1、有效数字:是实际能测量到的数字 有效数字 = 各位确定数字 + 最后一位可疑数字
x-m 随机误差
测量值的正态分布 随机误差的正态分布
测量值和随机误差的正态分布体现了随机误差的概率统计规律
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2:
用一种新方法来测定试样含铜量,用含量为11.7 mg/kg的标准试样,进行 5次测定,所得数据为:
10.9, 11.8, 10.9, 10.3, 10.0
判断该方法是否可行?(是否存在系统误差)。
解:计算平均值 = 10.8,标准偏差 S = 0.7,n=5,μ=11.7
x n 10.8 11.7 5
CYJ 21
特点:
1)不具单向性(大小、正负不定) 2)不可消除(原因不定)
但可减小(测定次数↑) 3) 分布服从统计学规律(正态分布)
随机误差
多次测量取平均值
CYJ 22
系统误差与随机误差的比较
项目
系统误差
随机误差
产生原因 固定因素,有时不存在 不定因素,总是存在
分类
方法误差、仪器与试剂 环境的变化因素、主
25.0 20.0
15.0
y
10.0
5.0
0.0 15.80 15.90 16.00 16.10 16.20
x
CYJ 24
分析结果表示:
置信度和置信区间
– 测定值或误差出现的概率称为置信度
– 真实值在指定概率下,分布在某一个区间,
这个区间称为置信区间
μ x
ts n 不确定度
x
ts n
,x
ts n
测量点
平均值
真值
CYJ 13
准确度和精密度——分析结果的衡量指标。
(1) 准确度──分析结果与真实值的接近程度 准确度的高低用误差的大小来衡量; 误差一般用绝对误差和相对误差来表示。
(2) 精密度──几次平行测定结果相互接近程度 精密度的高低用偏差来衡量, 偏差是指个别测定值与平均值之间的差值。
(3) 两者的关系 精密度是保证准确度的先决条件; 精密度高不一定准确度高; 两者的差别主要是由于系统误差的存在。
CYJ 33
显著性检验
x (1)对含量真值为T 的某物质进行分析,得到平均值
但 x T 0
(2)用两种不同的方法、或两台不同的仪器、或两个分析员对同
一样品进行分析,得到平均值
但 x1 x2 0
x1, x2
问题:是由随机误差引起,或存在系统误差?
显著性检验
x T 0
x1 x2 0
显著性 检验
t计算
s
0.7
2.87
查表 2-2 t 值表,t
= 2.78
(0.95 , n = 5)
t计算 > t表 说明该方法存在系统误差。
两组平均值的比较的方法(两个不同方法 或 两个分析人员)
1、F 检验法检验两组实验数据的精密度S1和S2之间有无
显著差异:
F计算
s大2 s小2
查表
F计算 F表
精密度无显著差异。
确定某个数据是否可用。 (2) 分析方法的准确性系统误差及偶然误差的判断
显著性检验:利用统计学的方法,检验被处理的问 题是否存在 统计上的显著性差异。 方法:F 检验法和t 检验法
确定某种方法是否可用,判断实验室测定结果准确性
解: 平均值
x 3.0
绝对偏差 d1= -0.1 d2= -0.1 d3= +0.1 d4=+0.1
n
平均偏差 d i1 di 0.1 0.1 0.1 0.1 0.1
n
4
CYJ 11
标准偏差
n
xi x2
s i1 n 1
2.9 3.02 2.9 3.02 3.1 3.02 3.13.02
分析化学中的误差分析 及数据处理
CYJ 1
一、定量分析中的误差
1、误差与准确度 2、偏差与精密度 3、精密度与准确度的关系 4、误差的分类及减免误差的方法
CYJ 2
二、分析结果的数据处理
1. 随机误差的分布规律 2. 可疑值的取舍 3. 检验系统误差的方法
三、 有效数字
1. 有效数字 2. 修约规则 3. 运算规则
系统误差
显著性差异
校正
非显著性差异
正常
随机误差
CYJ 34
平均值与标准值的比较(方法准确性)
检验一个分析方法是否可靠, 配制已知含量的标准试样, 用 t 检验法将测定平均 值与已知值(标样值)比较:
x n
t计算
s
若 t计算 > t表 ,则与已知值有显著差别(存在系统误差) 若 t计算 ≤ t表,正常差异(偶然误差引起的)。
CYJ 3
问题的提出:定量分析的目的是测得试样中某组分 的含量,因此希望测量得到的是客观存在的真值。 但实际的情况是: 1)如果对一个标样进行测定,采用的是最可靠的 方法,最精密的仪器,很有经验的分析人员,所得 的结果也不可能和真值完全一致。
2)同一个有经验的分析人员对同一样品进行重复测
定,结果也不可能完全一致。说明分析的误差是客 观存在的。
CYJ 6
偏差与精密度
精密度 Accuracy
精密度表示平行测定的结果互相靠近的程度(离 散程度),一般用偏差表示
重复性 再现性
精密度与偏差的关系
偏差越小,精密度越高。
CYJ 7
偏差 : 指个别测定结果与几次测定结果的平均值之差。
偏差的表示有: 绝对偏差、相对偏差 平均偏差 标准偏差
CYJ 8
偏差 (1)绝对偏差:单次测量值与平均值之差
过失误差
重做!
CYJ 16
(2)系统误差
定义:是由于某些已知的或未知的因素造成,而 且具有一定变化规律的误差称为系统误差,又称 偏倚
CYJ 17
(2) 产生的原因
a.方法误差——选择的方法不够完善 例: 重量分析中沉淀的溶解损失、共沉淀现象、灼烧
时沉淀分解或挥发等; 滴定分析中反应进行不完全、干扰离子影响、计量点和
准确度与误差的关系
误差越小,准确度越高。 CYJ 5
真值 xT (True value)
某一物理量本身具有的客观存在的真实值。真值是未知的、
客观存在的量。在特定情况下认为 是已知的:
1、理论真值(如化合物的理论组成)(如,NaCl中Cl的 含量) 2、计量学约定真值(如国际计量大会确定的长度、质量、 物质的量单位等等) 3、相对真值(如高一级精度的测量值相对于低一级精度 的测量值)(例如,标准样品的标准值)
误差、操作误差
观的变化因素等
性质
重现性、单向性(或周 服从概率统计规律、
期性)、可测性
不可测性
影响
准确度
精Байду номын сангаас度
消除或减 小的方法
校正
增加测定的次数
CYJ 23
随机误差的分布规律
1. 测定次数无限多时
性质:
正态分布
对称性 单峰性 有界性 抵偿性
原因:仪器误差、环境误差、操作误差
减小:多次测定取平均值
d xi x
(2)相对偏差:绝对偏差占平均值的百分比
d 100% xi x 100%
x
x
(3)平均偏差:各测量值绝对偏差的算术平均值
xi x
d n
CYJ 9
(4)标准偏差:
Sx
n
( xi x)2
i 1
n 1
CYJ 10
例、有一组测定值
2.9 2.9 3.1 3.1
计算数据的平均值、平均偏差、标准偏差
2、t 检验确定两组平均值之间有无显著性差异
t计算
x1 x2 sp
n1 n2 n1 n2
3、查表 t表 ta ( f ),
sp
(n1 1)s12 (n2 1)s22 n1 n2 2
f n1 n2 2
4、比较
t计算 t表 非显著差异,无系统误差
CYJ 37
定量分析数据的评价---解决两类问题: (1) 可疑数据的取舍 过失误差的判断 方法:Q检验法和格鲁布斯(Grubbs)检验法
CYJ 25
例题
分析铁矿中的铁的质量分数,得到如下数据: 37.45,37.20,37.50,37.30,37.25(%)。 (1)计算此结果的平均值、平均偏差、标准偏差、 (2)求置信度为95%的置信区间。
CYJ 26
解(2)求置信度为95%的置信区间。
n 5, x 37.34%,s 0.13%
4.60
6
2.02
2.57
4.03
7
1.94
2.45
3.71
8
1.90
2.37
3.50
9
1.86
2.31
3.36
21
1.73
2.09
2.85

1.64
1.96
2.58
可疑数据的取舍
A、异常值保留:会使观测结果不准确,参加其后的数据统 计计算影响统计推断的正确性。 B、允许剔除异常值,即把异常值从样本中排除或修正。 (1)对于任何异常值,首先找到实际原因,指示剂加错, 样品量取错,读数错误,记录错误,计算错误等。 (2)统计的方法进行检验!
因此必须对分析结果进行分析,对结果的准确度和 精密度进行合理的评价和准确的表述。
CYJ 4
误差与准确度
准确度指测量值与真实值的接近程度。准确 度用误差表示。
绝对误差: 测量值与真值间的差值, 用 E表示
误差
E = x - xT
相对误差: 绝对误差占真值的百分比,用Er表示
Er =E/T = (x – xT) / xT ×100%
过低等;
系统误差的检验和消除 系统误差的减免 (1) 方法误差—— 采用标准方法,对比实验 (2) 仪器误差—— 校正仪器 (3) 试剂误差—— 作空白实验
如何判断是否存在系统误差??
CYJ 20
相关文档
最新文档