扩散参数确定
SD208-87-火力发电厂的环境影响报告书编制原则和内容深度规定

火力发电厂的环境影响报告书编制原则和内容深度规定SD 208-871 总则1.1 为了贯彻执行《中华人民共和国环境保护法(试行)》和《建设项目环境保护管理办法》,加强火电建设项目环境管理,提高火电厂环境影响评价工作的质量和实现环境影响报告书编制规范化,特制订本规定。
1.2 新建、扩建和改建的火电厂,在可行性研究阶段提出环境影响报告书(以下简称报告书),可以填表的应参照本规定,并根据(86)国环字第003号文附件二“建设项目环境影响报告表”的规定,填写环境影响报告表(以下简称报告表),报建设项目主管部门预审及省级环保部门或国家环保局审批。
1.3 本规定适用于5万kW及以上的大中型火电厂(供热机组为2.5万kW及以上),5万kW以下的火电厂一般只填写报告表。
1.4 火电厂的环境影响评价应由持“建设项目环境影响评价证书”的单位承担,报告书应由电力系统持“综合评价证书”的单位编制。
承担环境影响评价工作的单位必须对评价结论负责。
1.5 环境影响评价应先编制评价大纲,经建设项目主管部门和省或国家环保部门审查同意,再进行环境评价,在评价的基础上编制报告书。
1.6 环境影响评价的依据,是国家和地方规定的环境质量标准及其他有关文件;火电厂排放的污染物必须达到国家或地方规定的排放标准。
1.7 新建工程的报告书(表)应根据项目建议书的规划容量编制。
扩建工程已按规划容量编制了报告书(表),并已经国家或省级环保部门审批,且建设项目的规模、地点无较大改变时,不再编制报告书(表),必要时可进行环境现状调查。
1.8 为确保火电厂“三同时”的实施,评价单位应在报告书中提出防治污染的措施和设施,要有方案比较、工艺流程、工程投资分析,要在经济上合理,技术上可行。
1.9 扩建的火电厂,除按本规定进行工作外,尚应结合老厂统筹规划,对原有污染,在经济合理的条件下同时进行治理。
1.10 火电厂的环保是综合性很强的工作,要对除尘系统、除灰系统、排水系统等的水量、水质平衡作全面规划,提出综合的治理方案,以达到环境效益、经济效益、社会效益统一的目的。
sd模型扩散参数-概述说明以及解释

sd模型扩散参数-概述说明以及解释1.引言1.1 概述SD模型(System Dynamics Model)是一种用于模拟和研究动态系统行为的建模方法。
通过对系统内各个变量之间的关系进行建模,SD模型可以帮助我们更好地理解和预测系统的行为,从而为决策提供科学依据。
在SD模型中,扩散参数是一个重要的概念。
它描述了系统中物质、信息或者经济资源等在不同部分之间的流动程度。
换句话说,扩散参数可以理解为描述不同部分之间互相影响程度的量度。
在现实生活中,很多系统都可以通过SD模型来进行建模,比如生态系统、经济系统、社会系统等等。
而在这些系统中,扩散参数的选择和设定是至关重要的。
因为扩散参数的大小和影响程度将直接决定系统中各个部分之间的相互作用强度,从而对系统整体行为产生重要影响。
在编写SD模型时,我们需要通过实证研究或者专家经验来确定扩散参数的数值。
在实际操作中,常常会面临到参数求解的复杂性和不确定性。
因此,为了提高模型的可靠性和准确性,我们需要结合实际情况,合理选择和设定扩散参数,以使模型具有更好的描述和预测能力。
总之,扩散参数是SD模型中的一个重要概念,它描述了系统中不同部分之间的互相影响程度。
在建立SD模型时,正确选择和设定扩散参数是确保模型准确性和可靠性的关键步骤。
通过深入理解和运用扩散参数,我们可以更好地研究和分析系统的行为特征,为决策提供科学指导。
1.2 文章结构文章结构部分的内容包括对整篇文章的结构进行介绍和说明,让读者能够清晰了解文章的组织和内容布局。
下面是关于"文章结构"部分的内容示例:2. 文章结构本文按照以下结构进行组织和阐述。
首先,引言部分会提供一个概述,介绍本研究的背景和研究目的。
然后,正文部分将详细讨论SD模型的扩散参数,分为三个要点进行阐述。
最后,结论部分对文章进行总结,分析了研究结果的影响,并提出了一些建议。
引言部分旨在为读者提供对SD模型扩散参数的整体了解。
污染气象学 大气扩散参数

4 J.S.Hay & F.Pasquill(1959)
出发点:统计理论,泰勒公式
方法:利用相关函数和湍流能谱关系,由湍 流观测资料做谱分析,计算扩散参数。
总结:模型合理可取,反映湍流场本质,而 且准确度较高,其探讨有一定理论意义, 但应用尚不普遍,观测要求高,计算工作 量大。
➢工业区和城市中心区,C提至B级,D、 E、 F向不稳定方向提一级
➢丘陵山区的农村或城市,同工业区
2 不同稳定度分类方法
(1)风向脉动标准差(EPA,1990)
• 以风速做细致调整,观测数据在粗糙度z0=15cm, 10m高度处测量得到。采样时间为15min。
• 如果风向发生转折,为了尽量减小风向转折的影 响,应该将长时间段分成小段进行计算,例如将
由 和 H
z
x xm
H 2
由 z ~ x 曲线(图
z
反查出 xcmax
由
y
~
x
曲线(图
y
由式(3.10 求出 Cmax
三 扩散曲线法的完善
1.国家标准中的修改应用(GB/T13201-91)
➢修正太阳高度角的计算方法 ➢适应我国大量地面观测无云高观测 的情况
中国国家标准规定的方法
➢平原地区和城市远郊区,D、E、F向不稳 定方向提半级
f为普适函数,扩散参数,函数形式随源高和
稳定度变化
(2) 特点
✓方法原理与湍流统计理论基础一致 ✓舍弃分离的稳定度级别,采用连续性稳定
度,接近实际 ✓考虑源高影响,认为f是稳定度状况函数 ✓使用方便,可用于多种情况
(3) 扩散函数f 的确定
由泰勒公式积分可得
空气污染学 第五章 大气扩散参数

1952—1953年任英国皇家军事科学院教务长。1953年任皇家气象学会主席。
1953—1956年任世界气象组织常务理事。 1960—1966年任英国大地测量及地球物理学全国委员会主席。 1965—1971年任英国自然环境研究委员会主席。
基本高斯扩散公式中,欲计算得出污染物浓度 及其分布则必须知道源强Q,平均风速 u,有效
源高H和大气扩散参数 y , z ,Q, u往往是通过测
量获得或者由工程设计给出。于是,问题归之于
如何给出有效源高和大气扩散参数。
大气扩散参数与稳定度、地形、地面粗糙度等 有关。
2
高斯扩散公式中,风速不太小(>1-2m/s), x向湍流扩散可忽略不计,仅考虑y向和z向。
(1)风向脉动标准差(EPA,1990)
29
对不稳定类A, B, C, 随风速增加向 中性类移;
对稳定类E, F, 随 风速增加向中性 类移;
30
31
以风速做细致调整,观测数据在粗糙度z0=15cm, 10m高度处测量得到。采样时间为15min。 如果风向发生转折,为了尽量减小风向转折的影响, 应该将长时间段分成小段进行计算,例如将60min的 时间划分为15min一段,最终小时量值:
水平扩散参数
图3.10
垂直扩散参数
曲线的制作依据实测资料和理论原理,对σy采用统计理论 成果,σz采用梯度输送理论成果
20
21
用P—G扩散曲线方法确定扩散参数的步骤是:
根据太阳高度角和云量确定日射等级(见表3.6) ; 根据日射等级和地面风速确定稳定度等级(见 表3.7) ;
第二章-第2节大气中污染物的迁移.

小的位移,如果层结大气使气块趋于回到原来的平衡
位置,则称层结是稳定的,Γd>Γa
Γd: 干绝热垂直递减率。
Γa:大气垂直递减率。
不稳定的大气:如果层结大气使气块趋于继续离开原
来位置,则称层结是不稳定的,Γd<Γa
中性的大气:介于上两者之间,Γd=Γa
ū烟囱口高度处的平均风速,m/s
Holland公式比较保守,适用于中性大气条件,特
别在烟囱高、热释放率比较强的情况下。 Holland建
议稳定时减小10%~20% ,不稳时增加10%~20%。
(3) 扩散参数的确定
P-G曲线法
Pasquill根据常规气象资料:风速、云量、云状和日照等,
将大气扩散稀释能力分为A、B、C、D、E、F六个稳定度
线浓度,y = 0 、z = 0):
H2
c( x、
0、
0、H )=
{exp(
)}
2
2 z
u y z
Q
20 182
270
=
exp
2
3.14 2.1 34 14
2
14
=0.0022( g / m3 )
四、影响大气污染物迁移的因素
大气污染迁
移的影响因素
影响
温出现时的最大
混合层高度。
2.天气形势与地理地势的影响
天气形势对迁移扩散影响的几点说明:
天气形势是指大范围气压分布的状况,局部地区的气象
条件总是受天气形势的影响;
局部地区的扩散条件与大范围的天气形势互相关联;
15.8大气污染物浓度估算方法解析

1.霍兰德(Holland,1953年)公式
H USd u (1.5 2.7 Ts Ta 1 d ) (1.5U s d 9.6 103 QH ) Ts u
式中 Us—烟气(实际状态)出口速度(m/s); d —烟囱口内径(m); u —烟囱口高度上的平均风速(m/s),可用风速廓线模式(15-17) 或(15-18)计算; Ts、Ta—分别为烟气出温度和环境大气的温度(K); QH—烟气热排放率(kW),由式(15-55)计算。 霍兰德式适用于中性条件。对于非中性条件,霍兰德建议在不稳定时 增加10%~20%,稳定时减少10%~20%。 霍兰德式对排热率和高度都不大的烟囱可获得比较保守的估算,对 较大的热力浮升源不适用,计算结果过于偏低。
H 0.362Q
1/ 3 H
x
1/ 3
u
1
(15-50) (15-51)
3/5 2/5 H 0.332Q H HS u 1
x 0.33Q
2/5 H
HS
3/ 5
u
( 6 / 5 )
式中,x* 是大气湍流特征距离。当 x 超过 x* 时,大气湍流对烟气抬升起主导作用。
15.8 大气污染物浓度估算方法
15.8.1有效源高的计算 大气扩散模式中的有效源高 H是烟囱的几何高度HS与烟 流抬升高度ΔH之和
已有的抬升高度计算公式很 多,大多是根据实验中总结 出来的经验或半经验公式。 这里仅介绍常用的几个公式。
对一确定的烟囱,HS是一定的,因此只要计算出烟流抬升高度就可得出有 效源高。 烟气的初始动量产生动力抬升,热浮力产生热力抬升。初始动量决定于烟 气出口速度Us和烟囱口的内径d,热浮力则决定于烟气与周围空气之间的温 度差(Ts-Ta)或密度差(ρ-ρs)。 实测资料表明,热而强的大烟囱热力抬升是主要的,动力抬升是次要的; 小烟囱的动力抬升比例有所增加。 烟气与周围空气的混合速度对烟气的抬升高度影响很大,平均风速愈大, 湍流愈强,混合就愈快,温差和动量都迅速减少,故抬升愈小。 稳定的温度层结抑制烟云的抬升,不稳定层结促进抬升;当层结不稳定时 湍流交换活跃,过快的交换混合对抬升不利。 城市等粗糙下垫面上空的湍流较强,不利于抬升。离地面愈高,地面粗糙 度引起的湍流减弱,对抬升有利。复杂的地形还可能形成局部温场和风场而 影响抬升。 烟囱本身的几何形状和周围障碍物也会引起动力效应。当烟气出口速度 过低,以致接近烟囱口处平均风速时,烟气不但不会抬升,反而会产生烟气 下洗 。
大气污染控制工程04大气扩散浓度估计模式

(x)2uQ yzex p(2y [2y 22z2z2)]
比较两式可见,地面连续点源所造成的污染物浓度
恰是无界空间连续点源所造成的浓度的两倍。镜像垂直于
地面,源强加倍。
整理课件
五、颗粒物扩散模式
排气筒排放的粒径大于15μm的颗粒物,由于明显的重力沉降作
ห้องสมุดไป่ตู้整理课件
高斯模式的有关假定-坐标系
整理课件
2、四点假设
(1)污染物浓度在y、z轴上的分布符合高斯分布(正态分 布);
(2)在全部空间中风速是均匀的、稳定的 (3)源强是连续均匀的 (4)在扩散过程中污染物质量是守恒的。
对后述的模式,只要没有特别指明,以上四点假设条 件都是遵守的。
整理课件
二、无限空间连续点源扩散的高斯模式
用,可按倾斜烟流模式计算地面浓度。
(x ,y ,0 ,H )(1 )Q e x (y p 2){ e(H x v p tx/u [)2]
2uy z
2y 2
2z 2
α: 颗 粒 的 地 面 反 射 系 数 , 表 4 - 1 查 (89页) 0-0.8
vt:颗粒的重力沉降速度,m/s dp: 颗粒直径,m ρp:颗粒密度,kg/m3 g :重力加速度, m/s2 整理课件
中推荐的公式 由于影响烟流抬升的因素多而复杂,还没 有一个通用的计算公式。现在所用都是的 经验或半经验公式。
整理课件
1、霍兰德公式
H v s u D ( 1 .5 2 .7 T S T s T a D ) u 1 ( 1 .5 v s D 9 .6 1 3 Q 0 H )
式中 vs :烟气出口流速 m/s D:烟囱出口内径 m
扩散参数确定

白天太阳辐
面
射
阴天
有云的夜间
风
的白
速
天或
薄云或
丁.旦
云量
距
强
中
弱
夜间
低
<4/10
地
云>5/10
面
10m
处
<2
A
A-B
B
D
2-3
A-B
B
C
D
E
F
3-5
B
B-C
C
D
D
E
5-6
C
C-D
D
D
D
D
>6
C
D
D
D
D
D
(2)利
用用扩散曲线确足6和
扩散参数的确定
根据常现气象资料确定稳定度级别,帕斯 奎尔划分稳定度级别的标准如表所示。
1稳定度级别中,A为极不稳定,B为 不稳定,C为弱不稳定,D为中性,E为弱稳定,F为稳定。
2稳定度级别A—B表示按A、B级的数 据内插
3夜间定义为日落前一小时至日出后一 小时。
4不论何种天气状况,夜间前后各一小 时算作中性,即D级稳定度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据常现气象资料确定稳定度级别,帕斯奎尔划分稳定度级别的标准如表所示。
①稳定度级别中,A为极不稳定,B为不稳定,C为弱不稳定,D为中性,E为弱稳定,F为稳定。
②稳定度级别A-B表示按A、B级的数据内插
③夜间定义为日落前一小时至日出后一小时。
④不论何种天气状况,夜间前后各一小时算作中性,即D级稳定度。
地面风速距地面10m处
白天太阳辐射
阴天的白天或夜间
有云的夜间
强
中
弱
薄云lt;2
2-3
3-5
5-6
>6
A
A-B
B
C
C
A-B
B
B-C
C-D
D
B
C
C
D
D
D
D
D
D
D
E
D
D
D
F
E
D
D
(2)利用扩散曲线确定 和
(2)利用扩散曲线确定 和