悬索桥的性能分类
国内外大跨径桥梁建设之悬索桥

国内外大跨径桥梁建设之悬索桥悬索桥是一种古老的桥型,起源于中国,革新于英国,发展于美国,广泛应用于日本。
它因具有跨度大、美观、架设方便等特点而得到广泛的应用。
随着高强钢丝和优质材料的出现,架设工艺的改进以及计算理论和手段的不断完善,悬索桥正朝长、大方向发展,并因其在大跨度方面具有较大的优势而成为现代大跨径桥梁家族中的重要成员。
从1816 年,英国建成了第一座具有现代意义的悬索桥——跨径为124m、以钢丝做主索的人行吊桥起,工程界开始重视对悬索桥的理论研究。
1823年纳维尔发表了加劲梁悬索桥理论,认识到竖向挠度随着恒载的增加而减少。
到19 世纪末,悬索桥的跨度达到200~300m 。
1883 年列特和1886 年列维分别发表了弹性理论,这使悬索桥的跨径达到了500m 以上。
1888 年米兰提出了挠度理论,利用该理论分析的第一座桥是曼哈顿(Manhattan )大桥(主跨径为448m )。
到1931 年,挠度理论使悬索桥的跨度增大了一倍,且突破了l000m ,这就是跨越哈得孙河的乔治•华盛顿(George •Washington ) 大桥(主跨1067m )和旧金山金门(Golden Gate )大桥(主跨1280m )。
悬索桥的发展至今已有近200 年的历史,它是大跨径(尤其是1000m 以上的特大跨径)桥梁的主要形式之一,其优美的造型和宏伟的规模,常被人们称为“桥梁皇后”。
1966 年英国塞文(Severn )桥的加劲梁首先采用流线型扁平钢箱梁,增大了桥梁抗风性能和抗扭刚度,且用钢量少、维护方便。
1970 年丹麦小贝尔特(Small Belt )桥的钢箱梁首先采用箱内空气干燥装置,增强了防腐性能。
跨径为世界第一的明石海峡大桥悬索桥的抗震设计成功地经受了1995 年日本神户大地震考验。
我国虽然很早就开始修建悬索桥,但是其跨径和规模远不能同国外现代悬索桥相比。
我国悬索桥发源甚早,已有3000 余年历史。
悬索桥简介

(第八章 第四节)
—— 悬 索 桥
教材:《桥梁工程概论》,西南交通大学出版社,李亚东主编
1
引 言
三环路南 天府立交
二环路西 清水河大桥
2
世界著名桥梁
日本明石海峡大桥(1991m) 浙江 西堠门大桥(1650m)
丹麦 大贝尔特桥(1624m)
美国 金门大桥(1280悬索桥
五跨悬索桥
二、悬索桥基本类型
按主缆锚固形式分类 自锚式
在边跨两端将主缆直接锚固在加劲梁上,主缆的水 平拉力由加劲梁提供的轴压力自相平衡。
自锚式悬索桥
地锚式
主缆的拉力由重力式锚碇或岩隧式锚碇传递给地基
重力式锚碇
岩隧式锚碇
西堠门大桥: 主跨1650m、地锚式、两跨连续钢箱梁悬索桥, 世界第二、建成于2008年。
作业内容:
任选世界范围内的一座悬索桥,收集相关资料,整理分析。
包含内容:建造原因、年份、设计方案、施工方法、主要特点,
画出受力情况简图。
19
敬请批评指正!
20
四、悬索的结构组成
(5)索 鞍
作用:用以支承主缆并改变其方 向或摆动的重要部件,使主缆中的
拉力以垂直分力和不平衡水平分力
的方式均匀地传到塔顶。
16
四、悬索的结构组成
(6)吊索与索夹—连接大缆与加劲梁
索夹 吊索
17
总 结
悬索桥体系受力特征明显,传力途径清晰,充分利用了各 种材料的力学性能,是当今跨越能力最强的一种桥梁形式。 随着新施工技术和新建筑材料的发展,悬索桥的跨度还会 进一步变大。 1. 悬索桥的发展历程、概念(了解) 2. 几座代表性悬索桥的设计参数(重点) 3. 悬索桥的几个主要组成部分及其作用(重点) 4. 悬索桥的传力途径、受力特点(难点)
悬索桥设计说明

悬索桥设计说明一、概述本项目为配合XXX工程建设所进行的库区淹没路桥复建工程。
原XXX人行索桥全长约60m ,桥面高程约为1284.0m ,两岸为人行便道。
XX水电站库区蓄水后,正常蓄水位为1335.0m,将淹没原人行索桥。
为保证黔中水利枢纽工程建成后两岸交通的恢复,按照国家有关水库淹没赔偿的〃三原〃原则及有关规定,重建XX县化乐乡夺泥村河边组人行索桥及两岸人行便道。
二、设计技术标准和主要参数1、设计依据(1)《公路工程技术标准》(JTG B01—2003);(2)《公路桥涵设计通用规范》(JTG D60—2004);(3)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62—2004);(4)《公路桥涵地基与基础设计规范》(JTJ024—85);(5)《钢结构设计规范》(GB50017—2003);(6)《重要用途钢丝绳》(GB8918—2006);(7)《公路桥涵施工技术规范》(JTJ041—2000);(8)《公路工程质量检验评定标准》(JTG F80/1—2004);(10)《公路路线设计规范》(JTG D20-2006);(11)《公路路基设计规范》(JTG D30-2004);(12)《公路水泥混凝土路面设计规范》(JTG DF40-2003);2、设计标准(1)人行索道技术标准荷载:人群荷载2.0kN/m2。
桥面宽度:净-2.3m。
合龙温度:15℃。
(2 )人行便道技术标准技术等级:等外公路;计算行车速度:20km/h ;路面宽度:2m ;路面类型:泥结碎石路面。
三、桥梁地质概况1、自然条件(1)气候、水文桥址区属亚热带常绿阔叶林红黄壤带的岩溶高原中山区,年平均气温13〜15℃,年降雨量1000〜1100mm,是贵州热量较低、雨量较多、海拔较高的剥蚀、侵蚀高原山地区。
(2)地形、地貌桥位区为河谷斜坡地形,总体上两侧高中间低,呈〃V”字型,其地面标高1269.20m〜1348.92m,相对高差79.72m,河床标高约为1268.7m。
悬索桥及斜拉桥的分类、构造、受力特点及设计要点

Marian Bridge (the Czech Republic)
span=123.3m,pylon=75m
Sunshine Skyway Bridge (USA 1987)
span=366 m
Sunshine Skyway桥位于佛罗里达州,系独柱式单面索双塔斜拉 桥。主跨365.76米,全长8851米,1987年建成通车。该桥最大 特点是采用迎风面积较小的独柱塔和该桥所设的防撞设施。
Oresund Bridge
Oresund桥是一座跨越了Oresund海峡的公铁两用桥,连接了丹 麦首都哥本哈根和瑞典的城镇。这座桥有世界上最长的490米的 斜拉桥主跨。全桥长7845米,近似的等于丹麦和瑞典之间的距离。 Oresund桥在2000年7月的一个星期五通车的。
Oresund Bridge
斜拉桥
塔柱——承担锚固区传来的重力 主梁——承担斜拉索水平力、承担活载弯矩 斜拉索——将主梁承担的荷载传递到塔柱或基础
二、悬索桥和斜拉桥的设计要点
1、悬索桥的设计要点
悬索桥的设计顺序一般可以分为两部分考虑;先考虑主 缆及加劲梁的设计,然后根据已决定的主缆及加劲梁体 系考虑桥塔的设计。
1)加劲梁:拟定悬索桥的形式、选择边孔与主孔的跨 度比等; 2)主缆:确定主缆的垂跨比等 3)桥塔:确定桥塔的构架形式等
大缆以as法(空中送丝法)或ppws法(预制束股法)制 造,美国、英国、法国、丹麦等国均采用as法,中国、日本 采用ppws法。
塔架型式一般采用门式框架,材料用钢和混凝土,美国、 日本、英国采用钢塔较多,中国、法国、丹麦、瑞典采用混 凝土塔。
加劲梁有钢桁架梁和扁平钢箱梁,美国、日本等国用钢桁 架梁较多,中国、英国、法国、丹麦用钢箱梁较多。
悬索桥设计论文

本科毕业设计成果小跨度吊桥设计作者姓名朱杰指导教师秦值海所在院系浙江工业大学专业班级土木09提交日期2011年10月7日小跨度吊桥设计The Design of Shot-span Suspension BridgeAbstract学生姓名:朱杰Student: ZhuJie指导教师:秦值海Advisor: QinZhiHai浙江工业大学成人教育学院毕业设计成果A ThesisSubmitted to Zhejiang University of Technologyin Partial Fulfillment of the Requirementsfor the Undergraduate Thesis in Automation2012年6月摘要本设计为公路(13m+68m+13m)三跨柔性悬索桥,主跨68m,边跨对称13m。
桥面系为钢结构,桥塔为钢筋混凝土结构。
悬索桥很早以前就有了,到了近代发展速度十分迅猛,在现代桥梁工程实践中开始广泛应用,其特点是受力性能好、跨越能力大、轻型美观、抗震性能好。
是跨越大江大河、海峡港湾等交通障碍的首选桥型。
本设计以悬索桥设计基本理论和静动力分析为理论基础,以成功修建的悬索桥为例,根据桥梁的位置、布置形式,拟定桥梁的跨度、矢高、吊杆间距、锚索倾角、桥塔高度和截面、塔基形式、锚碇构造等,说明选择相关参数的过程、依据、和考虑的主要因素,然后进行桥面系、主索边索、吊杆、索夹、抗风索、桥塔、锚碇等具体尺寸设计、配筋和验算。
桥面系采用工字钢横纵梁布置,主索用7×19钢丝绳,桥塔用C20钢筋混凝土,本桥相对悬索桥跨度较小,设计考虑恒载、风荷载和温度荷载,活载为汽-10和人行荷载,不考虑地震荷载。
由于悬索桥是超静定结构,计算较为烦琐,故在该设计中,结构单元划分和内力计算采用专业设计软件ansys进行,计算方法为有限元法,使设计工作量大大的简化,内力求出后,根据桥梁规范进行结构内力组合。
斜拉桥与悬索桥性能对比分析

(1)对于一般跨径的混凝土斜拉桥结构计算,可按经典结构力学或有限元方法计算;
(2)对于跨径较大的斜拉桥,应计入结构几何非线性及材料非线性对结构的影响;
(3)斜拉桥为空间结构体系,在静力分析时可将空间结构简化为平面结构进行计算,动力分析应按空间结构计算;
(4)在结构计算中,必须计入拉索垂度对结构的非线性影响,可源自用拉索换算弹性模量的方法计入其影响;
几点增加风动力稳定性的措施:
1.梁的宽高比B/h要大于6,最好在6~10之间;
2.迎风面做成流线形;
3.可用横向放置的 形人行道板之类来形成导流器,以减少桥面局部真空;
4.尽可能使两索面拉开,以增加抗扭刚度,用三角形索面效果最好;
5.结构体系选用密索体系的连续梁;
6.减小索距
结语
通过以上的特点对比可以很清晰的看到悬索桥与斜拉桥的结构特点、受力特点、适用范围,再次的基础上要更注意二者之间的区别:1、两者的刚度差别很大;2、前者主梁受很大的水平分力而成为偏心受压构件,后者加劲梁不承受轴向力;3、前者课通过调整索力调整内力分布,后者不可;4、前者可通过斜拉索初张力、间距和数量的改变来改变刚度,后者不可。因此在设计选择桥梁类型时,要充分考虑桥梁的性能,选出最经济合理的设计方案。
四、风振问题及抗风措施
特点:
(1)一般的中、小跨径桥梁风作为静力计算,对风荷载也化为静力处理。
(2)大跨径桥梁中,除了考虑风的静力作用外,还必须考虑风的动力作用。
(3)桥梁的风振包括两大类,
(4)一类是当自然风达到某一临界值时,桥梁振幅不断增大直至结构损坏的自激振动,它是一种发散振动;
(5)另一类是限幅振动,它所引起的振幅有限,不会发散,但在低风速下经常发生。对桥梁危害最大的就是自激发散振动。
悬索桥检测项目及频率
1、统一规格、等级、材料、长度、同一生产工艺最大3000套。
2、连接副扭矩系数每批取8套。
3、抗滑移系数以制造批2000t钢构件为一批,每批3组试件。
钢箱梁、索夹、索鞍、锚杯、锚板、鞍座钢板
外观质量、无损检测
JT/T203-2007《钢结构超神波探伤及质量分级法》
序号
工程名称
试验检测对象
试验检测项目
采 用 标 准
规定的检测频率或要求
1悬索桥、钢桥Fra bibliotek热镀锌钢丝外观质量、拉伸强度、规定非比例延伸强度、断后伸长率、缠绕试验、应力松弛性能、弹性模量、反复弯曲试验、扭转试验、伸直性能、锌层重量、锌层附着力、锌层均匀性
GB/T17101-2008《桥梁缆索用热镀锌钢丝》
供方检测:
1、拉伸强度、断后伸长率每盘一根,其余没10盘取一根。
2、应力松弛性能300t取一根、
需方检测:进货按照上述的5%取样检测。
吊索
平行钢丝束吊索:钢丝、钢丝排列、绕包层、挤包护层、吊索长度、预拉及锚回缩、锚体与锚头连接密封性能钢丝绳吊索:钢丝绳、护层、吊索长度、预拉及锚回缩、
JT/T449-2001《公路悬索桥吊索》
JB/T6061-2007《无损检测 焊缝磁粉检测》
GB/T3323-2005《金属熔化焊焊接接头射线照相》
GB/T2970-2004《厚钢板超声波检验方法》
按照GB/T F50-2011《公路桥涵施工技术规范》相关要求及设计文件进行。
钢箱梁、锚杆、锚梁、索鞍、索夹防腐涂层检测
进场涂料质量检测,现场涂层质量:外观、厚度、附着力
高强镀锌钢丝要符合GB/T17101-2008《桥梁缆索用热镀锌钢丝》要求。
刚性索自锚式悬索桥静力性能分析
科技资讯科技资讯S I N &T NOLOGY I NFORM TI ON 2008N O.13SCI ENC E &TEC HNO LO GY I N FO RM A TI ON 工业技术1工程简介平顶山建设路立交桥主桥为双塔刚性索自锚式悬索桥[1~2],跨径142m ,跨径组合为35m +72m +35m ,设计为双向6车道,桥面宽24.4m 。
该桥由钢筋混凝土箱梁、主塔,刚性主缆和刚性吊杆组成。
主梁为单箱双室箱梁。
箱梁纵向不配预应力,为钢筋混凝土结构,横向配预应力,主塔为2.0m ×1.2m 矩形实心截面,顶部设2.0m ×1.0m 风撑。
主缆和吊杆为刚性索,即在主缆和吊杆外包钢管,张拉完毕后,在钢管内分别真空灌注50号和40号水泥砂浆。
主缆中跨索两端张拉,张拉端在塔顶。
边跨在主塔顶单向张拉,两端锚固。
主缆在边跨与中跨都有一段从主梁边腹板内通过,施工时主梁边腹板内预留管道,主缆张拉完毕后压浆密实。
桥梁竣工时主缆的张拉力分别为:边跨主缆14400k N ,中跨主缆13840kN,吊杆张拉力1226kN 。
2受力特点该桥为自锚式悬索桥,它不需要有强大的锚碇,直接把主缆锚于主梁端,通过梁体自身重量和轴向受力平衡拉索索力,节省了昂贵的锚碇费用,造价相应比较低廉。
该桥主梁为钢筋混凝土箱梁,主缆锚于主梁端所产生的轴向压力,相当于对钢筋混凝土箱梁施加了强大的免费预应力,使主梁受力大为改善,主梁不再需要配置预应力钢束,节省了大量预应力筋及装置。
该桥的突出特点是在主缆和吊杆的外围包有钢管,分别内充50号及40号水泥砂浆,这样一方面可以阻止主缆和吊杆与空气接触,防止其锈蚀;另一方面也不同程度地改变了吊杆和主缆的受力特性,使其在不同阶段表现出不同的力学特性,即在施工阶段,桥面恒载作用下主缆和吊杆为柔性,在使用阶段,恒载和活载共同作用下主缆和吊杆以及外包结构共同表现为刚性,因此这种桥型又称为刚性索悬索桥。
悬索桥和斜拉-悬索协作体系桥的比较
悬索桥和斜拉-悬索协作体系桥的比较悬索桥(suspension bridge)是利用主缆及吊索作为加劲梁的悬挂体系,将荷载作用经桥塔、锚碇传递到地基的桥梁。
悬索桥主要由缆索系统、塔墩、加劲梁及附属结构四大部分组成。
地锚式悬索桥中锚碇、桥塔和主缆是主要的承载结构,吊索与加劲梁则主要起传递直接作用其上的荷载的作用;自锚式悬索桥中锚碇、桥塔、主缆、加劲梁都是主要的承载结构。
斜拉-悬索协作体系桥(cable-stayed-suspension bridge)是在悬索桥上增加斜拉索,或者在斜拉桥上增加主缆,故斜拉-悬索协作体系桥也是主要由缆索系统、桥塔、加劲梁及附属结构四大部分组成。
其中锚碇、桥塔、主缆、斜拉索、主梁是主要的承载结构。
日本明石海峡桥纽约布鲁克林桥一、悬索桥和斜拉-悬索协作体系桥的优缺点悬索桥的优点:(1)受力非常合理:悬索桥的主要受力构件为缆索,缆索主要受拉,次弯矩非常小,应力在截面上分布比较均匀;桥塔以受压为主,弯矩也较小;加劲梁只作为桥面来传递荷载,不是主受力构件,就静力来说,梁高与跨度无关而只与吊索间距有关。
(2)跨越能力大:在大跨度悬索桥中,缆索的恒载拉力远大于活载值,因此一般疲劳的影响较小。
(3)桥型优美;悬索桥加劲梁的梁高比同跨度的梁桥的梁高小得多,所以建筑高度较小,具有优美的曲线,外形比较美观,在城市中采用此种桥式将为城市增加风景点。
如美国旧金山的金门大桥。
(4)抗震能力强:悬索桥是轻而柔的桥梁,刚度较小,在地震作用下,受地震惯性力较小,往往位移大而内力小,消能能力强,因此抗震能力强。
(5)施工方便:悬索桥施工时是先架设好桥塔,然后利用桥塔架设牵引索和施工猫道等,利用猫道来架设主缆,然后再架设加劲梁和桥面系,施工方便;在交通不便的山区,修建悬索桥较为有利;在交通方便的江河湖海和城市外,悬索桥除了开始架设先导索外,不会中断交通。
悬索桥的缺点:(1)荷载作用下变形较大:由于缆索是柔性结构,当活载作用时,会改变几何形状,会引起桥跨结构较大的变形。
斜拉桥与悬索桥受力性能分析
斜拉桥与悬索桥受力性能分析摘要:近些年来我国经济和科学技术处于高速发展时期,社会水平得到大幅度提升,于道路交通方面的需求也不断增加,因此桥梁建设无论是规模还是数量都得到持续增长。
桥梁不仅作为道路交通中的基础建筑而存在,而且是城市经济发展水平的直接表现形式。
近些年来桥梁跨度不断增大,比如斜拉桥和悬索桥,都是对钢材预应力性能进行充分应用的大跨度桥梁。
本文以实际案例为依据探究斜拉桥和悬索桥的受力性能。
关键词:斜拉桥;悬索桥;受力性能交通工程中的基础建筑当属桥梁,其根本作用是连接河流两岸甚至海峡两岸。
此外跨越障碍的目的也得以达成。
桥梁的诞生和发展促使交通便利程度的不断提升,并且可一定程度推动地方经济的发展。
当前阶段桥梁的建设更是完美融合经济学、美学以及力学的各类观点,逐渐成为可代表地区经济水平的基础建筑。
随着我国经济的不断发展,对于桥梁建设方面的要求随之提升,桥梁跨度不断增加。
近些年预应力结构在桥梁结构的应用十分瞩目,也就是现阶段的高强度预应力拉索,从而推动了斜拉桥与悬索桥的快速发展,下面本文就斜拉桥与悬索桥的受力性能展开分析。
一、斜拉桥受力特点分析斜拉桥对拉索进行利用,并通过拉索将落于桥面的荷载力向桥塔传递。
承弯的梁体、承压的塔以及受拉的索是桥梁结构的主要组成部分。
由于此种桥梁结构受拉索数量较多,因此降低了支墩数量,进而对量内的弯矩进行降低,其自重也相对较低,建筑材料得到节省。
广东省肇庆市阅江大桥起点位于肇庆端州区古塔路与端州路交叉路口,主要沿古塔路高架,跨越西江,在南岸高要乌榕村与世纪大道(S272)衔接。
通过受力特点对斜拉桥受力结构进行分析,可得出结果桥梁结构中的众多斜拉索将斜拉桥主跨承重大梁的承载力进行分担,并最终落至桥梁两侧桥塔位置,由此可以得出拉索于桥塔两侧分布的作用。
主梁承受荷载及主梁自重的力均是垂直向下,借助桥塔两侧的拉索对其进行平衡。
二、悬索桥受力特点分析日常见到的吊桥即为悬索桥,桥面借助拉索的力量悬挂于桥塔上,拉锁采用锚固的方式在两岸桥梁部分进行固定,吊杆、主缆、塔桥以及锚碇构成整体结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
悬索桥的性能分类
【学员问题】悬索桥的性能分类?
【解答】按照桥面系的刚度大小,悬索桥可分为柔性悬索桥和刚性悬索桥。
柔性悬索桥的桥面系一般不设加劲梁,因而刚度较小,在车辆荷载作用下,桥面将随悬索形状的改变而产生S形的变形,对行车不利,但它的构造简单,一般用作临时性桥梁。
刚性悬索桥的桥面用加劲梁加强,刚度较大。
加劲梁能同桥梁整体结构承受竖向荷载。
除以上形式外,为增强悬索桥刚度,还可采用双链式悬索桥和斜吊杆式悬索桥等形式,但构造较复杂。
桥面支承在悬索(通常称大揽)上的桥称为悬索桥。
英文为Suspension Bridge,是悬挂的桥梁之意,故也有译作吊桥的。
吊桥的悬挂系统大部分情况下用索做成,故译作悬索桥,但个别情况下,索也有用刚性杆或键杆做成的,故译作悬索桥不能涵盖这一类用桥。
和拱肋相反,悬索的截面只承受拉力。
简陋的只供人、畜行走用的悬索桥常把桥面直接铺在悬索上。
通行现代交通工具的悬索桥则不行,为了保持桥面具有一定的平直度,是将桥面用吊索挂在悬索上。
与拱桥用刚性的拱肋作为承重结构不同,其采用的是柔性的悬索作为承重结构。
为了避免在车辆驶过时,桥面随着悬索一起变形,现代悬索桥一般均设有刚性梁(又称加劲梁)。
桥面铺在刚性梁上,刚性梁吊在悬索上。
现代悬索桥的悬索一般均支承在两个塔柱
上。
塔顶设有支承悬索的鞍形支座。
承受很大拉力的悬索的端部通过锚碇固定在地基中,也有个别固定在刚性梁的端部者,称为自锚式悬索桥。
以上内容均根据学员实际工作中遇到的问题整理而成,供参考,如有问题请及时沟通、指正。