南航《矩阵论》第1章
矩阵论第1章

例 1.1.4 在实数域上,m n 矩阵全体 R mn 按照通常矩阵 的加法,数与矩阵的乘法构成一个线性空间.
线性空间的三个重要例子:
P n , P[ x]n , P mn
1.1.2线性空间的性质
1 线性空间中零元素是唯一的.
2 线性空间中任一元素的负元素是唯一的.
3 0 0 , (1) , k 0 0 .
向量组之间的等价关系具有如下性质. (1)反身性 每一个向量组都与它自身等价; (2)对称性 如果向量组 1 , 2 ,, m 与 1 , 2 ,, s 等价,则 向量组 1 , 2 ,, s 与 1 , 2 ,, m 等价; (3)传递性 如果向量组 1 , 2 ,, m 与 1 , 2 ,, s 等价,且 向量组 1 , 2 ,, s 与 1 , 2 ,, t 等价,则向量组 1 , 2 ,, m 与
(2)(加法结合律) ( ) ( ) ;
(3)(有零元)在 V 中存在元素 0 ,使对任何 V ,都 有 0 ,称 0 为零元素; ( 4 ) ( 有 负 元 ) 对 任 何 V , 都 有 元 素 V , 使
0 ,称 为 的负元素,记为 ;
所以 在基 1 , 2 , , n 下的坐标为 (a1 , a 2 a1 , , a n a n 1 ) .
T
例 1.2.7 求线性空间 P[ x]n 的一个基、维数以及向量 p 在该基下的坐标.
容易看出,在线性空间 P3 x 2 ,, p n x n1 , p n 1 x n ,
T
例1.2.6 在 R n 中如下的 n 个向量
1 (1,1,1,,1), T 2 (0,1,1,,1) T , , n (0,0,,0,1) T
矩阵论第一章内容总结

定理(展开定理) 行列式D等于它的任意一行(列) 的各元素与其对应的代数余子式的乘积之和.
第一章内容总结
推论 行列式任一行(列)的元素与另一行(列) 的对应元素的代数余子式乘积之和等于零,即
ai1Aj1 ai2Aj2 ain Ajn 0, i j. ai1Aj1 ai2Aj2 ain Ajn D, i j.
定理 定理
一个排列中的任意两个元素对换,排列改变奇偶性. 一个排列经过奇数次对换改变排列的奇偶性,偶数次 对换不改变奇偶性。
n 2 时,n个数的所有排列中,奇偶排列各占一半,
各为 n!2 个。
第一章内容总结
6. n阶行列式的定义
a11 a12 a1n
a21
a22
a2n
( j1 j2 jn )
(Байду номын сангаас) a a a 1 j1 2 j2
nj n
j1 j2 jn
an1 an2 ann
7. 上三角、下三角、对角行列式的值等于主对角线上元素 的乘积。
第一章内容总结
8、行列式的性质
性质1 行列式与它的转置行列式相等. 性质2 互换行列式的两行(列),行列式变号. 推论 如果行列式有两行(列)完全相同,则 此行列式为零. 性质3 行列式的某一行(列)中所有的元素都 乘以同一数k,等于用数k乘此行列式.
如果齐次线性方程组(Ⅱ)有非零解,则它的系数行 列式等于零.
11. 拉普拉斯展开
an1 ani ann an1 an i ann
4
第一章内容总结
推论 如果将行列式某一行(列)的每个元素都写成 m个数(m为大于2的整数)的和, 则此行列式可以写 成m个行列式的和.
矩阵论第一章第二节PPT课件

分析: 设 dimV n, 1, 2, , n 是V的一组基,
线性变换 在这组基下的矩阵为A.
设 0是 的特征值,它的一个特征向量 在基
1,2,
, n 下的坐标记为
x01 ,
x0n
则 ( )在基 1, 2 ,
, n下的坐标为
x01 A ,
x0n
x01
而0
的坐标是
0
x0n
21 11
k 1 k
k k 1
.
例. 在线性空间 P3 中,线性变换 定义如下:
(1 ) (2 )
( 5, 0, (0, 1,
3) 6)
,
(3 ) (5, 1,9)
其中, 12((01,,10,,12)) 3 (3, 1,0)
(1)求 在标准基 1, 2 , 3 下的矩阵. (2)求 在 1,2 ,3 下的矩阵.
② 若 是 的属于特征值 0的特征向量,则 k (k P,k 0) 也是 的属于0 的特征向量.
(k ) k ( ) k(0 ) 0(k )
由此知,特征向量不是被特征值所唯一确定的, 但是特征值却是被特征向量所唯一确定的,即
若 ( ) 且 ( ) ,则 .
2、特征值与特征向量的求法
5 0 5
因而,
AX
0 3
1 6
1 9
,
5 0 5
5 0 5 1 0 3 1
A
0 3
1 6
1 9
X
1
0 3
1 6
1 9
0 2
1 1
1 0
1 7
5 4 27
20 5 18
20
2 24
(2)设 在1,2 ,3下的矩阵为B,则A与B相似,且
南航矩阵论课后习题答案

南航矩阵论课后习题答案南航矩阵论课后习题答案矩阵论是数学中的一个重要分支,广泛应用于各个领域,包括物理学、工程学、计算机科学等等。
南航的矩阵论课程是培养学生数学思维和解决实际问题的重要环节。
在课后习题中,学生需要运用所学的矩阵理论知识,解答各种问题。
下面是南航矩阵论课后习题的一些答案和解析。
1. 已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求A的逆矩阵。
解析:要求一个矩阵的逆矩阵,需要先判断该矩阵是否可逆。
一个矩阵可逆的充要条件是其行列式不为零。
计算矩阵A的行列式,得到det(A) = -3。
因此,矩阵A可逆。
接下来,我们可以使用伴随矩阵法求解逆矩阵。
首先,计算矩阵A的伴随矩阵Adj(A),然后将其除以行列式的值,即可得到逆矩阵。
计算得到A的伴随矩阵为Adj(A) = [-3 6 -3; 6 -12 6; -3 6 -3]。
最后,将伴随矩阵除以行列式的值,即可得到矩阵A的逆矩阵A^-1 = [-1 2 -1; 2 -4 2; -1 2 -1]。
2. 已知矩阵A = [2 1; 3 4],求A的特征值和特征向量。
解析:要求一个矩阵的特征值和特征向量,需要先求解其特征方程。
特征方程的形式为|A - λI| = 0,其中A为给定矩阵,λ为特征值,I为单位矩阵。
计算得到特征方程为|(2-λ) 1; 3 (4-λ)| = (2-λ)(4-λ) - 3 = λ^2 - 6λ + 5 = 0。
解这个二次方程,得到特征值λ1 = 1,λ2 = 5。
接下来,我们可以求解对应于每个特征值的特征向量。
将特征值代入(A - λI)x = 0,即可求解出特征向量。
对于特征值λ1 = 1,解得特征向量x1 = [1; -1];对于特征值λ2 = 5,解得特征向量x2 = [1; 3]。
3. 已知矩阵A = [1 2; 3 4],求A的奇异值分解。
解析:奇异值分解是将一个矩阵分解为三个矩阵的乘积:A = UΣV^T,其中U和V是正交矩阵,Σ是对角矩阵。
矩阵论1beamer

2
3
Chapter 1 Vector Spaces, Inner Product and Normed Spaces
outline
1
Vector Spaces, Inner Product and Normed Spaces Linear Mapping and Transformation, Eigenvector and Eigenvalue Invariants and Canonical Forms of Matrices Matrix Factorizations
Chapter 1 Vector Spaces, Inner Product and Normed Spaces
Frequently-used Symbols
Capital letters A, B , C , . . . denote sets, a, b, c , . . . denotes the elements. A × B = {(a, b)|a ∈ A, b ∈ B }. R denotes the set of real numbers, C denotes the set of complex numbers.
Chapter 1 Vector Spaces, Inner Product and Normed Spaces
Frequently-used Symbols
Capital letters A, B , C , . . . denote sets, a, b, c , . . . denotes the elements. A × B = {(a, b)|a ∈ A, b ∈ B }. R denotes the set of real numbers, C denotes the set of complex numbers. R n denotes the set of real n−dimensional vectors, C n denotes the set of complex n−dimensional vectors R m×n denotes the set of real m × n matrices, C m×n denotes the set of complex m × n matrices
(课件)矩阵论

=
aB 11 1
+
(a12
−
a 11
)
B 2
+
( a 21
−
a 12
)
B 3
+
( a 22
−
a
21
)
B 4
坐标为
β
=
(a11
,
a 12
−
a 11
,
a
21
−
a 12
,
a 22
− a21 )Τ
[注] 一个元素在两个不同的基下的坐标可能相同,也可能不同.
例如:
A
=
E 22
在上述两个基下的坐标都是 (0,
0,
(Ⅱ) 定义的数乘运算封闭, 即
∀ x ∈V , ∀ k ∈ K , 对应唯一 元素(kx)∈V , 且满足 (5) 数对元素分配律: k( x + y) = kx + ky (∀y ∈V ) (6) 元素对数分配律: (k + l )x = kx + lx (∀l ∈ K ) (7) 数因子结合律: k(lx) = (kl )x (∀l ∈ K ) (8) 有单位数:单位数1∈ K , 使得 1x = x . 则称V 为 K 上的线性空间.
mn
∑ ∑ (2) A = (ai j )m×n =
ai j Ei j .
i=1 j=1
故 Ei j (i = 1,2,L, m ; j = 1,2,L, n) 是 R m×n 的一个基, dimR m×n = mn .
第一章 线性空间与线性变换(第 1 节)
5
2.坐标:给定线性空间V
n
的基
x 1
解 采用中介法求过渡矩阵.
矩阵论复习(南航)

H i =1 n
6.常见内积空间
(1) V = C n , 内积 ( x , y ) = y H x = ∑ xi yi ;
i =1 n
(2) V = C[a, b], 内积 ( f , g) = ∫ f ( x)g( x)dx;
b a
( 3) V = C m×n , 内积 ( A, B ) = tr( B H A).
T
其中 Σ = diag (σ 1 , L , σ r ), 且 σ 1 , L , σ r 是 A 的正奇异值 .
6.正规矩阵的性质
(1)n 阶矩阵 A 酉相似于对角矩阵的充分必要条件为 A 是正规矩阵.
(2)设 A, B 均为 n 阶正规矩阵且 AB = BA,则存在 n 阶酉矩阵 U,使得 UHAU 与 UHBU 同时为对角矩阵. (3)若 A 是正规矩阵,则 A 的属于不同特征值的特征 向量正交. (4)若 A 是正规矩阵,则 A 的奇异值是 A 的特征值的 模.
3.矩阵的不变因子、行列式因子和初等因子的求法 (1)化 λI - A 为 Smith 标准形:
λ I − A ≅ diag ( d 1 ( λ ), d 2 ( λ ), L , d n ( λ ))
则 d 1 ( λ ), d 2 ( λ ), L , d n ( λ ) 是 A 的 n 个不变因子. (2)令
5.标准正交基的性质 (1)有限维内积空间 V 的标准正交基一定存在. (2)有限维内积空间 V 的任意一组标准正交向量可扩充为 V 的一组标准正交基. (3)设 ε 1 , ε 2 , L , ε n 是内积空间 V 的一组标准正交基,且 α = x1ε1 +L+ xnε n , β = y1ε1 +L+ ynε n , 则
矩阵论第一章

k1 , k2 ,L, kr ∈ P ,使得
k1α1 + k2α 2 + L + krα r = 0
线性相关的 则称向量组 α1 ,α 2 ,L,α r 为线性相关的;
不是线性相关的 (4)如果向量组 α1 ,α 2 ,L,α r 不是线性相关的,即 )
k1α1 + k2α 2 + L + krα r = 0
上零多项式作成的集合, 上零多项式作成的集合,按多项式的加法和数量乘 上的一个线性空间, 表示. 法构成数域 P上的一个线性空间,常用 P[x]n表示. 上的一个线性空间
P [ x ]n = { f ( x ) = a n − 1 x n − 1 + L + a 1 x + a 0 a n − 1 ,L , a 1 , a 0 ∈ P }
+ ∀a ∈ R + , ∀k ∈ R, k o a = a k ∈ R,且 ak 唯一确定. 唯一确定.
其次, 其次,加法和数量乘法满足下列算律 ① a ⊕ b = ab = ba = b ⊕ a ② (a ⊕ b) ⊕ c = (ab) ⊕ c = (ab)c = a(bc) = a ⊕(bc) = a ⊕(b ⊕ c)
二、线性空间的简单性质
1、零元素是唯一的. 、零元素是唯一的
证明:假设线性空间 有两个零元素 有两个零元素0 证明:假设线性空间V有两个零元素 1、02,则有 01=01+02=02.
2、 α ∈V ,的负元素是唯一的,记为- α . 、 的负元素是唯一的,记为∀
证明: 证明:假设α 有两个负元素 β、γ ,则有
k ,α 的数量乘积 并记做 kα , 如果加法和数量乘法 的数量乘积,并记做
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即A可由1,2,3线性表出。所以 Dim(V)=3
注: (1)若把线性空间V 看作无穷个向量组成的向 量组,那么 V 的基就是向量组的极大无关组, V 的 维数就是向量组的秩. (2)个数与线性空间 V 的维数相等的线性无 关组都是 V 的基.
例1.3.1 线性空间 C 是实数域 R 上的二维空间, 其基可取为 {1, i } ,即C中任一复数k=a+bi a (a,bR)都有a+bi=(1,i)( ),所以(a,b) T即为k的坐 b 标。
(或值域),记为R(A)或Im(A)。
即R(A)={y|y=Ax,xRn}
注:判定非空集合是否为线性空间,要验算
运算的封闭性,以及8条运算律,相当地麻烦。
至于判定线性空间的子集是否为线性子空间,
则很方便.
下面考虑两个子空间的运算:
注意:线性空间V的两个子空间的V1,V2并一般不是V 的子空间;
1, , n m,则
2
V1 span(1,,m , 1,n1 m ),
V2 span(1,,m , 1, n2 m ),
求 V1 V2 、V1 V2 的基与维数。
解 设 V1 V2
所以可令 解关于
,则
V1, V2
k11 k22 = l11 l2 2
k1 , k2 , l1 , l2 的齐次方程组,得
5 2 k1 0, k2 l2 , l1 l2 3 3 5 = k1 1 k2 2 l2 2 . 3
空间,所以V1 V2也是有限维的。设 dim(V1 ) n1 , dim(V2 ) n2 , dim(V1 V2 ) m. 取V1 V2的一组基1 , , m,把它扩充成 V1的一组基1 , , m,1, , n1 m,并且 把1 , , m也扩充成V2的一组基1 , , m,
例1.4.4 设 V1 , V2 是线性空间 V 的子空间,且
V1 span(1 , , s ), V2 span( 1 , , t ),
则
V1 V2 span(1 ,, s , 1 ,, t )
证明
由子空间和的定义,有
V1+V2=span(1,2…s)+span(1, 2…t) ={(k11+k22…+kss)+(l11+l2 2…+ ltt)| ki,lj P}
向量的线性相关性:
线性代数中关于向量的线性组合、线性表示、 线性相关、线性无关、秩等定义和结论都可以推 广到一般线性空间。
证明:取k1 ,k2 ,k3∈R,
令 k11+k22+k33
1 0 1 0 0 0 0 0 k1 0 0 k2 1 1 k3 1 1 0 0
由题, 在基 1 , 2 , 3 下的坐标为
1 2 4 P 0 1 4 1 0 0
x (3, 2,4)
T
而且,基 1 , 2 , 3 到基 1 , 2 , 3 的过渡矩阵为
所以
1 1 yP x 0 0
例 1.3.2
实数域 R上的线性空间R [x]n中的向量组 1,x, x2 ,… xn-1
是 基底, R [x]n的维数为 n。
例1.3.3 实数域 R上的线性空间
nn,标准基为Eij:(i=1,2…n;j=1,2…n) 第i行第j列的元素为1,其它的都为0。
R
nn
的维数为
例1.3.4 在线性空间 P[ x] 中,显然 3
1 1, 2 x, 3 x
是 P[ x]3 的一组基,此时多项式
2
3 2x 4 x2
在这组基下的坐标就是
(3, 2, 4)T .
2
证明 1 1, 2 ( x 2), 3 ( x 2) 也是 P[ x]3 的基,并求 1 , 2 , 3 及 在此基下的坐标。
0 A3 1
1 E12 E21 0
0 A4 1
1 E12 E21 0
0 1 ( E11 , E12 , E21 , E22 ) 1 0
则基 ( III ) 到基 ( I ) 的过渡矩阵为
注意:
通过上面的例子可以看出线性空间的基底并不
唯一,但是维数是唯一确定的。由维数的定义,
线性空间可以分为有限维线性空间和无限维线性 空间。目前,我们主要讨论有限维的线性空间。
N(A)称为矩阵A的零子空间或核空间,也记为Ker(A);
例1.4.1
对于任意一个有限维线性空间 V ,它必
有两个平凡的子空间,即由单个零向量构成的子空
间{0}和V本身。
实数域 R上的线性空间 R nn 中全体上
例1.4.2
三角矩阵集合,全体下三角矩阵集合,全体反对 称矩阵集合分别都构成
R
nn
的子空间。
例1.4.3 设ARmn,记A={a1,a2,…an},其中aiRm,则
k1a1+k2a2…+knan是Rm的子空间,称为矩阵A的列空间
( III )
显然
1 A1 0 0 E11 E22 1 1 0 ( E11 , E12 , E21 , E22 ) 0 1
类似地,
1 A2 0 0 E11 E22 1 1 0 ( E11 , E12 , E21 , E22 ) 0 1 0 1 ( E11 , E12 , E21 , E22 ) 1 0
矩
阵
论
教学目的:
理解线性空间和内积空间的概念 掌握子空间与维数定理 了解线性空间和内积空间同构的含义 掌握正交基及子空间的正交关系 掌握Gram-Schmidt正交化方法
线性空间是线性代数最基本的概念之一,
是矩阵论中极其重要的概念之一。它是向量空
间在元素和线性运算上的推广和抽象。
线性空间中的元素可以是向量、矩阵、 多项式、函数等,线性运算可以是我们熟悉的 一般运算,也可以是各种特殊的运算。
例1 所有 n维实(复)向量按向量的加法和数乘,
构成线性空间Rn(Cn) 。
例2 所有 m n 阶的实(复)矩阵按矩阵的加法和 数乘,构成线性空间 Rmn (C mn ) 。 例3
因此
所以
V1 V2 的基为 2 ,维数为 dim(V1 V2 ) 1.
由例1.4.4 由前得
V1 V2 span(1 , 2 , 1 , 2 )
5 2 0 1 l2 2 l 2 1 l 2 2 3 3 5 2 即 2 0 1 2 1 3 3 然而 1 , 2 , 1 线性无关,这样 1 , 2 , 1 是
2 1 0
4 3 4 2 1 4
23 18 4
例1.3.5 已知矩阵空间 R 2 2 的两组基:
(I ) 1 A1 0 0 A3 1 1 B1 1 0 , 1 1 , 0 1 , 1 0 1 A2 , 0 1 1 0 A4 1 0 1 1 B2 , 1 0 1 0 B4 0 0
1 0 C1 0 1 1 0 0 1 0 1 1 0 0 1 1 0
而基 ( III ) 到基 ( II ) 的过渡矩阵为
1 1 C2 1 1 1 1 1 0 1 1 0 0 1 0 0 0
所以
(A 1, A 2, A 3, A 4 ) ( E11 , E12 , E21 , E22 )C1 ( B1 , B2 , B3 , B4 ) ( E11 , E12 , E21 , E22 )C2
T
一个线性空间。因为加法不封闭。
例6
线性非齐次方程组 b 的解集
n mn
V { R | C11 Cnrnr , A R
组 Ax 的一个基础解系, 个特解。
}
不构成线性空间,这里 1 ,, n r 是对应齐次方程
为 Ax b 的一
( II )
1 1 B3 , 0 0 求基 ( I ) 到基 ( II ) 的过渡矩阵。
解
引入 R 22 的标准基:
E11 E 21 1 0 0 1 0 , 0 0 , 0 E12 E 22 0 0 0 0 1 , 0 0 1
1 , 2 , 1 , 2
的极大无关组,所以它也是
V1 V2 的基,故 dim(V1 V2 ) 3.
注意到例 1.4.5 中
dim(V1 V2 ) dim(V1 V2 ) dim(V1 ) dim(V2 ).
这并不是偶然的。 定理1.4.7(维数公式) 设 都是有限维的,并且
从而
( B1 , B2 , B3 , B4 ) ( E11 , E12 , E21 , E22 )C2
1 (A , A , A , A ) C 1 2 3 4 1 C2
因此基 ( I ) 到基 ( II ) 的过渡矩阵为
2 0 1 1 C C1 C2 22 0 1 1 2 0 1 1 1 1 1 1 . 0 0
闭区间 [a , b] 上的所有实值连续函数按通常函 数的加法和数与函数的乘法,构成线性空间 C[a, b]
例4 次数 小于n 的所有实系数多项式添上0多项式按
通常多项式加法和数与多项式的乘法,构成线性空
间 R[ x]n
例5
集合 V { x x [ x1 , x2 ,1] , x1 , x2 R} 不是