人教版初中数学图形的相似真题汇编及答案解析
最新人教版初中数学九年级数学下册第二单元《相似》测试卷(包含答案解析)

一、选择题1.在ABC 中,D ,E 分别为,BC AC 上的点,且2AC EC =,连结,AD BE ,交于点F ,设:,:x CD BD y AF FD ==,则( )A .1y x =+B .1x y x +=C .413y x =+D .21x y x -=- 2.如图,在▱ABCD 中,M 、N 为BD 的三等分点,连接CM 并延长交AB 与点E ,连接EN 并延长交CD 于点F ,则DF :FC 等于( ).A .1:2B .1:3C .2:3D .1:43.下列各组线段能成比例的是( )A .1.5cm ,2.5cm , 3.5cm ,4.5cmB .1cm ,2cm ,3cm ,4cmC .3cm , 6cm , 4cm , 8cmD .2cm ,10cm ,5cm ,15cm 4.如图,点D 在ABC 的边AC 上,添加下列哪个条件后,仍无法判定ABC ADB ∽△△( )A .C ABD ∠=∠B .CBA ADB ∠=∠C .AB AD AC AB = D .AB BC AC BD = 5.如图,点D 、E 分别在CA 、BA 中的延长线上,若DE ∥BC ,AD =5,AC =10,DE =6,则BC 的值为( )A .10B .11C .12D .136.如图,在ABC 中,//DE BC ,6AD =,3DB =,4AE =,则AC 的长为( )A .1B .2C .4D .67.如图,在直角坐标系中,矩形OABC 的顶点O 在原点,边OA 在x 轴上,OC 在y 轴上,如果OA B ''△与OAB 关于点O 位似,且OA B ''△的面积等于OAB 面积的14,则点B '的坐标为( )A .3,12⎛⎫ ⎪⎝⎭B .3,12⎛⎫ ⎪⎝⎭或3,12⎛⎫-- ⎪⎝⎭C .()3,2D .()3,2或()3,2-- 8.已知两个相似三角形一组对应高分别是15和5,面积之差为80,则较大三角形的面积为( )A .90B .180C .270D .3600 9.如果两个相似三角形的对应高之比是1:2,那么它们的周长比是( )A .1:2B .1:4C .1:2D .2:1 10.如图所示,一般书本的纸张是原纸张多次对开得到,矩形ABCD 沿EF 对开后,再把矩形EFCD 沿MN 对开,依次类推,若各种开本的矩形都相似,那么AD AB等于( )A 2B .22C 51-D .211.下列相似图形不是位似图形的是( )A .B .C .D . 12.如图,直线12//l l ,:2:3AF FB =,:2:1BC CD =,则:AE EC 是( )A .1:2B .1:4C .2:1D .3:2二、填空题13.如图,将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位置,如果点A′恰好是△ABC 的重心,A′B′、A′C′分别于BC 交于点M 、N ,那么△A′MN 面积与△ABC 的面积之比是_____.14.如图,在△ABC 中,中线BE ,CD 相交于点G ,则EDG BDG S S ∆∆:=__________.15.如图,点О是正方形ABCD 的中心,DE 与О相切于点E ,连接,BE 若10,DE =102BE =О的面积是________________.16.如图,矩形ABCD 中,2AB =,E 为CD 的中点,连接AE 、BD 交于点P ,过点P 作PQ BC ⊥于点Q ,则PQ =________.17.如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB BC ⊥,CD BC ⊥,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得20BE m =,10EC m =,20CD m =,则河的宽度AB 等于_______.18.如图,在矩形ABCD 中,M N 、分别是边AD BC 、的中点,点P Q 、在DC 边上,且14PQ DC =.若8,10AB BC ==,则图中阴影部分的面积是_____________19.如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,D 是AB 边的中点,P 是BC 边上一动点(点P 不与B 、C 重合),若以D 、C 、P 为顶点的三角形与ABC 相似,则线段PC ______.20.若()0a b a c b c k k c b a+++===≠, 则k 的值为______. 三、解答题21.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友爱四边形”,这条对角线叫“友爱线”.(1)如图1,在44⨯的正方形网格中,有一个网格Rt ABC △和两个网格四边形ABCD 与四边形ABCE ,其中是被AC 分割成的“友爱四边形”的是______.(2)如图2,四边形ABCD 是“友爱四边形”,对角线AC 是“友爱线”,同时也是BCD ∠的角平分线,若ABC 中,2AB =,3BC =,4AC =,求友爱四边形ABCD 的周长.(3)如图3,在ABC 中,AB BC ≠,60ABC ∠=︒,ABC 的面积为33,点D 是ABC ∠的平分线上一点,连接AD ,CD .若四边形ABCD 是被BD 分割成的“友爱四边形”,求BD 的长.22.如图,在1010⨯的正方形网格中,每个小正方形的边长为1,建立如图所示的坐标系,ABC 的三个顶点均在格点上.(1)若将ABC 沿x 轴对折得到111A B C △,则1C 的坐标为________.(2)以点B 为位似中心,将ABC 各边放大为原来的2倍,得到22A BC ,请在这个网格中画出22A BC .(3)在(2)的条件下,求22A BC 的面积是多少?23.已知:△ABC 在坐标平面内,三个顶点的坐标为A (0,3)、B (3,4)、C (2,2).(正方形网格中,每个小正方形边长为1个单位长度)(1)画出△ABC 向下平移4个单位得到的△A 1B 1C 1;(2)以B 为位似中心,在网格中画出△A 2BC 2,使△A 2BC 2与△ABC 位似,且位似比2:1,直接写出C 2点坐标是 ;(3)△A 2BC 2的面积是 平方单位.24.已知:如图在菱形ABCD 中,点E 、F 分别在边AB 、AD 上,BE =DF ,CE 的延长线交DA 的延长线于点G ,CF 的延长线交BA 的延长线于点H .求证:△BEC ∽△BCH .25.如图,点F 是ABC 中AC 边的中点,//AD BC ,DF 交AB 于点E ,交BC 延长线于点G .(1)若:3:1BE AE =,8BC =,求BG 的长;(2)若12∠=∠,求证:2FC EF FD =⋅.26.如图,已知点O 是坐标原点,B 、C 两点的坐标分别为(3,-1),(2,1).(1)以O点为位似中心在y轴的左侧将△OBC放大到原图的2倍(即新图与原图的相似比为2),画出对应的△OBꞌCꞌ;(2)若△OBC内部一点M的坐标为(a,b),则点M对应点M′的坐标是;(3)求出变化后△OBꞌCꞌ的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】过D作DG∥AC交BE于G,可得△BDG∽△BCE,△DGF∽△AEF,根据相似三角形的性质可得x与y 的数量关系.【详解】解:如图,过D作DG∥AC交BE于G,∴△BDG∽△BCE,△DGF∽△AEF,∴BD DGBC CE=,DG DFAE AF=,∵AC=2EC,∴AE=CE,则BD DF BC AF=∴BD DF BD CD AF=+,∴BD CD AFBD DF+=,∵x=CD:BD,y=AF:FD,∴1+x=y,∴y=x+1,故选:A..【点睛】本题考查相似三角形的性质和应用,恰当作辅助线构建相似三角形是解题的关键.2.B解析:B【分析】由题意可得DN=NM=MB,据此可得DF:BE=DN:NB=1:2,再根据BE:DC=BM:MD=1:2,AB=DC,故可得出DF:FC的值.【详解】解:由题意可得DN=NM=MB,AB//CD,AB//BC∴△DFN∽△BEN,△DMC∽△BME,∴DF:BE=DN:NB=1:2,BE:DC=BM:MD=1:2,又∵AB=DC,∴DF:AB=1:4,∴DF:FC=1:3故选:B.【点睛】本题考查相似三角形的性质,两相似三角形对应线段成比例,要注意比例线段的应用.3.C解析:C【分析】根据比例线段的概念:如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.【详解】解:A、1.5×4.5≠2.5×3.5,故本选项错误;B、1×4≠2×3,故本选项错误;C、3×8=4×6,故本选项正确;D215105≠,故本选项错误.故选:C.【点睛】此题考查了比例线段的概念.注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.4.D解析:D【分析】根据三角形相似的判定方法一一判断即可.【详解】解:A 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ;B 、根据两角对应相等两三角形相似,可以判定△ABC ∽△ADB ;C 、根据两边成比例夹角相等两三角形相似即可判定△ABC ∽△ADB ;D 、无法判断三角形相似.故选:D .【点睛】本题考查相似三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型. 5.C解析:C【分析】根据平行线的性质得出∠E=∠B ,∠D=∠C ,根据相似三角形的判定定理得出△EAD ∽△BCA ,根据相似三角形的性质求出即可【详解】解:∵DE ∥BC ,∴∠E=∠B ,∠D=∠C ,∴△EAD ∽△CAB ,∴AC :AD=BC :DE ,∵AD =5,AC =10,DE =6,∴10:5=BC :6.∴BC=12.故选:C .【点睛】本题考查了平行线的性质,相似三角形的性质和判定的应用,能推出△EAD ∽△BAC 是解此题的关键.6.D解析:D【分析】根据平行线分线段成比例求出EC ,即可解答.【详解】解:∵DE ∥BC , ∴AD AE DB EC =,即643EC=, 解得:EC=2,∴AC=AE+EC=4+2=6;故选:D .【点睛】本题考查了平行线分线段成比例定理,解决本题的关键是熟记平行线分线段成比例定理. 7.D解析:D【分析】由OA B ''△与OAB 关于点O 位似,且OA B ''△的面积等于OAB 面积的14,利用相似三角形的面积比等于相似比的平方,即可求得OA B ''△与OAB 的位似比为1:2,又由点B 的坐标为(6,4),即可求得答案.【详解】解:∵OA B ''△与OAB 关于点O 位似,∴OA B ''△∽OAB ,∵OA B ''△的面积等于OAB 面积的14, ∴位似比为1:2,∵点B 的坐标为(6,4),∴点B′的坐标是:(3,2)或(-3,-2).故选D .【点睛】此题考查了位似图形的性质.此题难度不大,注意位似图形是特殊的相似图形,注意掌握相似三角形的面积比等于相似比的平方定理的应用,注意数形结合思想的应用. 8.A解析:A【分析】由两个三角形的高之比可得出两个三角形的相似比,进而得出两个三角形的面积之比,根据两个三角形的面积之比设未知数,列方程,求出较大三角形的面积即可.【详解】由题意得,两个三角形的相似比为:15∶5=3∶1,故面积比为:9∶1,设两个三角形的面积分别为9x ,x ,则9x -x =80,解得:x =10,故较大三角形的面积为:9x =90.故选:A .【点睛】本题主要考查相似三角形的性质,熟记相似三角形的高之比等于相似比,面积之比等于相似比的平方是解题关键.9.A解析:A【分析】根据相似三角形对应高的比等于相似比,周长的比等于相似比解答.【详解】解:∵对应高之比是1:2,∴相似比=1:2,∴对应周长之比是1:2.故选:A .【点睛】本题主要考查相似三角形的性质,周长的比等于相似比.10.A解析:A【分析】 首先根据相似的性质,可得对应边成比例,即为AD AB AB BF =,又根据12BF AD =,可得出2212AD AB =,据此进行求解即可. 【详解】∵各种开本的矩形都相似,∴矩形ABCD 与矩形BFEA 相似, ∴AD AB AB BF=, ∴AD•BF=AB•AB ,又∵12BF AD =, ∴2212AD AB =,∴AD AB=, 故选A .【点睛】本题考查了相似多边形的的性质,相似多边形对应边之比等于相似比,准确识图,熟练掌握和灵活运用相关知识是解题的关键.11.D解析:D【分析】根据位似变换的概念判断即可.【详解】解:D 中两个图形,对应边不互相平行,不是位似图形,A 、B 、C 中的图形符合位似变换的定义,是位似图形,故选:D .【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形.12.C解析:C【分析】为了便于计算,可设AF =2x ,BF =3x ,BC =2y ,CD =y ,利用AG ∥BD ,可得△AGF ∽△BDF ,从而可求出AG ,那么就可求出AE :EC 的值.【详解】解:如图所示,∵AF :FB =2:3,BC :CD =2:1∴设AF =2x ,BF =3x ,BC =2y ,CD =y∵12//l l ,∴△AGF ∽△BDF , ∴AG BD =AF BF ∴3AG y =23∴AG =2y∴AE :EC =AG :CD =2y :y =2:1故选:C .【点睛】根据三角形相似,找到各对相似三角形的共公边,建立起不同三角形之间的联系,是解答此题的关键.二、填空题13.【分析】由重心的性质可得AD =AD 由相似三角形的性质可得△A′MN 面积与△ABC 的面积之比=【详解】解:∵点A′恰好是△ABC 的重心∴AD =AD ∵将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位解析:19【分析】由重心的性质可得A 'D =13AD ,由相似三角形的性质可得△A ′MN 面积与△ABC 的面积之比=21()9A D AD '=. 【详解】 解:∵点A′恰好是△ABC 的重心,∴A'D =13AD , ∵将△ABC 沿BC 边上的中线AD 平移到A′B′C′的位置,∴△ABC ∽△A'MN ,∴△A′MN 面积与△ABC 的面积之比=21()9A D AD '=, 故答案为:19. 【点睛】本题考查了相似三角形的判定和性质以及重心的性质,掌握重心的性质是本题的关键. 14.1:2【分析】设△ABC 的面积为1ΔEDG 的面积为xΔBDG 的面积为y 则由题意可得关于xy 的二元一次方程组解方程组得到xy 的值后可得问题解答【详解】解:设△ABC 的面积为1ΔEDG 的面积为xΔBDG解析:1:2【分析】设△ABC 的面积为1,ΔEDG 的面积为x ,ΔBDG 的面积为y ,则由题意可得关于x 、y 的二元一次方程组,解方程组得到x 、y 的值后可得问题解答.【详解】解:设△ABC 的面积为1,ΔEDG 的面积为x ,ΔBDG 的面积为y ,∵DE 为三角形ABE 的中位线,∴三角形DEB 的面积为三角形ABE 面积的一半或者三角形ABC 面积的四分之一, ∴x+y=14, 又由题意可得:△DGE ∽△CGB , ∴214DGE CGB S DE S BC ⎛⎫== ⎪⎝⎭, 即()111442CBD GBD x S S y ⎛⎫=-=- ⎪⎝⎭,∴ 1184x y =-,所以有: 141184x y x y ⎧+=⎪⎪⎨⎪=-⎪⎩, 解之得: 11216x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴1112126EDG BDG S S x y ===::::, 故答案为1:2.【点睛】本题考查三角形中线、中位线的应用和相似三角形的判定及性质,熟练掌握“三角形中线把三角形分成面积相等的两部分”和相似三角形的判定及性质是解题关键 .15.25【分析】连接EO 可知EO ⊥ED 延长DE 到点F 作BF ⊥DF 根据题意可知△DEO ∽△DFB 在△EFB 中根据勾股定理求解得出半径的长然后再根据圆的面积公式求解即可;【详解】如图:连接EO 可知EO ⊥ED解析:25π【分析】连接EO ,可知EO ⊥ED ,延长DE 到点F ,作BF ⊥DF ,根据题意可知△DEO ∽△DFB ,在△EFB 中,222EB EF FB =+,根据勾股定理求解得出半径的长,然后再根据圆的面积公式求解即可;【详解】如图:连接EO ,可知EO ⊥ED ,延长DE 到点F ,作BF ⊥DF ,∵∠FDB=∠EDO ,∠DEO=∠DFB ,∴△DEO ∽△DFB ,∵EO=r ,ED=10,EB=∵DO=OB , ∴12DO EO DE DB FB DF===, ∴EF=10,FB=2r , 在△EFB 中,222EB EF FB =+,(22=1004r +,∴ r=5,∴ 圆的面积为225r ππ=,故答案为:25π【点睛】本题考查了圆的面积公式、相似三角形的判定、勾股定理等知识,熟练掌握这些公式是解题的关键;16.【分析】根据矩形的性质得到AB ∥CDAB=CDAD=BC ∠BAD=90°根据线段中点的定义得到DE=CD=AB 根据相似三角形的性质即可得到结论【详解】解:∵四边形ABCD 是矩形∴AB ∥CDAB=CD 解析:43【分析】根据矩形的性质得到AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,根据线段中点的定义得到DE=12CD=12AB ,根据相似三角形的性质即可得到结论. 【详解】解:∵四边形ABCD 是矩形,∴AB ∥CD ,AB=CD ,AD=BC ,∠BAD=90°,∵E 为CD 的中点,∴DE=12CD=12AB , ∴△ABP ∽△EDP , ∴AB PB DE PD =, ∴21PB PD = , ∴23PB BD = , ∵PQ ⊥BC ,∴PQ ∥CD ,∴△BPQ ∽△DBC , ∴23PQ BP CD BD ==, ∵CD=2,∴PQ=43, 故答案为:43.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键. 17.【分析】易证△ABE ∽△DCE 即可求得【详解】∵∠ABE=∠DCE=90°∠BEA=∠DEC ∴△ABE ∽△DCE ∴即故答案为:【点睛】本题考查相似三角形的实际应用掌握相似三角形的判定定理是解题的关键 解析:40m【分析】易证△ABE ∽△DCE ,即可求得.【详解】∵∠ABE=∠DCE=90°,∠BEA=∠DEC∴△ABE ∽△DCE ∴=AB BE CD CE即20=2010AB cm m cm =40AB m故答案为:40m【点睛】本题考查相似三角形的实际应用,掌握相似三角形的判定定理是解题的关键. 18.【分析】连接MN 过点O 作于点E 交CD 于点F 先证明得到相似比是然后求出和的面积用矩形MNCD 的面积减去这两个三角形的面积得到阴影部分面积【详解】解:如图连接MN 过点O 作于点E 交CD 于点F ∵四边形ABC 解析:23【分析】连接MN ,过点O 作OE MN 于点E ,交CD 于点F ,先证明OMN PQO ,得到相似比是4:1,然后求出OMN 和PQO 的面积,用矩形MNCD 的面积减去这两个三角形的面积得到阴影部分面积.【详解】解:如图,连接MN ,过点O 作OE MN ⊥于点E ,交CD 于点F ,∵四边形ABCD 是矩形,∴//AD BC ,AD BC =,∵M 、N 分别是边AD 、BC 的中点,∴DM CN =,∴四边形MNCD 是平行四边形,∴//MN CD ,∴OMN PQO ,相似比是:4:1MN PQ =,∴:4:1OE OF =, ∵152EF BC ==, ∴4OE =,1OF =, ∴184162MNO S =⨯⨯=,12112PQOS =⨯⨯=,8540MNCD S =⨯=, ∴4016123S =--=阴影.【点睛】本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定. 19.或【分析】分两种情况求解或利用相似三角形对应边成比例求出PC 的长【详解】解:①如图∵且D 是AB 中点∴∴∵∴∴∵∴∴解得;②如图此时∴即解得故答案是:或【点睛】本题考查相似三角形的性质和判定解题的关键 解析:4或254【分析】分两种情况求解,90CPD ∠=︒或90CDP ∠=︒,利用相似三角形对应边成比例求出PC 的长.【详解】解:①如图,90CPD ∠=︒,∵90ACB ∠=︒,且D 是AB 中点,∴AD BD CD ==,∴DCP ABC ∠=∠,∵90CPD BCA ∠=∠=︒,∴CPD BCA , ∴CP CD BC BA =, ∵6AC =,8BC =,∴10AB =,5AD BD CD ===, ∴5810CP =,解得4CP =;②如图,90CDP ∠=︒,此时CDP BCA ,∴CP CD BA BC =,即5108CP =,解得254CP =.故答案是:4或254. 【点睛】 本题考查相似三角形的性质和判定,解题的关键是掌握相似三角形的性质和判定. 20.或2【分析】根据等式的性质可得2(a+b+c )=k (a+b+c )根据因式分解可得a+b+c=0或k=2根据分式的性质可得答案【详解】解:由得b+c=ak①a+c=bk②a+b=ck③①+②+③得2(解析:1-或2【分析】根据等式的性质,可得2(a+b+c )=k (a+b+c ),根据因式分解,可得a+b+c=0或k=2,根据分式的性质,可得答案.【详解】解:由()0a b a c b c k k c b a+++===≠,得 b+c=ak ①,a+c=bk ②,a+b=ck ③,①+②+③,得2(a+b+c )=k (a+b+c ),移项,得2(a+b+c )-k (a+b+c )=0,因式分解,得(a+b+c )(2-k )=0a+b+c=0或k=2,当0a b c ++=时,a b c +=-,1a b c k c c+-===-, ∴1k =-或2.故答案为:1-或2.【点睛】本题考查了比例的性质,利用等式的性质得出2(a+b+c )=k (a+b+c )是解题关键,又利用了分式的性质.三、解答题21.(1)四边形ABCE ;(2)13或10;(2)【分析】(1)根据勾股定理分别求出三个三角形的各边长,根据三边对应成比例的三角形相似、“友爱四边形”的定义判断;(2)根据旋转变换的性质、平行线的性质、两角相等的两个三角形相似证明;(3)AM ⊥BC ,根据含30°的直角三角形的特殊性质及勾股定理用AB 表示出AM ,根据三角形的面积公式得到BC ×AB =12,根据相似三角形的性质列式计算,得到答案.【详解】解:(1)∵AB =2,BC =1,AD =4,∴由勾股定理得,ACCDAE =CE 5,∴BC AC =AB AE =AC CE , ∴ABC ∽EAC ,∴四边形ABCE 是“友爱四边形”, ∵BC AC ≠AC CD , ∴ABC 与ACD 不相似,∴四边形ABCD 不是“友爱四边形”,故答案为:四边形ABCE ;(2)∵AC 平分∠BCD ,∴∠ACB=∠ACD ,当∠B=∠DAC 时,ABC ∽DAC , 则BC AC =AB AD =AC CD, ∵2AB =,3BC =,4AC =, ∴34=2AD =4CD, 解得AD =83,CD =163, ∴友爱四边形ABCD 的周长为816321333+++=; 当∠B=∠D 时,ABC ∽ADC , 则BC DC =AB AD =AC AC=1, ∵2AB =,3BC =,4AC =, ∴3DC =2AD=1, 解得AD =2,CD =3,∴友爱四边形ABCD 的周长为233210+++=, 综上所述,友爱四边形ABCD 的周长为13或10; (3)如图3,过点A 作AM ⊥BC 于M ,则∠AMB =90°,∵60ABC ∠=︒,∴∠BAM =30°,∴BM =12AB , ∴在Rt △ABM 中,AM, ∵ABC 的面积为,∴12BC = ∴BC ×AB =12,∵四边形ABCD 是被BD 分割成的“友爱四边形”,且AB ≠BC , ∴ABD ∽DBC∴AB BD BD BC=, ∴BD 2=AB ×BC =12,∴BD =12=23.【点睛】本题考查的是相似三角形的判定和性质、旋转变换的性质、三角形的面积计算,掌握相似三角形的判定定理和性质定理、理解“友爱四边形”的定义是解题的关键.22.(1)(4,)1-;(2)画图见解析;(3)12.【分析】(1)直接利用关于x 轴对称图形的性质得出得出对应点位置即可;(2)直接利用位似图形的性质得出对应点位置进而得出答案;(3)直接运用三角形面积公式求出△A 2BC 2的面积即可. 【详解】解:(1)如图所示:111A B C △,即为所求,则1C 的坐标为:(4,)1-.故答案为:(4,)1-.(2)如图所示:22A BC ,即为所求.(3)22164122A BC S =⨯⨯=. 【点睛】此题主要考查了位似变换以及轴对称变换,正确得出对应点位置是解题关键.23.(1)图见解析;(2)图见解析,2C(1,0);(3)10【分析】(1)利用平移的性质得出对应点的坐标即可画出平移后的图形;(2)利用位似图形的性质得出对应点的坐标即可画出平移后的图形,进而可得点C2的坐标;(3)根据所画图形判断出△A2BC2为等腰直角三角形,利用三角形的面积公式即可求解.【详解】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2BC2即为所求,C2点坐标为(1,0),故答案为:(1,0);(3)∵A2C2=BC2=22+=,A2B=224225+=,62210∴A2C22+BC22= A2B2,∴△A2BC2是等腰直角三角形,且∠A2C2B=90°,∴△A2BC2的面积位为:1×(25)2=10平方单位,2故答案为:10.【点睛】本题考查平移变换和位似变换的性质、勾股定理及其逆定理、三角形的面积公式,掌握变换性质,正确得出变换后的对应点的位置是解答的关键.24.见解析.【分析】由题意可得△CDF≌△CBE,所以可得∠DCF=∠BCE,进一步结合菱形的性质可得∠H=∠BCE,再由∠B=∠B即可得到所证结论成立.【详解】∵四边形ABCD是菱形,∴CD=CB,∠D=∠B,∵DF=BE,∴△CDF≌△CBE(SAS),∴∠DCF=∠BCE,∵CD∥BH,∴∠H =∠DCF ,∴∠H =∠BCE ,∵∠B =∠B ,∴△BEC ∽△BCH .【点睛】本题考查菱形的综合应用,综合运用菱形的性质、三角形全等的判定和性质及三角形相似的判定是解题关键 .25.(1)BG=12,;(2)证明见解析【分析】(1)根据AD ∥BC ,点F 是AC 边上的中点,可证△ADF ≌△CGF ,得AD=CG ,再由BE :AE=3:1及AD ∥BC ,得BG=3AD ,BC=2AD=8,得AD=4,可求BG ;(2)由∠1=∠2,根据邻补角的性质得∠AEF=∠FCG ,又对顶角∠AFE=∠GFC ,可证△AFE ∽△GFC ,利用相似比证题.【详解】(1)解:∵AD ∥BC ,∴∠D=∠G ,又∠AFD=∠CFG ,AF=FC ,在△ADF 和△CGF 中D G AFD CFG AF FC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△CGF(AAS),∴AD=CG ,FG=FD ,又∵AD ∥BC∴△ADE ∽△BGE ∴BE BG AE DA= 又BE :AE=3:1,∴BG=3AD ,又AD=CG∴BC=2AD=8,解得AD=4,∴BG=3AD=12;(2)证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠AEF=∠FCG ,又∵∠AFE=∠GFC ,∴△AFE ∽△GFC ,EF AF FC FG=,又AF=CF ,DF=GF , 即EF CF CF FD=, ∴FC 2=FE•FD .【点睛】本题考查了相似三角形的判断与性质,全等三角形的判定与性质.关键是利用平行线,中点,等角的补角相等,推出全等和相似三角形.26.(1)见解析;(2)(-2a ,-2b );(3)10【分析】(1)把B 、C 的横纵坐标都乘以-2得到B′、C′的坐标,然后描点即可;(2)利用(1)中对应点的关系求解;(3)先计算△OBC 的面积,然后利用相似的性质把△OBC 的面积乘以4得到△OB ꞌC ꞌ的面积.【详解】(1)如下图,△OB ꞌC ꞌ为所作;(2)点M 对应点M ′的坐标为(-2a ,-2b );(3)''11144(23212131)10222OB C OCB S S ∆∆==⨯⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题考查了作图、位似变换,熟练应用以原点为位似中心的两位似图形对应点的坐标的关系确定变换后对应点的坐标,然后描点得到变换后的图形.。
人教版初中数学图形的相似全集汇编及答案解析

人教版初中数学图形的相似全集汇编及答案解析一、选择题1.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90°得到ABF ∆,连接EF ,则cos EFC ∠的值是 ( )A 171365B 61365C 71525D .617【答案】A【解析】【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明AEH EMG V :V ,则有13EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF∠=即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则90AHG MGE ∠=∠=︒,∵四边形ABCD 是正方形,∴3,90AD AB ABC C D ==∠=∠=∠=︒ ,∴四边形AHGD,BHEN,ENCG 都是矩形.由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=︒====,90AEH MEG EMG MEG ∴∠+∠=∠+∠=︒ ,AEH EMG ∴∠=∠,AEH EMG ∴V :V ,13EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+在Rt AEH V 中,222AH EH AE +=Q ,222(1)(3)3x x ∴++= , 解得45x =或1x =-(舍去), 125EH BN ∴==,65CG CD DG EN =-== . 1BF DM ==Q 175FN BF BN ∴=+=. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=,17cos 1365FN EFC EF ∴∠==. 故选:A .【点睛】本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.2.如图,四边形ABCD 内接于O e ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则AB 的长为( )A .10B .12C .16D .20【答案】D【解析】【分析】 连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆∽,利用相似比得到16BE =,所以20AB =.【详解】解:连接BD ,如图,AB Q 为直径,90ADB ACB ∴∠=∠=︒,AD CD =Q ,DAC DCA ∴∠=∠,而DCA ABD ∠=∠,DAC ABD ∴∠=∠,DE AB ∵⊥,90ABD BDE ∴∠+∠=︒,而90ADE BDE ∠+∠=︒,ABD ADE ∴∠=∠,ADE DAC ∴∠=∠,5FD FA ∴==,在Rt AEF ∆中,3sin 5EF CAB AF ∠==Q ,22534AE ∴=-=,538DE =+=,ADE DBE ∠=∠Q ,AED BED ∠=∠,ADE DBE ∴∆∆∽,::DE BE AE DE ∴=,即8:4:8BE =,16BE ∴=,41620AB ∴=+=.故选:D .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.也考查了解直角三角形.3.如图,在ABC ∆中,点D E F 、、分别在边AB AC BC 、、上,// ,//DE BC DF AC ,则下列结论一定正确的是( )A .DE CE BF AE= B .AE CE CF BF = C .AD AB CF AC= D .DF AD AC AB = 【答案】B【解析】【分析】 根据平行线分线段成比例定理,可得B 正确.【详解】解://DE BC Q ,//DF AC , ∴AE AD CE BD =,BF BD CF AD =, ∴AE CF CE BF=, 故B 选项正确,选项A 、C 、D 错误,故选:B .本题主要考查平行线分线段成比例,找准对应边是解题的关键.4.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1 B.C.D.【答案】C【解析】【分析】由平行于BC的直线DE把△ABC分成面积相等的两部分,可知△ADE与△ABC相似,且面积比为,则相似比为,的值为.【详解】∵DE∥BC,∴△ADE∽△ABC,∵DE把△ABC分成面积相等的两部分,∴S△ADE=S四边形DBCE,∴=,∴==,故选:C.【点睛】本题考查了相似三角形的判定,相似三角形的性质,面积比等于相似比的平方的逆用等.5.如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=kx上一点,k的值是()A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽, ∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽, ∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q点Q在反比例函数的图象上,4416k∴=⨯=,故选:C.【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q的坐标是解决问题的关键.6.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC 的长为()A.2 B.4 C.6 D.8【答案】B【解析】【分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC=,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.7.如图,在平行四边形ABCD中,E,F分别是边AD,BC的中点,AC分别交BE,DF于G,H,试判断下列结论:①△ABE≌△CDF;②AG=GH=HC;③2EG=BG;④S△ABG:S四边形GHDE=2:3,其中正确的结论是()A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据SAS ,即可证明①△ABE ≌△CDF ;在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,根据有一组对边平行且相等四边形是平行四边形,即可证明四边形BFDE 是平行四边形,由AD ∥BC ,即可证明△AGE ∽△CGB ,△CHF ∽△AHD ,然后根据相似三角形的对应边成比例,证得AG ∶CG =EG ∶BG =1∶2,CH ∶AH =1∶2,即可证得②AG =GH =HC ,③2EG =BG ;由S △ABG =2S △AEG ,S 四边形GHD E =3S △AEG ,可得结论④S △ABG :S 四边形GHDE =2:3.【详解】解:在平行四边形ABCD 中,AB =CD ,∠BAE =∠DCF ,BC =DA ,∵E ,F 分别是边AD ,BC 的中点,∴AE =CF ,∴△ABE ≌△CDF ,故①正确;∵AD ∥BC ,∴△AGE ∽△CGB ,△CHF ∽△AHD ,∴AG ∶CG =EG ∶BG =AE ∶CB ,CH ∶AH =CF ∶AD ,∵E ,F 分别是边AD ,BC 的中点,∴AE =12AD ,CF =12BC , ∴AE ∶CB =1∶2,CF ∶AD =1∶2,∴EG ∶BG =AG ∶CG =1∶2,CH ∶AH =1∶2∴AG =CH =13AC ,2EG =BG ,故③正确; ∴AG =GH =HC ,故②正确;∵S △ABG =2S △AEG ,S 四边形GHD E =3S △AEG ,∴S △ABG :S 四边形GHDE =2:3,故④正确,故选:D【点睛】 本题主要考查全等三角形的判定与性质、相似三角形的判定与性质、平行四边形的判定与性质,熟练掌握这些知识是解本题的关键.8.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OB OA =,根据三角函数的定义即可得到结论.【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x =-<的图象上, ∴S △BDO =52,S △AOC =12, ∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC ,∴△BDO ∽△OCA , ∴251522BOD OAC S OB S OA ⎛⎫==÷= ⎪⎝⎭△△, ∴5OB OA= ∴tan ∠BAO=5OB OA =. 故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.9.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A .2∶3B .4∶9C .2∶3 D .3∶2 【答案】B【解析】【分析】根据两相似三角形的面积比等于相似比的平方,所以224()39ABC DEF S S ==V V . 【详解】因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,所以S △ABC :S △DEF =(23)2=49,故选B . 【点睛】本题考查了相似三角形的性质,解题的关键是掌握:两个相似三角形面积比等于相似比的平方.10.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm 【答案】B【解析】【分析】【详解】由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .11.如图,已知AOB ∆和11A OB ∆是以点O 为位似中心的位似图形,且AOB ∆和11A OB ∆的周长之比为1:2,点B 的坐标为()1,2-,则点1B 的坐标为( ).A .()2,4-B .()1,4-C .()1,4-D .()4,2-【答案】A【解析】【分析】 设位似比例为k ,先根据周长之比求出k 的值,再根据点B 的坐标即可得出答案.【详解】设位似图形的位似比例为k则1111,,OA kOA OB kOB A B kAB ===△AOB Q 和11A OB △的周长之比为1:2111112OA OB AB OA OB A B ++∴=++,即12OA OB AB kOA kOB kAB ++=++ 解得2k =又Q 点B 的坐标为(1,2)-∴点1B 的横坐标的绝对值为122-⨯=,纵坐标的绝对值为224⨯=Q 点1B 位于第四象限∴点1B 的坐标为(2,4)-故选:A .【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.12.在平面直角坐标系中,把△ABC 的各顶点的横坐标都除以14,纵坐标都乘13,得到△DEF ,把△DEF 与△ABC 相比,下列说法中正确的是( )A .横向扩大为原来的4倍,纵向缩小为原来的13 B .横向缩小为原来的14,纵向扩大为原来的3倍 C .△DEF 的面积为△ABC 面积的12倍D.△DEF的面积为△ABC面积的1 12【答案】A 【解析】【分析】【详解】解:△DEF与△ABC相比,横向扩大为原来的4倍,纵向缩小为原来的13;△DEF的面积为△ABC面积的169,故选A.13.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)【答案】D【解析】【分析】【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.14.如图,点A,B是双曲线18yx=图象上的两点,连接AB,线段AB经过点O,点C为双曲线kyx=在第二象限的分支上一点,当ABCV满足AC BC=且:13:24AC AB=时,k的值为().A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE ⊥x 轴于E ,CF ⊥x 轴于F .连接OC .∵A 、B 关于原点对称,∴OA =OB ,∵AC =BC ,OA =OB ,∴OC ⊥AB ,∴∠CFO =∠COA =∠AEO =90°,∴∠COF +∠AOE =90°,∠AOE +∠EAO =90°,∴∠COF =∠OAE ,∴△CFO ∽△OEA , ∴2()COF AOE S OC S OA∆∆=, ∵CA :AB =13:24,AO =OB ,∴CA :OA =13:12,∴CO :OA =5:12, ∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.15.如图,已知ABC ∆和ABD ∆都O e 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠Q ,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.16.26,2,A B C '''∆的两边长分别是13,如果ABC ∆与A B C '''∆相似,那么A B C '''∆的第三边长应该是( )A 2B 2C 6D 3【答案】A【解析】【分析】根据题中数据先计算出两相似三角形的相似比,则第三边长可求.【详解】解:根据题意,易证ABC ∆∽△A B C '''2, ∴△A B C '''22=. 故选:A .【点睛】 本题考查了相似三角形的性质:相似三角形的对应边成比例,关键就是要清楚对应边是谁.17.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A .22B .12C .14D .33【答案】A【解析】【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA =【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴2OB OA = 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解18.如图,顶角为36o 的等腰三角形,其底边与腰之比等k ,这样的三角形称为黄金三角形,已知腰AB=1,ABC ∆为第一个黄金三角形,BCD ∆为第二个黄金三角形,CDE ∆为第三个黄金三角形以此类推,第2020个黄金三角形的周长()A .2018kB .2019kC .20182k k + D .2019(2)k k +【答案】D【解析】【分析】根据相似三角形对应角相等,对应边成比例,求出前几个三角形的周长,进而找出规律:第n 个黄金三角形的周长为k n-1(2+k ),从而得出答案.【详解】解:∵AB=AC=1,∴△ABC 的周长为2+k ;△BCD 的周长为k+k+k 2=k (2+k );△CDE 的周长为k 2+k 2+k 3=k 2(2+k );依此类推,第2020个黄金三角形的周长为k 2019(2+k ).故选:D .【点睛】此题考查黄金分割,相似三角形的性质,找出各个三角形周长之间的关系,得出规律是解题的关键.19.下列图形中,一定相似的是( )A .两个正方形B .两个菱形C .两个直角三角形D .两个等腰三角形【答案】A【解析】【分析】根据相似形的对应边成比例,对应角相等,结合正方形,菱形,直角三角形,等腰三角形的性质与特点对各选项分析判断后利用排除法.【详解】A、两个正方形角都是直角一定相等,四条边都相等一定成比例,所以一定相似,故本选项正确;B、两个菱形的对应边成比例,角不一定相等,所以不一定相似,故本选项错误;C、两个直角三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误;D、两个等腰三角形的边不一定成比例,角不一定相等,所以不一定相似,故本选项错误.故选A.【点睛】本题主要考查了相似图形的定义,比较简单,要从边与角两方面考虑.20.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC 上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P与点B之间的距离为()A.1 B.54C.1或 3 D.54或5【答案】D【解析】【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得12BD BE DEAB BC AC===,可求BE,DE的长,由勾股定理可求PB的长.【详解】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴AB=225AC BC+=∵点D是AB的中点,∴BD=12BA=52∵B1D⊥BC,∠C=90°∴B1D∥AC∴12 BD BE DE AB BC AC===∴BE=EC=12BC=2,DE=12AC=32∵折叠∴B1D=BD=52,B1P=BP∴B1E=B1D-DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2-BP)2,∴BP=5 4如图,若点B1在BC右侧,∵B1E=DE+B1D=32+52,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP-2)2,∴BP=5故选:D.【点睛】本题考查了折叠的性质、直角三角形的性质以及勾股定理.此题难度适中,注意数形结合思想的应用,注意折叠中的对应关系.。
人教版初中数学图形的相似全集汇编附答案解析

人教版初中数学图形的相似全集汇编附答案解析一、选择题1.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B 【解析】 【分析】 【详解】由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm , ∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°, ∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则123k b {507k b=+=+,解得:3 k5 {21 b5=-=.∴直线EF的解析式为321y x55=-+.∴当x5=时,()3216PD y5 1.2cm555==-⨯+==.故选B.2.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数1yx=-、2yx=的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D【解析】【分析】如图,作辅助线;首先证明△BEO∽△OFA,,得到BE OEOF AF=;设B为(a,1a-),A为(b,2b),得到OE=-a,EB=1a-,OF=b,AF=2b,进而得到222a b=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=22为定值,即可解决问题.【详解】解:分别过B和A作BE⊥x轴于点E,AF⊥x轴于点F,则△BEO∽△OFA,∴BE OEOF AF=,设点B为(a,1a-),A为(b,2b),则OE=-a,EB=1a-,OF=b,AF=2b,可代入比例式求得222a b =,即222a b =, 根据勾股定理可得:OB=22221OE EB a a +=+,OA=22224OF AF b b +=+, ∴tan ∠OAB=2222222212244b a OB a b OA b b bb++==++=222214()24b b b b ++=2∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变. 故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.3.如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且∠CDE =30°.设AD =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D .【答案】C 【解析】 【分析】根据题意可得出4,23,AB BC ==4,23,BD x CE y =-=-然后判断△CDE ∽△CBD ,继而利用相似三角形的性质可得出y 与x 的关系式,结合选项即可得出答案. 【详解】解:∵∠A =60°,AC =2,∴4,23,AB BC ==4,23,BD x CE y =-=-在△ACD 中,利用余弦定理可得CD 2=AC 2+AD 2﹣2AC •AD cos ∠A =4+x 2﹣2x , 故可得242CD x x =-+,又∵∠CDE =∠CBD =30°,∠ECD =∠DCB (同一个角), ∴△CDE ∽△CBD ,即可得,CE CDCD CB= 即222342,2342yx x x x--+=-+故可得: 23343.y x x =-++ 即呈二次函数关系,且开口朝下. 故选C . 【点睛】考查解直角三角形,相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.4.如图,□ABC D 的对角线AC ,BD 交于点O ,CE 平分∠BCD 交AB 于点E ,交BD 于点F ,且∠ABC =60°,AB =2BC ,连接OE .下列结论:①EO ⊥AC ;②S △AOD =4S △OCF ;③AC :BD =21:7;④FB 2=OF •DF .其中正确的是( )A .①②④B .①③④C .②③④D .①③【答案】B 【解析】 【分析】①正确.只要证明EC=EA=BC ,推出∠ACB=90°,再利用三角形中位线定理即可判断. ②错误.想办法证明BF=2OF ,推出S △BOC =3S △OCF 即可判断. ③正确.设BC=BE=EC=a ,求出AC ,BD 即可判断.④正确.求出BF ,OF ,DF (用a 表示),通过计算证明即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴CD ∥AB ,OD=OB ,OA=OC , ∴∠DCB+∠ABC=180°, ∵∠ABC=60°, ∴∠DCB=120°, ∵EC 平分∠DCB , ∴∠ECB=12∠DCB=60°, ∴∠EBC=∠BCE=∠CEB=60°, ∴△ECB 是等边三角形, ∴EB=BC , ∵AB=2BC , ∴EA=EB=EC , ∴∠ACB=90°, ∵OA=OC ,EA=EB ,∴OE ∥BC ,∴∠AOE=∠ACB=90°, ∴EO ⊥AC ,故①正确, ∵OE ∥BC , ∴△OEF ∽△BCF , ∴12OE OF BC FB == , ∴OF=13OB , ∴S △AOD =S △BOC =3S △OCF ,故②错误,设BC=BE=EC=a ,则AB=2a ,3,223(72)a a +,∴BD=7a ,∴AC :BD=3a :7a=21:7,故③正确, ∵OF=13OB=7a , ∴BF=73a , ∴BF 2=79a 2,OF•DF=7a•7779a a ⎛⎫+= ⎪ ⎪⎝⎭ a 2, ∴BF 2=OF•DF ,故④正确, 故选:B . 【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.5.如图,将ABC ∆沿BC 边上的中线AD 平移到A B C '''∆的位置.已知ABC ∆的面积为16,阴影部分三角形的面积9.若1AA '=,则A D '等于( )A .2B .3C .4D .32【答案】B 【解析】 【分析】由 S △ABC =16、S △A ′EF =9且 AD 为 BC 边的中线知 1922A DE A EF S S '∆'∆==,182ABDABC S S ∆∆== ,根据△DA ′E ∽△DAB 知2A DE ABD S A D AD S ∆∆'⎛⎫=' ⎪⎝⎭,据此求解可得. 【详解】16ABC S ∆=Q 、9A EF S ∆'=,且AD 为BC 边的中线,1922A DE A EF S S ∆∆''∴==,182ABD ABC S S ∆∆==, Q 将ABC ∆沿BC 边上的中线AD 平移得到A B C '''∆, //A E AB ∴',DA E DAB '∴∆~∆,则2A DE ABD S AD AD S ∆∆'⎛⎫=' ⎪⎝⎭,即22991816A D A D ⎛⎫== '⎪+⎝⎭', 解得3A D '=或37A D '=-(舍), 故选:B . 【点睛】本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的 性质、相似三角形的判定与性质等知识点.6.如图,在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,AC 分别交BE ,DF 于G ,H ,试判断下列结论:①△ABE ≌△CDF ;②AG =GH =HC ;③2EG =BG ;④S △ABG :S 四边形GHDE=2:3,其中正确的结论是( )A .1个B .2个C .3个D .4个【答案】D 【解析】 【分析】根据SAS ,即可证明①△ABE ≌△CDF ;在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,根据有一组对边平行且相等四边形是平行四边形,即可证明四边形BFDE 是平行四边形,由AD ∥BC ,即可证明△AGE ∽△CGB ,△CHF ∽△AHD ,然后根据相似三角形的对应边成比例,证得AG ∶CG =EG ∶BG =1∶2,CH ∶AH =1∶2,即可证得②AG =GH =HC ,③2EG =BG ;由S △ABG =2S △AEG ,S 四边形GHD E =3S △AEG ,可得结论④S △ABG :S 四边形GHDE =2:3. 【详解】解:在平行四边形ABCD 中, AB =CD ,∠BAE =∠DCF ,BC =DA , ∵E ,F 分别是边AD ,BC 的中点, ∴AE =CF ,∴△ABE ≌△CDF ,故①正确; ∵AD ∥BC ,∴△AGE ∽△CGB ,△CHF ∽△AHD ,∴AG ∶CG =EG ∶BG =AE ∶CB ,CH ∶AH =CF ∶AD , ∵E ,F 分别是边AD ,BC 的中点,∴AE =12AD ,CF =12BC , ∴AE ∶CB =1∶2,CF ∶AD =1∶2, ∴EG ∶BG =AG ∶CG =1∶2,CH ∶AH =1∶2∴AG =CH =13AC ,2EG =BG ,故③正确; ∴AG =GH =HC ,故②正确;∵S △ABG =2S △AEG ,S 四边形GHD E =3S △AEG , ∴S △ABG :S 四边形GHDE =2:3,故④正确, 故选:D 【点睛】本题主要考查全等三角形的判定与性质、相似三角形的判定与性质、平行四边形的判定与性质,熟练掌握这些知识是解本题的关键.7.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x=>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B 【解析】 【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OBOA =,根据三角函数的定义即可得到结论. 【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x=-<的图象上, ∴S △BDO =52,S △AOC =12,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC , ∴△BDO ∽△OCA ,∴251522BOD OAC S OB S OA ⎛⎫==÷= ⎪⎝⎭△△, ∴5OBOA=, ∴tan ∠BAO=5OBOA=. 故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.8.如图,在矩形ABCD 中,1AB =,在BC 上取一点E ,沿AE 将ABE ∆向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD 的长为( )A .2B 3C 15± D 15+ 【答案】D 【解析】【分析】可设AD=x ,由四边形EFDC 与矩形ABCD 相似,根据相似多边形对应边的比相等列出比例式,求解即可. 【详解】 解:∵1AB =,设AD=x ,则FD=x-1,FE=1, ∵四边形EFDC 与矩形ABCD 相似, ∴EF ADDF AB=,即111xx =-, 解得:1152x+=,2152x -=(不合题意,舍去)经检验152x +=,是原方程的解. ∴15AD +=. 故选:D . 【点睛】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC 与矩形ABCD 相似得到比例式.9.如图,AB 为O e 的直径,C 为O e 上一点,弦AD 平分BAC ∠,交弦BC 于点E ,4CD =,2DE =,则AE 的长为( )A .2B .4C .6D .8【答案】C 【解析】 【分析】根据角平分线的定义得到∠CAD=∠BAD ,根据圆周角定理得到∠DCB=∠BAD ,证明△DCE ∽△DAC ,根据相似三角形的性质求出AD ,结合图形计算,得到答案. 【详解】解:∵AD 平分∠BAC , ∴∠CAD=∠BAD ,由圆周角定理得,∠DCB=∠BAD , ∴∠CAD=∠DCB ,又∠D=∠D , ∴△DCE ∽△DAC ,∴DE DC DC DA =,即244AD=, 解得,AD=8,∴AE=AD -DE=8-2=6,故选:C .【点睛】本题考查的是相似三角形的判定和性质、圆周角定理,掌握相似三角形的判定定理和性质定理是解题的关键.10.如图,已知在平面直角坐标系中,点O 是坐标原点,AOB V 是直角三角形,90AOB ∠=︒,2OB OA =,点B 在反比例函数2y x =上,若点A 在反比例函数k y x=上,则k 的值为( )A .12B .12-C .14D .14- 【答案】B【解析】【分析】通过添加辅助线构造出相似三角形,再根据相似三角形的性质可求得1,2x A x ⎛⎫-⎪⎝⎭,然后由点的坐标即可求得答案.【详解】解:过点B 作BE x ⊥于点E ,过点A 作AF x ⊥于点F ,如图:∵点B 在反比例函数2y x =上 ∴设2,B x x ⎛⎫ ⎪⎝⎭∴OE x =,2BE x=∵90AOB ∠=︒ ∴90AOD BOD ∠+∠=︒∴90BOE AOF ∠+∠=︒∵BE x ⊥,AF x ⊥∴90BEO OFA ∠=∠=︒∴90OAF AOF ∠+∠=︒∴BOE OAF ∠=∠∴BOE OAF V V ∽∵2OB OA = ∴12OF AF OA BE OE BO === ∴121122OF BE x x =⋅=⋅=,11222x AF OE x =⋅=⋅= ∴1,2x A x ⎛⎫- ⎪⎝⎭ ∵点A 在反比例函数k y x=上 ∴12x k x=- ∴12k =-. 故选:B【点睛】本题考查了反比例函数与相似三角形的综合应用,点在函数图象上则点的坐标就满足函数解析式,结合已知条件能根据相似三角形的性质求得点A 的坐标是解决问题的关键.11.如图,已知AOB ∆和11A OB ∆是以点O 为位似中心的位似图形,且AOB ∆和11A OB ∆的周长之比为1:2,点B 的坐标为()1,2-,则点1B 的坐标为( ).A .()2,4-B .()1,4-C .()1,4-D .()4,2-【答案】A【解析】【分析】 设位似比例为k ,先根据周长之比求出k 的值,再根据点B 的坐标即可得出答案.【详解】设位似图形的位似比例为k则1111,,OA kOA OB kOB A B kAB ===△AOB Q 和11A OB △的周长之比为1:2111112OA OB AB OA OB A B ++∴=++,即12OA OB AB kOA kOB kAB ++=++ 解得2k =又Q 点B 的坐标为(1,2)-∴点1B 的横坐标的绝对值为122-⨯=,纵坐标的绝对值为224⨯=Q 点1B 位于第四象限∴点1B 的坐标为(2,4)-故选:A .【点睛】本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键.12.26,2,A B C '''∆的两边长分别是13,如果ABC ∆与A B C '''∆相似,那么A B C '''∆的第三边长应该是( )A 2B .22C .62D 3【答案】A【解析】【分析】根据题中数据先计算出两相似三角形的相似比,则第三边长可求.【详解】解:根据题意,易证ABC ∆∽△A B C ''',且相似比为:2:1,∴△A B C '''的第三边长应该是22=. 故选:A .【点睛】 本题考查了相似三角形的性质:相似三角形的对应边成比例,关键就是要清楚对应边是谁.13.如图,△ABC 中,∠BAC =45°,∠ACB =30°,将△ABC 绕点A 顺时针旋转得到△AB 1C 1,当点C 1、B 1、C 三点共线时,旋转角为α,连接BB 1,交AC 于点D .下列结论:①△AC 1C 为等腰三角形;②△AB 1D ∽△BCD ;③α=75°;④CA =CB 1,其中正确的是( )A .①③④B .①②④C .②③④D .①②③④【答案】B【解析】【分析】 将△ABC 绕点A 顺时针旋转得到△AB 1C 1,得到△ABC ≌△AB 1C 1,根据全等三角形的性质得到AC 1=AC ,于是得到△AC 1C 为等腰三角形;故①正确;根据等腰三角形的性质得到∠C 1=∠ACC 1=30°,由三角形的内角和得到∠C 1AC=120°,得到∠B 1AB=120°,根据等腰三角形的性质得到∠AB 1B=30°=∠ACB ,于是得到△AB 1D ∽△BCD ;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C 1AB 1=∠BAC=45°,推出∠B 1AC=∠AB 1C ,于是得到CA=CB 1;故④正确.【详解】解:∵将△ABC 绕点A 顺时针旋转得到△AB 1C 1,∴△ABC ≌△AB 1C 1,∴AC 1=AC ,∴△AC 1C 为等腰三角形;故①正确;∴AC 1=AC ,∴∠C 1=∠ACC 1=30°,∴∠C 1AC =120°,∴∠B 1AB =120°,∵AB 1=AB ,∴∠AB 1B =30°=∠ACB ,∵∠ADB 1=∠BDC ,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB1C=75°,∴∠B1AC=∠AB1C,∴CA=CB1;故④正确.故选:B.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.14.如图,正方形ABDC中,AB=6,E在CD上,DE=2,将△ADE沿AE折叠至△AFE,延长EF交BC于G,连AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S∆FCG=3,其中正确的有().A.1个B.2个C.3个D.4个【答案】C【解析】【分析】利用折叠性质和HL定理证明Rt△ABG≌Rt△AFG,从而判断①;设BG=FG=x,则CG=6-x,GE=x+2,根据勾股定理列方程求解,从而判断②;由②求得△FGC为等腰三角形,由此推出1802FGCFCG-∠∠=o,由①可得1802FGCAGB-∠∠=o,从而判断③;过点F作FM⊥CE,用平行线分线段成比例定理求得FM的长,然后求得△ECF和△EGC的面积,从而求出△FCG的面积,判断④.【详解】解:在正方形ABCD中,由折叠性质可知DE=EF=2,AF=AD=AB=BC=CD=6,∠B=∠D=∠AFG=∠BCD=90°又∵AG=AG∴Rt△ABG≌Rt△AFG,故①正确;由Rt△ABG≌Rt△AFG∴设BG=FG=x,则CG=6-x,GE=GF+EF=x+2,CE=CD-DE=4∴在Rt △EGC 中,222(6)4(2)x x -+=+解得:x=3∴BG =3,CG=6-3=3∴BG =CG ,故②正确;又BG =CG , ∴1802FGC FCG -∠∠=o 又∵Rt △ABG ≌Rt △AFG∴1802FGC AGB -∠∠=o ∴∠FCG=∠AGB∴AG ∥CF ,故③正确; 过点F 作FM ⊥CE ,∴FM ∥CG∴△EFM ∽△EGC∴FM EF GC EG =即235FM = 解得65FM =∴S ∆FCG =116344 3.6225ECG ECF S S -=⨯⨯-⨯⨯=V V ,故④错误 正确的共3个故选:C .【点睛】 本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.15.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得 PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.16.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.4【答案】D【解析】【分析】根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.17.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A.AD AEBD EC=B.AF DFAE BE=C.AE AFEC FE=D.DE AFBC FE=【答案】D【解析】【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】∵DE//BC,∴AD AEBD EC=,故A正确;∵DF//BE,∴△ADF∽△ABF, ∴AF DFAE BE=,故B正确;∵DF//BE,∴AD AFBD FE=,∵AD AEBD EC=,∴AE AFEC FE=,故C正确;∵DE//BC,∴△ADE∽△ABC,∴DE ADBC AB=,∵DF//BE,∴AF ADAE AB=,∴DE AFBC AE=,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.18.若△ABC 的每条边长增加各自的50%得△A 'B 'C ',若△ABC 的面积为4,则△A 'B 'C '的面积是( )A .9B .6C .5D .2【答案】A【解析】【分析】根据两个三角形三边对应成比例,这两个三角形相似判断出两个三角形相似,根据相似三角形的性质即可得到结论.【详解】解:∵△ABC 的每条边长增加各自的50%得△A ′B ′C ′,∴△ABC 与△A ′B ′C ′的三边对应成比例,∴△ABC ∽△A ′B ′C ′, ∴214()150%9ABC A B C S S '''==+V V , ∵△ABC 的面积为4,则△A'B'C'的面积是9.故选:A .【点睛】本题考查了相似三角形的性质和判定,熟练掌握相似三角形的判定是解题的关键.19.两个相似三角形的对应边分别是15cm 和23cm ,它们的周长相差40cm ,则这两个三角形的周长分别是( )A .45cm ,85cmB .60cm ,100cmC .75cm ,115cmD .85cm ,125cm 【答案】C【解析】【分析】根据相似三角形的周长的比等于相似比列出方程,解方程即可.【详解】设小三角形的周长为xcm ,则大三角形的周长为(x+40)cm , 由题意得,154023x x =+, 解得,x=75,则x+40=115,故选C .20.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于()A.5B.453C.3 D.4【答案】A【解析】【分析】【详解】过B作BF⊥OA于F,过D作DE⊥OA于E,过C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=12OA=2.由勾股定理得:5设P(2x,0),根据二次函数的对称性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE.∴BF OF CM AMDE OE DE AE==,x2x2255-,,解得:)52x5BF x CM2-==,.∴5.故选A.。
人教版初中数学图形的相似图文答案

人教版初中数学图形的相似图文答案一、选择题1.如图,O是平行四边形ABCD的对角线交点,E为AB中点,DE交AC于点F,若平行四边形ABCD的面积为8,则DOE的面积是()A.2B.32C.1D.94【答案】C【解析】【分析】由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED和△AOD的高,利用平行线的性质,得出高的关系,进而求解.【详解】解:如图,过A、E两点分别作AN⊥BD、EM⊥BD,垂足分别为M、N,则EM∥AN,∴EM:AN=BE:AB,∵E为AB中点,∴BE=12 AB,∴EM=12 AN,∵平行四边形ABCD的面积为8,∴2×12×AN×BD=8,∴AN×BD=8∴S△OED=12×OD×EM=12×12BD×12AN=18AN×BD=1.故选:C.【点睛】本题考查平行四边形的性质,综合了平行线分线段成比例以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.2.如图,已知////AB CD EF ,:3:5AD AF =,6BC =,CE 的长为( )A .2B .4C .3D .5【答案】B【解析】【分析】 根据平行线分线段成比例定理列出比例式,计算即可.【详解】∵AD :AF=3:5,∴AD :DF=3:2,∵AB ∥CD ∥EF , ∴AD BC DF CE =,即362CE=, 解得,CE=4,故选B .【点睛】 本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.3.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则的值为( )A .1B .C .D .【答案】C【解析】【分析】 由平行于BC 的直线DE 把△ABC 分成面积相等的两部分,可知△ADE 与△ABC 相似,且面积比为,则相似比为,的值为.【详解】∵DE∥BC,∴△ADE∽△ABC,∵DE把△ABC分成面积相等的两部分,∴S△ADE=S四边形DBCE,∴=,∴==,故选:C.【点睛】本题考查了相似三角形的判定,相似三角形的性质,面积比等于相似比的平方的逆用等.4.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6)B.(9,6)C.19,62⎛⎫⎪⎝⎭D.(10,6)【答案】B【解析】【分析】直接利用位似图形的性质结合相似比得出EF的长,进而得出△OBC∽△OEF,进而得出EO 的长,即可得出答案.【详解】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴13 BC OBEF EO==,∵BC=2,∴EF=BE=6,∵BC∥EF,∴△OBC∽△OEF,∴136BO BO =+, 解得:OB =3,∴EO =9,∴F 点坐标为:(9,6),故选:B .【点睛】此题主要考查了位似变换以及相似三角形的判定与性质,正确得出OB 的长是解题关键.5.如图,点E 是ABCD Y 的边AD 上一点,2DE AE =,连接BE ,交AC 边于点F ,下列结论中错误的是( )A .3BC AE =B .4AC AF = C .3BF EF =D .2BC DE =【答案】D【解析】 【分析】 由平行四边形的性质和相似三角形的性质分别判断即可.【详解】解:∵在ABCD Y 中,//AD BC ,AD BC =,∴AEF CBF V :V ,∴AE AF EF CB CF BF==, ∵2DE AE = ∴332BC DE AE ==,选项A 正确,选项D 错误, ∴133AF AE AE CF CB AE ===,即:3CF AF =, ∴4AC AF =,∴选项B 正确,∴133EF AE AE BF CB AE ===,即:3BF EF =, ∴选项C 正确,故选:D .【点睛】此题主要考查了平行四边形的性质以及相似三角形的判定与性质,能熟练利用相似三角形对应边成比例是解题关键.6.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q , OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q , OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q ,2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.7.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上.已知纸板的两条直角边40DE cm =,20EF cm =,测得边DF 离地面的高度 1.5AC m =,8CD m =,则树高AB 是( )A .4米B .4.5米C .5米D .5.5米【答案】D【解析】【分析】 利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明的身高即可求得树高AB.【详解】解:∵∠DEF=∠BCD-90° ∠D=∠D∴△ADEF ∽△DCB∴BC DC EF DE= ∴DE=40cm=0.4m ,EF-20cm=0.2m ,AC-1.5m ,CD=8m ∴80.20.4BC =解得:BC=4 ∴AB=AC+BC=1.5+4=5.5米故答案为:5.5.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。
初中数学图形的相似难题汇编附答案

初中数学图形的相似难题汇编附答案一、选择题1.两个相似多边形的面积比是9∶16,其中小多边形的周长为36 cm,则较大多边形的周长为 )A.48 cm B.54 cm C.56 cm D.64 cm【答案】A【解析】试题分析:根据相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方计算即可.解:两个相似多边形的面积比是9:16,面积比是周长比的平方,则大多边形与小多边形的相似比是4:3.相似多边形周长的比等于相似比,因而设大多边形的周长为x,则有=,解得:x=48.大多边形的周长为48cm.故选A.考点:相似多边形的性质.2.如果两个相似正五边形的边长比为1:10,则它们的面积比为()A.1:2 B.1:5 C.1:100 D.1:10【答案】C【解析】根据相似多边形的面积比等于相似比的平方,由两个相似正五边形的相似比是1:10,可知它们的面积为1:100.故选:C.点睛:此题主要考查了相似三角形的性质:相似三角形的面积比等于相似比的平方.3.如图所示,在△ABC中,∠C=90°,AB=8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F.若CF=x,tanA=y,则x与y之间满足()A .2244x y +=B .2244x y -=C .2288x y -=D .2288x y+= 【答案】A【解析】【分析】由直角三角形斜边上的中线性质得出CD =12AB =AD =4,由等腰三角形的性质得出∠A =∠ACD ,得出tan ∠ACD =GE CE=tan A =y ,证明△CEG ∽△FEC ,得出GE CE CE FE =,得出y =2FE ,求出y 2=24FE ,得出24y=FE 2,再由勾股定理得出FE 2=CF 2﹣CE 2=x 2﹣4,即可得出答案.【详解】解:如图所示:∵在△ABC 中,∠C =90°,AB =8,CD 是AB 边上的中线,∴CD =12AB =AD =4, ∴∠A =∠ACD ,∵EF 垂直平分CD , ∴CE =12CD =2,∠CEF =∠CEG =90°, ∴tan ∠ACD =GE CE =tanA =y , ∵∠ACD+∠FCE =∠CFE+∠FCE =90°,∴∠ACD =∠FCE ,∴△CEG ∽△FEC , ∴GE CE =CE FE, ∴y =2FE, ∴y 2=24FE , ∴24y=FE 2, ∵FE 2=CF 2﹣CE 2=x 2﹣4, ∴24y=x 2﹣4, ∴24y+4=x 2,故选:A.【点睛】本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键.4.如图,正方形OABC的边长为6,D为AB中点,OB交CD于点Q,Q是y=kx上一点,k的值是()A.4 B.8 C.16 D.24【答案】C【解析】【分析】延长根据相似三角形得到:1:2BQ OQ=,再过点Q作垂线,利用相似三角形的性质求出QF、OF,进而确定点Q的坐标,确定k的值.【详解】解:过点Q作QF OA⊥,垂足为F,OABCQ是正方形,6OA AB BC OC∴====,90ABC OAB DAE∠=∠=︒=∠,DQ是AB的中点,12BD AB ∴=, //BD OC Q , OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.5.如图,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A 'B 'C ,使得△A 'B 'C 的边长是△ABC 的边长的2倍.设点B 的横坐标是﹣3,则点B '的横坐标是( )A .2B .3C .4D .5【答案】B【解析】【分析】 作BD ⊥x 轴于D ,B′E ⊥x 轴于E ,根据位似图形的性质得到B′C =2BC ,再利用相似三角形的判定和性质计算即可.【详解】解:作BD ⊥x 轴于D ,B′E ⊥x 轴于E ,则BD∥B′E,由题意得CD=2,B′C=2BC,∵BD∥B′E,∴△BDC∽△B′EC,∴1'2 CD BCCE B C==,∴CE=4,则OE=CE−OC=3,∴点B'的横坐标是3,故选:B.【点睛】本题考查的是位似变换、相似三角形的判定和性质,掌握位似变换的概念是解题的关键.6.如图,正方形ABCD中,E、F分别为AB、BC的中点,AF与DE相交于点O,则AO DO=().A.13B25C.23D.12【答案】D【解析】【分析】由已知条件易证△ADE≌△BAF,从而进一步得△AOD∽△EAD.运用相似三角形的性质即可求解.【详解】∵四边形ABCD是正方形∴AE=BF,AD=AB,∠EAD=∠B=90︒∴△ADE≌△BAF∴∠ADE=∠BAF,∠AED=∠BFA∵∠DAO+∠FAB=90︒,∠FAB+∠BFA=90︒,∴∠DAO=∠BFA ,∴∠DAO=∠AED∴△AOD ∽△EAD ∴12AO AE DO AD == 故选:D 【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质.7.如图,在矩形ABCD 中,1AB =,在BC 上取一点E ,沿AE 将ABE ∆向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD 的长为( )A .2B 3C 15±D 15+ 【答案】D【解析】【分析】 可设AD=x ,由四边形EFDC 与矩形ABCD 相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】解:∵1AB =, 设AD=x ,则FD=x-1,FE=1,∵四边形EFDC 与矩形ABCD 相似, ∴EF AD DF AB=,即111x x =-, 解得:1152x +=,2152x -=(不合题意,舍去) 经检验15x +=,是原方程的解. ∴15AD +=. 故选:D .【点睛】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC 与矩形ABCD 相似得到比例式.8.如图,O是平行四边形ABCD的对角线交点,E为AB中点,DE交AC于点F,若平行四边形ABCD的面积为8,则DOE的面积是()A.2B.32C.1D.94【答案】C【解析】【分析】由平行四边形的面积,找到三角形底边和高与平行四边形底边和高的关系,利用面积公式以及线段间的关系求解.分别作△OED和△AOD的高,利用平行线的性质,得出高的关系,进而求解.【详解】解:如图,过A、E两点分别作AN⊥BD、EM⊥BD,垂足分别为M、N,则EM∥AN,∴EM:AN=BE:AB,∵E为AB中点,∴BE=12 AB,∴EM=12 AN,∵平行四边形ABCD的面积为8,∴2×12×AN×BD=8,∴AN×BD=8∴S△OED=12×OD×EM=12×12BD×12AN=18AN×BD=1.故选:C.【点睛】本题考查平行四边形的性质,综合了平行线分线段成比例以及面积公式.已知一个三角形的面积求另一个三角形的面积有以下几种做法:①面积比是边长比的平方比;②分别找到底和高的比.9.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A .2∶3B .4∶9C .2∶3 D .3∶2 【答案】B【解析】【分析】根据两相似三角形的面积比等于相似比的平方,所以224()39ABC DEF S S ==V V . 【详解】因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,所以S △ABC :S △DEF =(23)2=49,故选B . 【点睛】本题考查了相似三角形的性质,解题的关键是掌握:两个相似三角形面积比等于相似比的平方.10.如图,点E 为ABC ∆的内心,过点E 作MN BC P 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A .3.5B .4C .5D .5.5【答案】B【解析】【分析】 连接EB 、EC ,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME ,同理可得NC=NE ,接着证明△AMN ∽△ABC ,所以767MN BM -=,则BM=7-76MN①,同理可得CN=5-56MN②,把两式相加得到MN 的方程,然后解方程即可.【详解】连接EB 、EC ,如图,∵点E 为△ABC 的内心,∴EB 平分∠ABC ,EC 平分∠ACB ,∴∠1=∠2,∵MN∥BC,∴∠2=∠3,∴∠1=∠3,∴BM=ME,同理可得NC=NE,∵MN∥BC,∴△AMN∽△ABC,∴MN AMBC AB=,即767MN BM-=,则BM=7-76MN①,同理可得CN=5-56MN②,①+②得MN=12-2MN,∴MN=4.故选:B.【点睛】此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.11.平面直角坐标系xOy中,点P(a,b)经过某种变换后得到的对应点为P′(12a+1,12b﹣1).已知A,B,C是不共线的三个点,它们经过这种变换后,得到的对应点分别为A′,B′,C′.若△ABC的面积为S1,△A′B′C′的面积为S2,则用等式表示S1与S2的关系为()A.S112=S2B.S114=S2C.S1=2S2D.S1=4S2【答案】D【解析】【分析】先根据点P及其对应点判断出变换的类型,再依据其性质可得答案.【详解】由点P(a,b)经过变换后得到的对应点为P′(12a+1,12b﹣1)知,此变换是以点(2,﹣2)为中心、2:1的位似变换,则△ABC的面积与△A′B′C′的面积比为4:1,∴S1=4S2,故选:D.【点睛】本题主要考查几何变换类型,解题的关键是根据对应点的坐标判断出其几何变换类型.12.如图,将图形用放大镜放大,应该属于( ).A.平移变换B.相似变换C.旋转变换D.对称变换【答案】B【解析】【分析】根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B.【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.13.如图,点E是矩形ABCD的边AD的中点,且BE⊥AC于点F,则下列结论中错误的是()A.AF=12 CFB.∠DCF=∠DFCC.图中与△AEF相似的三角形共有5个D.tan∠CAD3【答案】D【解析】【分析】由AE=12AD=12BC ,又AD ∥BC ,所以12AE AF BC FC ==,故A 正确,不符合题意; 过D 作DM ∥BE 交AC 于N ,得到四边形BMDE 是平行四边形,求出BM=DE=12BC ,得到CN=NF ,根据线段的垂直平分线的性质可得结论,故B 正确,不符合题意;根据相似三角形的判定即可求解,故C 正确,不符合题意;由△BAE ∽△ADC ,得到CD 与AD 的大小关系,根据正切函数可求tan ∠CAD 的值,故D 错误,符合题意.【详解】解:A 、∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE BC =AF FC, ∵AE =12AD =12BC , ∴AF FC =12,故A 正确,不符合题意; B 、过D 作DM ∥BE 交AC 于N ,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC , ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DF =DC ,∴∠DCF =∠DFC ,故B 正确,不符合题意;C 、图中与△AEF 相似的三角形有△ACD ,△BAF ,△CBF ,△CAB ,△ABE 共有5个,故C 正确,不符合题意.D 、设AD =a ,AB =b 由△BAE ∽△ADC ,有b a =2a .∵tan ∠CAD =CD AD =b a =2,故D 错误,符合题意. 故选:D .【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.14.(2016山西省)宽与长的比是51-(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD 、BC 的中点E 、F ,连接EF :以点F 为圆心,以FD 为半径画弧,交BC 的延长线于点G ;作GH ⊥AD ,交AD 的延长线于点H ,则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【答案】D【解析】【分析】 先根据正方形的性质以及勾股定理,求得DF 的长,再根据DF=GF 求得CG 的长,最后根据CG 与CD 的比值为黄金比,判断矩形DCGH 为黄金矩形.【详解】 解:设正方形的边长为2,则CD=2,CF=1在直角三角形DCF 中,22125DF +=5FG ∴=51CG ∴=512CG CD ∴= ∴矩形DCGH 为黄金矩形故选:D .【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是512的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.15.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△AB1C1,当点C1、B1、C三点共线时,旋转角为α,连接BB1,交AC于点D.下列结论:①△AC1C 为等腰三角形;②△AB1D∽△BCD;③α=75°;④CA=CB1,其中正确的是()A.①③④B.①②④C.②③④D.①②③④【答案】B【解析】【分析】将△ABC绕点A顺时针旋转得到△AB1C1,得到△ABC≌△AB1C1,根据全等三角形的性质得到AC1=AC,于是得到△AC1C为等腰三角形;故①正确;根据等腰三角形的性质得到∠C1=∠ACC1=30°,由三角形的内角和得到∠C1AC=120°,得到∠B1AB=120°,根据等腰三角形的性质得到∠AB1B=30°=∠ACB,于是得到△AB1D∽△BCD;故②正确;由旋转角α=120°,故③错误;根据旋转的性质得到∠C1AB1=∠BAC=45°,推出∠B1AC=∠AB1C,于是得到CA=CB1;故④正确.【详解】解:∵将△ABC绕点A顺时针旋转得到△AB1C1,∴△ABC≌△AB1C1,∴AC1=AC,∴△AC1C为等腰三角形;故①正确;∴AC1=AC,∴∠C1=∠ACC1=30°,∴∠C1AC=120°,∴∠B1AB=120°,∵AB1=AB,∴∠AB1B=30°=∠ACB,∵∠ADB1=∠BDC,∴△AB1D∽△BCD;故②正确;∵旋转角为α,∴α=120°,故③错误;∵∠C1AB1=∠BAC=45°,∴∠B1AC=75°,∵∠AB1C1=∠BAC=105°,∴∠AB 1C =75°,∴∠B 1AC =∠AB 1C ,∴CA =CB 1;故④正确.故选:B .【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定和性质,旋转的性质,正确的识别图形是解题的关键.16.如图,网格中的两个三角形是位似图形,它们的位似中心是( )A .点AB .点BC .点CD .点D【答案】D【解析】【分析】 利用对应点的连线都经过同一点进行判断.【详解】如图,位似中心为点D .故选D .【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行.17.如图,顶角为36o 的等腰三角形,其底边与腰之比等k ,这样的三角形称为黄金三角形,已知腰AB=1,ABC ∆为第一个黄金三角形,BCD ∆为第二个黄金三角形,CDE ∆为第三个黄金三角形以此类推,第2020个黄金三角形的周长()A .2018kB .2019kC .20182k k + D .2019(2)k k +【答案】D【解析】【分析】根据相似三角形对应角相等,对应边成比例,求出前几个三角形的周长,进而找出规律:第n 个黄金三角形的周长为k n-1(2+k ),从而得出答案.【详解】解:∵AB=AC=1,∴△ABC 的周长为2+k ;△BCD 的周长为k+k+k 2=k (2+k );△CDE 的周长为k 2+k 2+k 3=k 2(2+k );依此类推,第2020个黄金三角形的周长为k 2019(2+k ).故选:D .【点睛】此题考查黄金分割,相似三角形的性质,找出各个三角形周长之间的关系,得出规律是解题的关键.18.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且 1.5AB =,2BC =, 1.8DE =,则EF =( )A .4.4B .4C .3.4D .2.4【答案】D【解析】【分析】 根据平行线等分线段定理列出比例式,然后代入求解即可.【详解】解:∵////a b c∴AB DEBC EF=即1.5 1.82EF=解得:EF=2.4故答案为D.【点睛】本题主要考查的是平行线分线段成比例定理,利用定理正确列出比例式是解答本题的关键.19.如图,点D是△ABC的边AB上的一点,过点D作BC的平行线交AC于点E,连接BE,过点D作BE的平行线交AC于点F,则下列结论错误的是()A.AD AEBD EC=B.AF DFAE BE=C.AE AFEC FE=D.DE AFBC FE=【答案】D【解析】【分析】由平行线分线段成比例和相似三角形的性质进行判断.【详解】∵DE//BC,∴AD AEBD EC=,故A正确;∵DF//BE,∴△ADF∽△ABF, ∴AF DFAE BE=,故B正确;∵DF//BE,∴AD AFBD FE=,∵AD AEBD EC=,∴AE AFEC FE=,故C正确;∵DE//BC,∴△ADE∽△ABC,∴DE ADBC AB=,∵DF//BE,∴AF ADAE AB=,∴DE AFBC AE=,故D错误.故选D.【点睛】本题考查平行线分线段成比例性质,相似三角形的性质,由平行线得出比例关系是关键.20.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC -CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长是()A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+, 解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==.故选B.。
人教版初中数学图形的相似分类汇编及答案解析

人教版初中数学图形的相似分类汇编及答案解析一、选择题1.如图,O 是AC 的中点,将面积为216cm 的菱形ABCD 沿AC 方向平移AO 长度得到菱形OB C D ''',则图中阴影部分的面积是( )A .28cmB .26cmC .24cmD .22cm【答案】C【解析】【分析】 根据题意得,▱ABCD ∽▱OECF ,且AO=OC=12AC ,故四边形OECF 的面积是▱ABCD 面积的14【详解】解:如图,由平移的性质得,▱ABCD ∽▱OECF ,且AO=OC=12AC 故四边形OECF 的面积是▱ABCD 面积14即图中阴影部分的面积为4cm 2.故选:C【点睛】 此题主要考查了相似多边形的性质以及菱形的性质和平移性质的综合运用.关键是 应用相似多边形的性质解答问题.2.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A .2∶3B .4∶9C 23D .3∶2【答案】B【解析】【分析】根据两相似三角形的面积比等于相似比的平方,所以224()39ABC DEF S S ==V V . 【详解】 因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,所以S △ABC :S △DEF =(23)2=49,故选B . 【点睛】本题考查了相似三角形的性质,解题的关键是掌握:两个相似三角形面积比等于相似比的平方.3.如图,在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,AC 分别交BE ,DF 于G ,H ,试判断下列结论:①△ABE ≌△CDF ;②AG =GH =HC ;③2EG =BG ;④S △ABG :S 四边形GHDE =2:3,其中正确的结论是( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据SAS ,即可证明①△ABE ≌△CDF ;在平行四边形ABCD 中,E ,F 分别是边AD ,BC 的中点,根据有一组对边平行且相等四边形是平行四边形,即可证明四边形BFDE 是平行四边形,由AD ∥BC ,即可证明△AGE ∽△CGB ,△CHF ∽△AHD ,然后根据相似三角形的对应边成比例,证得AG ∶CG =EG ∶BG =1∶2,CH ∶AH =1∶2,即可证得②AG =GH =HC ,③2EG =BG ;由S △ABG =2S △AEG ,S 四边形GHD E =3S △AEG ,可得结论④S △ABG :S 四边形GHDE =2:3.【详解】解:在平行四边形ABCD 中,AB =CD ,∠BAE =∠DCF ,BC =DA ,∵E ,F 分别是边AD ,BC 的中点,∴AE =CF ,∴△ABE ≌△CDF ,故①正确;∵AD ∥BC ,∴△AGE ∽△CGB ,△CHF ∽△AHD ,∴AG ∶CG =EG ∶BG =AE ∶CB ,CH ∶AH =CF ∶AD ,∵E ,F 分别是边AD ,BC 的中点,∴AE =12AD ,CF =12BC ,∴AE ∶CB =1∶2,CF ∶AD =1∶2,∴EG ∶BG =AG ∶CG =1∶2,CH ∶AH =1∶2∴AG =CH =13AC ,2EG =BG ,故③正确; ∴AG =GH =HC ,故②正确;∵S △ABG =2S △AEG ,S 四边形GHD E =3S △AEG ,∴S △ABG :S 四边形GHDE =2:3,故④正确,故选:D【点睛】 本题主要考查全等三角形的判定与性质、相似三角形的判定与性质、平行四边形的判定与性质,熟练掌握这些知识是解本题的关键.4.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OB OA =,根据三角函数的定义即可得到结论.【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x =-<的图象上, ∴S △BDO =52,S △AOC =12, ∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC ,∴△BDO ∽△OCA ,∴251522BOD OAC S OB S OA ⎛⎫==÷= ⎪⎝⎭△△, ∴5OB OA=, ∴tan ∠BAO=5OB OA =. 故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.5.如图,在矩形ABCD 中,1AB =,在BC 上取一点E ,沿AE 将ABE ∆向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD 的长为( )A .2B 3C 15±D 15+ 【答案】D【解析】【分析】 可设AD=x ,由四边形EFDC 与矩形ABCD 相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】解:∵1AB =,设AD=x ,则FD=x-1,FE=1,∵四边形EFDC 与矩形ABCD 相似, ∴EF AD DF AB =,即111x x =-, 解得:1152x +=,2152x -=(不合题意,舍去) 经检验152x +=,是原方程的解. ∴15AD +=. 故选:D .【点睛】本题考查了翻折变换(折叠问题),相似多边形的性质,本题的关键是根据四边形EFDC 与矩形ABCD 相似得到比例式.6.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于点D ,2CD =,1BD =,则AD 的长是( )A .1.B 2C .2D .4【答案】D【解析】【分析】 由在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,根据同角的余角相等,可得∠ACD=∠B ,又由∠CDB=∠ACB=90°,可证得△ACD ∽△CBD ,然后利用相似三角形的对应边成比例,即可求得答案.【详解】∵在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B ,∴△ACD ∽△CBD , ∴=AD CD CD BD, ∵CD=2,BD=1, ∴2=21AD , ∴AD=4.故选D.【点睛】此题考查相似三角形的判定与性质,解题关键在于证得△ACD ∽△CBD.7.如图,边长为4的等边ABC V 中,D 、E 分别为AB ,AC 的中点,则ADE V 的面积是( )A 3B 3C 33D .23【答案】A【解析】【分析】 由已知可得DE 是△ABC 的中位线,由此可得△ADE 和△ABC 相似,且相似比为1:2,再根据相似三角形的面积比等于相似比的平方,可求出△ABC 的面积.【详解】Q 等边ABC V 的边长为4, 2ABC 3S 4434∴==V Q 点D ,E 分别是ABC V 的边AB ,AC 的中点,DE ∴是ABC V的中位线, DE //BC ∴,1DE BC 2=,1AD AB 2=,1AE AC 2=, 即AD AE DE 1AB AC BC 2===, ADE ∴V ∽ABC V ,相似比为12, 故ADE S V :ABC S 1=V :4,即ADE ABC 11S S 43344==⨯=V V , 故选A .【点睛】 本题考查了等边三角形的性质、相似三角形的判定与性质、三角形中位线定理,解题的关键是熟练掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理.8.已知正方形ABCD 的边长为5,E 在BC 边上运动,DE 的中点G ,EG 绕E 顺时针旋转90°得EF ,问CE 为多少时A 、C 、F 在一条直线上( )A .35B .43C .53D .34【答案】C【解析】【分析】首先延长BC ,做FN ⊥BC ,构造直角三角形,利用三角形相似的判定,得出Rt △FNE ∽Rt △ECD ,再利用相似比得出1 2.52NE CD ==,运用正方形性质,得出△CNF 是等腰直角三角形,从而求出CE .【详解】解:过F 作BC 的垂线,交BC 延长线于N 点,∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN , ∴Rt △FNE ∽Rt △ECD ,∵DE 的中点G ,EG 绕E 顺时针旋转90°得EF ,∴两三角形相似比为1:2,∴可以得到CE=2NF ,1 2.52NE CD == ∵AC 平分正方形直角,∴∠NFC=45°,∴△CNF 是等腰直角三角形,∴CN=NF , ∴2255.3323CE NE ==⨯= 故选C .【点睛】此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.9.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为()A.32B.92C.33D.33【答案】A【解析】【分析】【详解】解:∵Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∴△ACD∽△ABC,∴AC:AB=AD:AC,∵AC=3,AB=6,∴AD=32.故选A.考点:相似三角形的判定与性质.10.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)【答案】D【解析】【分析】【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.11.两个相似三角形的对应边分别是15cm和23cm,它们的周长相差40cm,则这两个三角形的周长分别是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm 【答案】C【解析】【分析】根据相似三角形的周长的比等于相似比列出方程,解方程即可.【详解】设小三角形的周长为xcm,则大三角形的周长为(x+40)cm,由题意得,15 4023 xx=+,解得,x=75,则x+40=115,故选C.12.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为()A.9 B.12 C.14 D.18【答案】A【解析】【分析】如图,BC=2m,CE=12m,AB=1.5m,利用题意得∠ACB=∠DCE,则可判断△ACB∽△DCE,然后利用相似比计算出DE的长.【详解】解:如图,BC=2m,CE=12m,AB=1.5m,由题意得∠ACB=∠DCE,∵∠ABC=∠DEC,∴△ACB∽△DCE,∴AB BCDE CE=,即1.5212DE=,∴DE=9.即旗杆的高度为9m.故选A.【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.13.如图,点A,B是双曲线18 yx=图象上的两点,连接AB,线段AB经过点O,点C为双曲线kyx=在第二象限的分支上一点,当ABCV满足AC BC=且:13:24AC AB=时,k的值为().A.2516-B.258-C.254-D.25-【答案】B【解析】【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出2()COFAOES OCS OA∆∆=,因为CA:AB=13:24,AO=OB,推出CA:OA=13:12,推出CO:OA=5:12,可得出2()COFAOES OCS OA∆∆==25144,因为S△AOE=9,可得S△COF=2516,再根据反比例函数的几何意义即可解决问题.【详解】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A 、B 关于原点对称,∴OA =OB ,∵AC =BC ,OA =OB ,∴OC ⊥AB ,∴∠CFO =∠COA =∠AEO =90°,∴∠COF +∠AOE =90°,∠AOE +∠EAO =90°,∴∠COF =∠OAE ,∴△CFO ∽△OEA , ∴2()COF AOE S OC S OA∆∆=, ∵CA :AB =13:24,AO =OB ,∴CA :OA =13:12,∴CO :OA =5:12, ∴2()COF AOE S OC S OA ∆∆==25144, ∵S △AOE =9,∴S △COF =2516, ∴||25216k =, ∵k <0, ∴258k =- 故选:B .【点睛】本题主要考查反比例函数图象上的点的特征、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,根据相似三角形解决问题,属于中考选择题中的压轴题.14.如图,已知ABC ∆和ABD ∆都O e 是的内接三角形,AC 和BD 相交于点E ,则与ADE ∆的相似的三角形是( )A .BCE ∆B .ABC ∆ C .ABD ∆ D .ABE ∆【答案】A【解析】【分析】 根据同弧和等弧所对的圆周角相等, 则AB 弧所对的圆周角BCE BDA ∠=∠,CEB ∠和DEA ∠是对顶角,所以ADE BCE ∆∆∽.【详解】解:BCE BDA ∠=∠Q ,CEB DEA ∠=∠ADE BCE ∴∆∆∽,故选:A .【点睛】考查相似三角形的判定定理: 两角对应相等的两个三角形相似,关键就是牢记同弧所对的圆周角相等.15.如图,三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2∶3,若三角尺的一边长为8 cm ,则这条边在投影中的对应边长为( )A .8 cmB .12 cmC .16 cmD .24 cm【答案】B【解析】试题分析:利用相似比为2:3,可得出其对应边的比值为2:3,进而求出即可.解:∵三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,三角尺的一边长为8cm ,∴设这条边在投影中的对应边长为:x ,则=,解得:x=12.故选B .考点:位似变换.16.如图,将图形用放大镜放大,应该属于( ).A .平移变换B .相似变换C .旋转变换D .对称变换【答案】B【解析】【分析】 根据放大镜成像的特点,结合各变换的特点即可得出答案.【详解】解:根据相似图形的定义知,用放大镜将图形放大,属于图形的形状相同,大小不相同,所以属于相似变换.故选:B .【点睛】本题考查的是相似形的识别,关键要联系图形,根据相似图形的定义得出.17.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处.故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.18.如图,已知△ABC ,D 、E 分别在边AB 、AC 上,下列条件中,不能确定△ADE ∽△ACB 的是( )A .∠AED =∠BB .∠BDE +∠C =180° C .AD •BC =AC •DED .AD •AB =AE •AC【答案】C【解析】【分析】 A 、根据有两组角对应相等的两个三角形相似,进行判断即可;B :根据题意可得到∠ADE=∠C ,根据有两组角对应相等的两个三角形相似,进行判断即可;C 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可;D 、根据两组对应边的比相等且夹角对应相等的两个三角形相似,进行判断即可.【详解】解:A 、由∠AED=∠B ,∠A=∠A ,则可判断△ADE ∽△ACB ;B 、由∠BDE+∠C=180°,∠ADE+∠BDE=180°,得∠ADE=∠C ,∠A=∠A ,则可判断△ADE ∽△ACB ;C 、由AD•BC=AC•DE ,得不能判断△ADE ∽△ACB,必须两组对应边的比相等且夹角对应相等的两个三角形相似.D 、由AD•AB=AE•AC 得,∠A=∠A ,故能确定△ADE ∽△ACB , 故选:C .【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似(注意,一定是夹角); 有两组角对应相等的两个三角形相似.19.如图,已知AB ∥CD ∥EF ,它们依次交直线l 1、l 2于点A 、D 、F 和点B 、C 、E ,如果AD :DF =3:1,BE =10,那么CE 等于( )A .103B .203C .52D .152【答案】C【解析】【分析】 根据平行线分线段成比例定理得到3AD BC DF CE ==,得到BC=3CE ,然后利用BC+CE=BE=10可计算出CE 的长,即可.【详解】解:∵AB ∥CD ∥EF , ∴3AD BC DF CE==, ∴BC=3CE ,∵BC+CE=BE ,∴3CE+CE=10,∴CE=52. 故选C .【点睛】 本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.20.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90°得到ABF ∆,连接EF ,则cos EFC ∠的值是 ( )A 171365B 61365C 71525D .617【答案】A【解析】【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明AEH EMG V :V ,则有13EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF∠=即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则90AHG MGE ∠=∠=︒,∵四边形ABCD 是正方形,∴3,90AD AB ABC C D ==∠=∠=∠=︒ ,∴四边形AHGD,BHEN,ENCG 都是矩形.由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=︒====,90AEH MEG EMG MEG ∴∠+∠=∠+∠=︒ ,AEH EMG ∴∠=∠,AEH EMG ∴V :V ,13EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+在Rt AEH V 中,222AH EH AE +=Q ,222(1)(3)3x x ∴++= , 解得45x =或1x =-(舍去), 125EH BN ∴==,65CG CD DG EN =-== . 1BF DM ==Q 175FN BF BN ∴=+=. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=,17cos 1365FN EFC EF ∴∠==. 故选:A .【点睛】本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.。
人教中考数学 相似综合试题及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.如图,在□ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连结BE、BF。
使它们分别与AO相交于点G、H(1)求EG :BG的值(2)求证:AG=OG(3)设AG =a ,GH =b,HO =c,求a : b : c的值【答案】(1)解:∵四边形ABCD是平行四边形,∴AO= AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴ = = .∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3(2)解:∵GC=3AG(已证),∴AC=4AG,∴AO= AC=2AG,∴GO=AO﹣AG=AG(3)解:∵AE=EF=FD,∴BC=AD=3AE,AF=2AE.∵AD∥BC,∴△AFH∽△CBH,∴ = = = ,∴ = ,即AH= AC.∵AC=4AG,∴a=AG= AC,b=AH﹣AG= AC﹣ AC= AC,c=AO﹣AH= AC﹣ AC= AC,∴a:b:c= :: =5:3:2【解析】【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可证得△AEG∽△CBG,得出对应边成比例,由AE=EF=FD可得BC=3AE,就可证得GB=3EG,即可求出EG:BG的值。
(2)根据相似三角形的性质可得GC=3AG,就可证得AC=4AG,从而可得AO=2AG,即可证得结论。
(3)根据平行可证得三角形相似,再根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到用含AC的代数式分别表示出a、b、c,就可得到a:b:c的值。
2.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.(1)求抛物线的解析式和对称轴;(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;(3)设四边形DECO的面积为s,求s关于t的函数表达式.【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入得:,解得:,∴抛物线的解析式为:,对称轴为:直线x=﹣;(2)解:存在,∵AD=2t,∴DF=AD=2t,∴OF=4﹣4t,∴D(2t﹣4,0),∵直线AC的解析式为:,∴E(2t﹣4,t),∵△EFC为直角三角形,分三种情况讨论:①当∠EFC=90°,则△DEF∽△OFC,∴,即,解得:t= ;②当∠FEC=90°,∴∠AEF=90°,∴△AEF是等腰直角三角形,∴DE= AF,即t=2t,∴t=0,(舍去),③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或;(3)解:∵B(1,0),C(0,2),∴直线BC的解析式为:y=﹣2x+2,当D在y轴的左侧时,S= (DE+OC)•OD= (t+2)•(4﹣2t)=﹣t2+4 (0<t<2);当D在y轴的右侧时,如图2,∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)•OD= (﹣8t+10+2)•(4t﹣4),即(2<t<).综上所述:【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。
人教中考数学 相似 综合题及详细答案

一、相似真题与模拟题分类汇编(难题易错题)1.已知:如图一,抛物线与x轴正半轴交于A、B两点,与y轴交于点C,直线经过A、C两点,且.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,如图;当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设,当t为何值时,s有最小值,并求出最小值.(3)在的条件下,是否存在t的值,使以P、B、D为顶点的三角形与相似;若存在,求t的值;若不存在,请说明理由.【答案】(1)解:由直线:知:、;∵,∴,即.设抛物线的解析式为:,代入,得:,解得∴抛物线的解析式:(2)解:在中,,,则;∵,∴;而;∴,∴当时,s有最小值,且最小值为1(3)解:在中,,,则;在中,,,则;∴;以P、B、D为顶点的三角形与相似,已知,则有两种情况:,解得;,解得;综上,当或时,以P、B、D为顶点的三角形与相似【解析】【分析】(1)由直线与坐标轴相交易求得点A、C的坐标,用待定系数法即可求得抛物线的解析式;(2)由题意可将ED、OP用含t的代数式表示出来,并代入题目中的s与OP、DE的关系式整理可得s=(0<t<2),因为分子是定值1,所以分母越大,则分式的值越小,则当分母最大时,分式的值越小,即t=1时,s有最小值,且最小值为1;(3)解直角三角形可得BC和CD、BD的值,根据题意以P、B、D为顶点的三角形与△ABC相似所得的比例式有两种情况:,,将这些线段代入比例式即可求解。
2.(1)问题发现:如图1,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为________;(2)深入探究:如图2,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图3,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN= ,试求EF的长.【答案】(1)NC∥AB(2)解:∠ABC=∠ACN,理由如下:∵ =1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC= (180°﹣∠ABC),∵AM=MN∴∠MAN= (180°﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN(3)解:如图3,连接AB,AN,∵四边形ADBC,AMEF为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC 即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴ =cos45°= ,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM= ,∴EF=AM=2 .【解析】【解答】解:(1)NC∥AB,理由如下:∵△ABC与△MN是等边三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60°,∴∠BAM=∠CAN,在△ABM与△ACN中,,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN∥AB;【分析】(1)由题意用边角边易得△ABM≌△ACN,则可得∠B=∠ACN=60°,所以∠BCN+∠B=∠BCA+∠ACN+∠B=180°,根据平行线的判定即可求解;(2)由题意易得△ABC~△AMN,可得比例式,由三角形内角和定理易得∠BAM=∠CAN,根据相似三角形的判定可得△ABM~△ACN,由相似三角形的性质即可求解;(3)要求EF的值,只须求得CM的值,然后解直角三角形AMC即可求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学图形的相似真题汇编及答案解析一、选择题1.如图,矩形ABCD 中,AB =8,AD =4,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连接CF ,则△CEF 面积的最小值是( )A .16B .15C .12D .11【答案】B【解析】【分析】 过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE== G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+---2116,4xx =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.2.如图,AB 为O e 的直径,C 为O e 上一点,弦AD 平分BAC ∠,交弦BC 于点E ,4CD =,2DE =,则AE 的长为( )A .2B .4C .6D .8【答案】C【解析】【分析】 根据角平分线的定义得到∠CAD=∠BAD ,根据圆周角定理得到∠DCB=∠BAD ,证明△DCE ∽△DAC ,根据相似三角形的性质求出AD ,结合图形计算,得到答案.【详解】解:∵AD 平分∠BAC ,∴∠CAD=∠BAD ,由圆周角定理得,∠DCB=∠BAD ,∴∠CAD=∠DCB ,又∠D=∠D ,∴△DCE ∽△DAC ,∴DE DC DC DA =,即244AD=, 解得,AD=8,∴AE=AD -DE=8-2=6,故选:C .【点睛】本题考查的是相似三角形的判定和性质、圆周角定理,掌握相似三角形的判定定理和性质定理是解题的关键.3.若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为( )A .2∶3B .4∶9C .2∶3 D .3∶2 【答案】B【解析】【分析】根据两相似三角形的面积比等于相似比的平方,所以224()39ABC DEF S S ==V V . 【详解】因为△ABC ∽△DEF ,所以△ABC 与△DEF 的面积比等于相似比的平方,所以S △ABC :S △DEF =(23)2=49,故选B . 【点睛】本题考查了相似三角形的性质,解题的关键是掌握:两个相似三角形面积比等于相似比的平方.4.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:1【答案】B【解析】【分析】 可证明△DFE ∽△BFA ,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD 为平行四边形,∴DC ∥AB ,∴△DFE ∽△BFA ,∵DE :EC=3:1,∴DE :DC=3:4,∴DE :AB=3:4,∴S△DFE:S△BFA=9:16.故选B.5.如图,在△ABC中,点D是边AB上的一点,∠ADC=∠ACB,AD=2,BD=6,则边AC 的长为()A.2 B.4 C.6 D.8【答案】B【解析】【分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【点睛】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.6.如图,□ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD =21:7;④FB2=OF•DF.其中正确的是()A.①②④B.①③④C.②③④D.①③【答案】B【解析】【分析】①正确.只要证明EC=EA=BC,推出∠ACB=90°,再利用三角形中位线定理即可判断.②错误.想办法证明BF=2OF,推出S△BOC=3S△OCF即可判断.③正确.设BC=BE=EC=a ,求出AC ,BD 即可判断.④正确.求出BF ,OF ,DF (用a 表示),通过计算证明即可.【详解】解:∵四边形ABCD 是平行四边形,∴CD ∥AB ,OD=OB ,OA=OC ,∴∠DCB+∠ABC=180°,∵∠ABC=60°,∴∠DCB=120°,∵EC 平分∠DCB ,∴∠ECB=12∠DCB=60°, ∴∠EBC=∠BCE=∠CEB=60°,∴△ECB 是等边三角形,∴EB=BC ,∵AB=2BC ,∴EA=EB=EC ,∴∠ACB=90°,∵OA=OC ,EA=EB ,∴OE ∥BC ,∴∠AOE=∠ACB=90°,∴EO ⊥AC ,故①正确,∵OE ∥BC ,∴△OEF ∽△BCF ,∴12OE OF BC FB == , ∴OF=13OB , ∴S △AOD =S △BOC =3S △OCF ,故②错误, 设BC=BE=EC=a ,则AB=2a ,3,223(72)a a +, ∴7a , ∴AC :3a 7217,故③正确,∵OF=13OB=76a ,∴BF=73a,∴BF2=79a2,OF•DF=7a•7779a a⎛⎫+=⎪⎪⎝⎭a2,∴BF2=OF•DF,故④正确,故选:B.【点睛】此题考查相似三角形的判定和性质,平行四边形的性质,角平分线的定义,解直角三角形,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.7.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边40DE cm=,20EF cm=,测得边DF离地面的高度 1.5AC m=,8CD m=,则树高AB是()A.4米B.4.5米C.5米D.5.5米【答案】D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明的身高即可求得树高AB.【详解】解:∵∠DEF=∠BCD-90°∠D=∠D∴△ADEF∽△DCB∴BC DC EF DE=∴DE=40cm=0.4m,EF-20cm=0.2m,AC-1.5m,CD=8m∴80.20.4BC=解得:BC=4∴AB=AC+BC=1.5+4=5.5米故答案为:5.5.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型。
8.如图所示,Rt AOB ∆中,90AOB ∠=︒ ,顶点,A B 分别在反比例函数()10y x x =>与()50y x x=-<的图象器上,则tan BAO ∠的值为( )A 5B 5C 25D 10【答案】B【解析】【分析】过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D ,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S △BDO =52,S △AOC =12,根据相似三角形的性质得到=5OB OA =,根据三角函数的定义即可得到结论. 【详解】解:过A 作AC ⊥x 轴,过B 作BD ⊥x 轴于D , 则∠BDO=∠ACO=90°,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x =-<的图象上, ∴S △BDO =52,S △AOC =12, ∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC ,∴△BDO ∽△OCA , ∴251522BOD OAC S OB S OA ⎛⎫==÷= ⎪⎝⎭△△, ∴5OB OA=∴tan ∠BAO=5OB OA . 故选B.【点睛】本题考查了反比例函数的性质以及直角三角形的性质,三角形相似的判定和性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.9.如图,在四边形ABCD 中,BD 平分∠ABC ,∠BAD=∠BDC=90°,E 为BC 的中点,AE 与BD 相交于点F ,若BC=4,∠CBD=30°,则DF 的长为( )A .235B .233C .334D .435【答案】D【解析】【分析】先利用含30度角的直角三角形的性质求出BD ,再利用直角三角形的性质求出DE=BE=2,即:∠BDE=∠ABD ,进而判断出DE ∥AB ,再求出AB=3,即可得出结论.【详解】如图,在Rt △BDC 中,BC=4,∠DBC=30°,∴3连接DE ,∵∠BDC=90°,点D 是BC 中点,∴DE=BE=CE=12BC=2,∵∠DCB=30°,∴∠BDE=∠DBC=30°,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠BDE,∴DE∥AB,∴△DEF∽△BAF,∴DF DE BF AB=,在Rt△ABD中,∠ABD=30°,,∴AB=3,∴23 DFBF=,∴25 DFBD=,∴DF=2255BD=⨯=故选D.【点睛】此题主要考查了含30度角的直角三角形的性质,相似三角形的判定和性质,角平分线的定义,判断出DE∥是解本题的关键.10.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A B C.2D【答案】A【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE=2 AD,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQAQ=BQAC=ADAE=2AEAE=2.故选:A.【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.11.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH长为()A.1 B.1.2 C.2 D.2.5【答案】B【解析】【分析】由AB∥GH∥CD可得:△CGH∽△CAB、△BGH∽△BDC,进而得:GH CH AB BC、GH BH CD BC =,然后两式相加即可. 【详解】 解:∵AB ∥GH ,∴△CGH ∽△CAB ,∴GH CH AB BC =,即2GH CH BC =①, ∵CD ∥GH ,∴△BGH ∽△BDC ,∴GH BH CD BC =,即3GH BH BC =②, ①+②,得:123GH GH CH BH BC BC +=+=,解得:6 1.25GH ==. 故选:B .【点睛】本题考查了相似三角形的判定和性质,属于基本题型,熟练掌握相似三角形的判定和性质是解题的关键.12.如图Rt ABC V 中,90ABC ∠=︒,4AB =,3BC =,D 为BC 上一动点,DE BC ⊥,当BD CE =时,BE 的长为( ).A .52B .125C .5158D .3418【答案】D【解析】【分析】利用90ABC ∠=︒,DE BC ⊥得到相似三角形,利用相似三角形的性质求解,,BD DE 再利用勾股定理计算即可.【详解】解:90,ABC ∠=︒Q DE BC ⊥,//,DE BA ∴,CED CAB ∴∆∆:,CE CD ED CA CB AB∴== 90,4,3,ABC AB BC ∠=︒==Q 5,AC ∴=设,BD x = Q BD CE =,,3,BD CE x CD x ∴===- 3,534x x ED -∴== 3155,x x ∴=-15,8x ∴= 158,54ED ∴= 3,2ED ∴= Q DE BC ⊥,2222153341()().828BE DB DE ∴=+=+=故选D .【点睛】本题考查的是三角形相似的判定与性质,勾股定理的计算求解,掌握相关知识点是解题关键.13.矩形ABCO 如图摆放,点B 在y 轴上,点C 在反比例函数y k x=(x >0)上,OA =2,AB =4,则k 的值为( )A .4B .6C .325D .425【答案】C【解析】【分析】根据矩形的性质得到∠A=∠AOC=90°,OC=AB,根据勾股定理得到OB22OA AB=+=25,过C作CD⊥x轴于D,根据相似三角形的性质得到CD855=,OD455=,求得C (854555,)于是得到结论.【详解】解:∵四边形ABCO是矩形,∴∠A=∠AOC=90°,OC=AB,∵OA=2,AB=4,∴过C作CD⊥x轴于D,∴∠CDO=∠A=90°,∠COD+∠COB=∠COB+∠AOB=90°,∴∠COD=∠AOB,∴△AOB∽△DOC,∴OB AB OA OC CD OD==,∴2542CD OD==,∴CD85=,OD45=,∴C(45,85),∴k325 =,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,矩形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.14.已知正方形ABCD的边长为5,E在BC边上运动,DE的中点G,EG绕E顺时针旋转90°得EF,问CE为多少时A、C、F在一条直线上()A .35B .43C .53D .34【答案】C【解析】【分析】首先延长BC ,做FN ⊥BC ,构造直角三角形,利用三角形相似的判定,得出Rt △FNE ∽Rt △ECD ,再利用相似比得出1 2.52NE CD ==,运用正方形性质,得出△CNF 是等腰直角三角形,从而求出CE .【详解】解:过F 作BC 的垂线,交BC 延长线于N 点,∵∠DCE=∠ENF=90°,∠DEC+∠NEF=90°,∠NEF+∠EFN=90°,∴∠DEC=∠EFN ,∴Rt △FNE ∽Rt △ECD ,∵DE 的中点G ,EG 绕E 顺时针旋转90°得EF ,∴两三角形相似比为1:2,∴可以得到CE=2NF ,1 2.52NE CD == ∵AC 平分正方形直角,∴∠NFC=45°,∴△CNF 是等腰直角三角形,∴CN=NF , ∴2255.3323CE NE ==⨯= 故选C .【点睛】 此题主要考查了旋转的性质与正方形的性质以及相似三角形的判定等知识,求线段的长度经常运用相似三角形的知识解决,同学们应学会这种方法.15.如图,在正方形ABCD 中,3AB =,点M 在CD 的边上,且1DM =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90°得到ABF ∆,连接EF ,则cos EFC ∠的值是 ( )A 171365B 61365C 71525D .617【答案】A【解析】【分析】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,首先证明AEH EMG V :V ,则有13EH AE MG EM == ,设MG x =,则3EH x =,1DG AH x ==+, 在Rt AEH V 中利用勾股定理求出x 的值,进而可求,,,EH BN CG EN 的长度,进而可求FN ,再利用勾股定理求出EF 的长度,最后利用cos FN EFC EF∠=即可求解. 【详解】 过点E 作//HG AD ,交AB 于H ,交CD 于G ,作EN BC ⊥于N ,则90AHG MGE ∠=∠=︒,∵四边形ABCD 是正方形,∴3,90AD AB ABC C D ==∠=∠=∠=︒ ,∴四边形AHGD,BHEN,ENCG 都是矩形.由折叠可得,90,3,1AEM D AE AD DM EM ∠=∠=︒====,90AEH MEG EMG MEG ∴∠+∠=∠+∠=︒ ,AEH EMG ∴∠=∠,AEH EMG ∴V :V ,13EH AE MG EM ∴== . 设MG x =,则3EH x =,1DG AH x ==+在Rt AEH V 中,222AH EH AE +=Q ,222(1)(3)3x x ∴++= , 解得45x =或1x =-(舍去), 125EH BN ∴==,65CG CD DG EN =-== . 1BF DM ==Q 175FN BF BN ∴=+=. 在Rt EFN △ 中, 由勾股定理得,2213EF EN FN =+=,17cos 1365FN EFC EF ∴∠==. 故选:A .【点睛】本题主要考查正方形,矩形的性质,相似三角形的判定及性质,勾股定理,锐角三角函数,能够作出辅助线是解题的关键.16.如图,小明在地面上放了一个平面镜,选择合适的位置,刚好在平面镜中看到旗杆的顶部,此时小明与平面镜的水平距离为2米,旗杆底部与平面镜的水平距离为12米,若小明的眼晴与地面的距离为1.5米,则旗杆的高度为( )A .9B .12C .14D .18【答案】A【解析】【分析】 如图,BC =2m ,CE =12m ,AB =1.5m ,利用题意得∠ACB =∠DCE ,则可判断△ACB ∽△DCE ,然后利用相似比计算出DE 的长.【详解】解:如图,BC =2m ,CE =12m ,AB =1.5m ,由题意得∠ACB =∠DCE ,∵∠ABC =∠DEC ,∴△ACB ∽△DCE , ∴AB BC DE CE=,即1.5212DE =, ∴DE =9.即旗杆的高度为9m .故选A .【点睛】本题考查了相似三角形的应用:借助标杆或直尺测量物体的高度.利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,用相似三角形对应边的比相等的性质求物体的高度.17.如图,点E 为ABC ∆的内心,过点E 作MN BC P 交AB 于点M ,交AC 于点N ,若7AB =,5AC =,6BC =,则MN 的长为( )A .3.5B .4C .5D .5.5【答案】B【解析】【分析】 连接EB 、EC ,如图,利用三角形内心的性质得到∠1=∠2,利用平行线的性质得∠2=∠3,所以∠1=∠3,则BM=ME ,同理可得NC=NE ,接着证明△AMN ∽△ABC ,所以767MN BM -=,则BM=7-76MN①,同理可得CN=5-56MN②,把两式相加得到MN 的方程,然后解方程即可.【详解】连接EB 、EC ,如图,∵点E 为△ABC 的内心,∴EB 平分∠ABC ,EC 平分∠ACB ,∴∠1=∠2,∵MN ∥BC ,∴∠2=∠3,∴∠1=∠3,∴BM=ME ,同理可得NC=NE ,∵MN ∥BC ,∴△AMN ∽△ABC ,∴MN AM BC AB = ,即767MN BM -=,则BM=7-76MN①, 同理可得CN=5-56MN②, ①+②得MN=12-2MN ,∴MN=4.故选:B .【点睛】此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.18.如图,三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2∶3,若三角尺的一边长为8 cm,则这条边在投影中的对应边长为()A.8 cmB.12 cmC.16 cmD.24 cm【答案】B【解析】试题分析:利用相似比为2:3,可得出其对应边的比值为2:3,进而求出即可.解:∵三角尺与其灯光照射下的中心投影组成了位似图形,它们的相似比为2:3,三角尺的一边长为8cm,∴设这条边在投影中的对应边长为:x,则=,解得:x=12.故选B.考点:位似变换.19.如图,△AOB是直角三角形,∠AOB=90°,△AOB的两边分别与函数12,y yx x =-=的图象交于B、A两点,则等于()A.22B.12C.14D.33【答案】A【解析】【分析】过点A,B作AC⊥x轴,BD⊥x轴,垂足分别为C,D.根据条件得到△ACO∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出22OB OA = 【详解】 ∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°,∠CAO =∠BOD ,∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴22OB OA =, 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解20.如图,正方形ABCD 中,E 、F 分别为AB 、BC 的中点,AF 与DE 相交于点O ,则AO DO=( ).A .13B 25C .23D .12【答案】D【解析】【分析】由已知条件易证△ADE≌△BAF,从而进一步得△AOD∽△EAD.运用相似三角形的性质即可求解.【详解】∵四边形ABCD是正方形∴AE=BF,AD=AB,∠EAD=∠B=90︒∴△ADE≌△BAF∴∠ADE=∠BAF,∠AED=∠BFA∵∠DAO+∠FAB=90︒,∠FAB+∠BFA=90︒,∴∠DAO=∠BFA,∴∠DAO=∠AED∴△AOD∽△EAD∴12 AO AE DO AD==故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质.。