第二十一章 二次根式知识点总结及经典例题

合集下载

二次根式知识点及典型例题(含答案)

二次根式知识点及典型例题(含答案)

4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。

练习1、x为何值时,下列各式有意义。

【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。

《二次根式》期末复习知识清单及典型例题

《二次根式》期末复习知识清单及典型例题

二次根式期末复习知识清单及典型例题知识点1:二次根式的定义:形如()0≥a a 的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,a 才有意义.【例1】下列各式()511,()52-,()232+-x ,()44,()2315⎪⎭⎫ ⎝⎛-,()a -16,()1272+-a a 其中是,二次根式的是_________(填序号).变式:1、下列各式中,一定是二次根式的是()A 、a B 、10-C 、1a +D 、21a+2、在a 、2a b 、1x +、21x +、3中是二次根式的个数有______个【例2】若式子13x -有意义,则x 的取值范围是. 变式:1、使代数式43--x x 有意义的x 的取值范围是() A 、x>3B 、x ≥3C 、x>4D 、x ≥3且x ≠4 2、如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限3、使代数式221x x -+-有意义的x 的取值范围是 【例3】若y=5-x +x -5+2009,则x+y=变式:1、若11x x ---2()x y =+,则x -y 的值为()A .-1B .1C .2D .3 2、当a 取什么值时,代数式112++a 取值最小,并求出这个最小值。

【例4】已知a 是5整数部分,b 是5的小数部分,求12a b ++的值。

变式:1、若3的整数部分是a ,小数部分是b ,则=-b a 3。

2、若17的整数部分为x ,小数部分为y ,求yx 12+的值. 知识点2:2、双重非负性:a a ()≥0是一个非负数.即①0≥a;②0≥a3、平方的形式(双胞胎公式):(1)()()a aa 20=≥;(2)a a a a a a 200==≥-<⎧⎨⎩||()().公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a aa 20=≥的区别与联系:(1)a 2表示求一个数的平方的算术根,a 的范围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的范围是非负数. (3)a 2和()a 2的运算结果都是非负的. 【例5】若()04322=-+-+-c b a 则c b a +-=.变式:若1+-b a 与42++b a 互为相反数,则()2017b a -=。

第二十一章__二次根式_复习提纲

第二十一章__二次根式_复习提纲

清水中学九年级数学人教版 第二十一章 二次根式 复习提纲一、知识结构二、知识点归纳(一)二次根式的概念:(1)二次根式:式子a (a ≥0)叫做二次根式.(2)最简二次根式:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.把满足这两个条件的二次根式,叫做最简二次根式。

(3)同类二次根式:化成最简二次根式后,如果被开方数相同。

,这几个二次根式就叫做同类二次根式.(4)分母有理化:把分母中的根号化去,叫做分母有理化。

(5)有理化因式:两个含有二次根式的代数式相乘,如果它们的积为有理式,我们说这两个代数式互为有理化因式.(6)代数式:用基本运算符号(加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子叫代数式。

(二)二次根式的性质.20)(0);,(0)0,(0),(0)0,0)____(0,0);a a a a a a a a a a b a b ≥=≥>⎧⎪===⎨⎪-<⎩=≥≥=≥>是一个非负数;(*)(三)二次根式的运算:(1)二次根式的加减:先将二次根式化成最简二次根式,然后合并同类二次根式。

(20,0,0)a b a b =≥≥=≥>注意:做乘法时要灵活运用乘法分式;做除法时,有时要写为分数形式,然后分母有理化; 化简时要注意a 的正负性,尤其是隐含的正负性.三、典型习题(一)二次根式的概念1.(06泸州)要使二次根式1-x 有意义,字母x 的取值必须满足的条件是( ) (A)x≥1(B)x≤1(C)x>1(D)x<12.(06眉山) 若 2-x 有意义,则X 的取值范围( ) A 、x > 2 B 、x ≥ 2 C、x < 2 D 、x ≤ 23.(05x 的取值范围是( ) A 、2x ≠ B 、2x ≥ C 、2x > D 、2x ≤ 4.(05福州)如果代数式1-x x有意义,那么x 的取值范围是( ) A 、0≥x B 、1≠x C 、0>x D 、10≠≥x x 且5.(05 A、a<1 B、a ≤1 C、a ≥1 D、a>16.(04x 必须满足的条件是 A .x ≥1 B .x >-1 C .x ≥-1 D .x >1 7.(05荆门)如果代数式mnm 1+-有意义,那么,直角坐标系中点P (m ,n )的位置在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 8.(02哈尔滨)如果式子x341-在实数范围内有意义,那么x 的取值范围是 。

人教版数学第21章二次根式知识点及对应练习

人教版数学第21章二次根式知识点及对应练习

初三数学知识点 第一章二次根式知识点1 二次根式:形如a (0≥a )的式子为二次根式; 性质:a (0≥a )是一个非负数;()()02≥=a a a ;()02≥=a a a 。

2 二次根式的乘除: ()0,0≥≥=∙b a ab b a ;()0,0>≥=b a baba 。

3 二次根式的加减:二次根式加减时,先将二次根式华为最简二次根式,再将被开方数相同的二次根式进行合并。

4 海伦-秦九韶公式:))()((c p b p p p S ---=,S 是三角形的面积,p 为2cb a p ++=。

第一章二次根式21.1二次根式练习一、选择题1.下列式子中,是二次根式的是( )A .BCD .x 2.下列式子中,不是二次根式的是( )A B C D .1x3.已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对 二、填空题1.形如________的式子叫做二次根式. 2.面积为a 的正方形的边长为________. 3.负数________平方根. 三、综合提高题 1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x +x 2在实数范围内有意义?3.4.x 有( )个. A .0 B .1 C .2 D .无数第一章二次根式21.2 二次根式的乘除练习1. 当0a ≤,0b __________=。

2. _____,______m n ==。

3. __________==。

4. 计算:_____________=。

5. ,面积为,则长方形的长约为 (精确到0.01)。

6. 下列各式不是最简二次根式的是( )7. 已知0xy ,化简二次根式的正确结果为( )C.8. 对于所有实数,a b ,下列等式总能成立的是( )A. 2a b =+a b =+22a b =+a b =+9. -和- )A. -- ---=-不能确定10. )A. 它是一个非负数B. 它是一个无理数C. 它是最简二次根式D. 它的最小值为3 11. 计算:()1()2()(()30,0a b -≥≥ ())40,0a b()5()6⎛÷ ⎝12. 化简:())10,0a b ≥≥ ()2()3a13. 把根号外的因式移到根号内:()1.-()(2.1x -第一章二次根式21.3 二次根式的加减练习1. )2. 下面说法正确的是( )A. 被开方数相同的二次根式一定是同类二次根式D. 同类二次根式是根指数为2的根式3. 不是同类二次根式的是( )4. 下列根式中,是最简二次根式的是( )5. 若12x )6. 10=,则x 的值等于( ) A. 4 B. 2± C. 2 D. 4±7. x ,小数部分为y y -的值是( )A. 3 C. 1 D. 3 8. 下列式子中正确的是( )=a b =-C. (a b =-2==9. 是同类二次根式的是 。

第二十一章 二次根式

第二十一章 二次根式

第二十一章 二次根式知识点归纳1.定义:形如a (a ≥0)的式子叫做二次根式。

2.二次根式a 有意的条件:3.性质:(1)双重非负性:即a ≥0且a ≥0(2)⎩⎨⎧<-≥==0,0,2a a a a a a(3)2)(a =a (a ≥0)4.同类二次根:被开方数相同的二次根式最简同类二次根式:⎩⎨⎧尽的因数或因式被开方数不含开方开得或分母不含根号被开方数不含分母)(5.把根号外面的因数或因式移到根号内:()()()⎪⎩⎪⎨⎧≥<-=--=≥≥=0,00,0222b a b a b a b a b a b a b a 6.二次根式的大小比较:先把根号外的因数或因式全部移到根号内,再进行大小比较。

7.分母有理化: (1)()01>=∙=a a aa a a a(2)()()()0,0,01≠-≥≥-+=+-+=-b a b a ba ba ba ba ba b a(3)()()()0,0,01≠-≥≥--=-+-=+b a b a ba ba ba ba b a ba8.运算法则:(1)加减法则:将二次根式化成最简二次根式,再合并同类二次根式(2)乘除法则:()()⎪⎩⎪⎨⎧<≥=≥≥=∙0,00,0b a b ab a b a ab b a (3)混合运算法则。

复习题1.已知a, b, c 满足04122212=+-+++-c c c b b a ,求)(c b a +-的值。

2.已知y=32552--+-x x ,求2xy 的值。

3.已知a (a -3)≤0,若b=2-a ,求b 的取值范围。

4.已知点P (x,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的哪个像限? 5.若()a a 21122-=-,求a 的取值范围。

6.已知实数a, b, c 满足32388++-+--=--+-+c b a c b a b a b a 请问:长度分别为a, b, c 的三条线段能否构成一个三角形?若能,求出该三角形的面积。

九年级数学上册《第21章_二次根式》小结课件_人教新课标版

九年级数学上册《第21章_二次根式》小结课件_人教新课标版
一、本章知识结构图
二次根式
a aa 0
2
a 2 aa 0
二 次 根 式 的 化 简 与 运 算
二次根式乘除
二次根式加减
二、回顾与思考 1.对于二次根式,要明确被开方数必须是非负数,也就是说, 对于 ,只有当a≥0时才有意义. a
2.二次根式的运算中,一般要先把式子中的二次根式适 当化简.举例说明什么是最简二次根式?
2 = 2 ______ . 5 5
一般地,对二次根式的除法规定
a a a 0, b 0 b b
二次根式的加法
8+ 18 2 2+3 2 (化成最简二次根式) 2+3 2 5 2
(分配律)
分析上面计算 8+ 18 的过程,可以看到,把 8 和 18 化 成最简二次根式 2 2 和 3 2 后,由于被开方数相同(都是2), 可以利用分配律将 3 2 和 2 2 进行合并.
二次根式相加时,可以先将二次根式化成最简二次根式,再将 被开方数相同的二次根式进行合并.
二次根式的减法
18 = 3 2 2 8 3 2 2 2 (化成最简二次根式) 2
(分配律)
分析上面计算 18 8 的过程,可以看到,把 18 和 8 化 成最简二次根式 3 2 和 2 2 后,由于被开方数相同(都是2), 可以利用分配律将 2 2 和 3 2 进行合并.
二次根式相减时,可以先将二次根式化成最简二次根式,再将 被开方数相同的二次根式进行合并.
4.结合本章内容,进一步体会代数式在表 示数量关系方面的作用.
3 2 a 2 2, , 10 a
这些式子有如下两个共同点: (1) 被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式

21二次根式知识点+典型例题+习题

21二次根式知识点+典型例题+习题

21.1 二次根式知识点1.二次根式的相关概念:像这样一些正数的算术平方根的式子,我们就把它称二次根式。

因此,一般地,我们把形如 a (a ≥0)的式子叫做二次根式,“ ”称为二次根号。

二次根式a 的特点:(1)在形式上含有二次根号 ,表示 a 的算术平方根。

(2)被开方数 a ≥0,即必须是非负数。

(3)a 可以是数,也可以是式。

(4)既可表示开方运算,也可表示运算的结果。

2.二次根式中字母的取值围的基本依据:(1)被开方数不小于零。

(2)分母中有字母时,要保证分母不为零。

3.二次根式的相关等式:a a =2(a ≥0) ⎩⎨⎧<-≥==)0()0(2a a a a a a 相关例题1.二次根式的概念例题一: 下列各式中144,20,,1,3,152222-++-m b a b a , 二次根式的个数是()考点: 二次根式的概念.分析: 二次根式的被开方数应为非负数,找到根号为非负数的根式即可. 解答: 解:3a ,12-b 有可能是负数,-144是负数不能作为二次根式的被开方数,所以二次根式的个数是3个。

点评: 本题考查二次根式的概念,注意利用一个数的平方一定是非负数这个知识点.变式一:下列各式中①,a ②,z y +③,6a ④,32+a ⑤,962++x x ⑥,12-x 一定是二次根式的有()个。

解:①被开方数a 有可能是负数,不一定是二次根式;②被开方数y+z 有可能是负数,不一定是二次根式;③被开方数6a 一定是非负数,所以③一定是二次根式;④被开方数32+a 一定是正数,所以④一定是二次根式;⑤被开方数22)3(96+=++x x x 一定是非负数,所以⑤一定是二次根式; ⑥被开方数12-x 有可能是负数,不一定是二次根式; 一定是二次根式的有3个,故选C .点评: 用到的知识点为:二次根式的被开方数为非负数;一个数的偶次幂一定是非负数,加上一个正数后一定是正数.2.二次根式中字母的取值围的基本依据例题二:函数y=31-x 中自变量x 的取值围是 _______ .考点: 函数自变量的取值围;分式有意义的条件;二次根式有意义的条件. 分析: 根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式即可求解. 解答: 解:依题意,得x ﹣3>0,解得x >3.点评: 本题考查的是函数自变量取值围的求法.函数自变量的围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数是非负数. 变式二:若式子x x 1+有意义,则x 的取值围是_______ .考点: 二次根式有意义的条件;分式有意义的条件.分析: 根据二次根式及分式有意义的条件解答即可.解答: 解:根据二次根式的性质可知:x+1≥0,即x ≥﹣1,又因为分式的分母不能为0,所以x 的取值围是x ≥﹣1且x ≠0.点评:此题主要考查了二次根式的意义和性质: 概念:式子a (a ≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义; 当分母中含字母时,还要考虑分母不等于零.3.二次根式的相关等式例题三:对任意实数a ,则下列等式一定成立的是( )A .a a =B .a a -=2C . a a ±=2D . a a =2考点: 二次根式的性质与化简. 专题: 计算题.分析: 根据二次根式的化简、算术平方根等概念分别判断. 解答:解:A 、a 为负数时,没有意义,故本选项错误;B 、a 为正数时不成立,故本选项错误;C 、a a =2,故本选项错误.D 、故本选项正确. 故选D .点评: 本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.练习题 11x x>0)、2、当x 在实数围有意义?3、当x 11x +在实数围有意义? 4、下列式子中,是二次根式的是( )A ..x5.下列式子中,不是二次根式的是( )A .1x6.已知一个正方形的面积是5,那么它的边长是( )A .5B .15D .以上皆不对 7.形如________的式子叫做二次根式.8.面积为a 的正方形的边长为________.9.负数________平方根.10、计算1.2(x ≥0) 2.2 3.24. 2课后作业1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x 是多少时,x+x 2在实数围有意义?3.4.x 有( )个.A .0B .1C .2D .无数5.已知a 、b =b+4,求a 、b 的值.6、计算(1)2(2)-2(3)(122(4)()2(5)练习题与课后作业答案练习题1、x>0)x≥0,y≥0);不、1x1x y+.2、解:由3x-1≥0,得:x≥13,当x≥13在实数围有意义.3、解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-3 2由②得:x≠-1当x≥-32且x≠-1+11x+在实数围有意义.4.A 5.D 6.B7a≥0) 8.没有10、解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥02+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9作业题1.设底面边长为x,则0.2x2=1,解答:2.依题意得:230xx+≥⎧⎨≠⎩,32xx⎧≥-⎪⎨⎪≠⎩∴当x>-32且x ≠0+x 2在实数围没有意义. 3.134.B5.a=5,b=-46、.(1)2=9 (2)-2=-3 (3)(122=14×6=32(4)(2=9×23=6 (5)-621.2二次根式的乘除法知识点1.二次根式的乘法 )0,0(≥≥=⋅b a ab b a),0(o b a b a ab ≥≥⋅=2.二次根式的除法有两种常用方法:(1)利用公式:)0,0(>≥=b a ba b a )0,0(>≥=b a ba b a (2)把除法先写成分式的形式,再进行分母有理化运算。

(完整word版)二次根式知识点归纳及题型总结-精华版(可编辑修改word版)

(完整word版)二次根式知识点归纳及题型总结-精华版(可编辑修改word版)

二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1. ;2. ;3. ;4.积的算术平方根的性质:;5.商的算术平方根的性质:.6.若,则.知识点二、二次根式的运算1.二次根式的乘除运算(1)运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号.(2)注意每一步运算的算理;2.二次根式的加减运算先化简,再运算,3.二次根式的混合运算(1)明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里;(2)整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用.a - 3 x x 2 +1 x -1(x -1)2 2x -3 - 1 2x + 15 + x x + 4x (x -1) x x -1 x + 3 x +13m - 1 20m 10x -1 a - 2005 x - 3 3 - x m 2 - 9 + 9 - m 2 + 2 mn b - 3 x - y - m a 2 x 3 + 3x 2 - a 3b - ababab - ab(a + b - c )2 (b - c - a )2 (b + c - a )2 x 2 + 6x + 9 x 2 -10x + 25 1- 2a + a 2 ⎪⎩一. 利用二次根式的双重非负性来解题( ≥ 0 (a ≥0),即一个非负数的算术平方根是一个非负数。

)1. 下列各式中一定是二次根式的是()。

A 、 ; B 、 ;C 、 ;D 、2. 等式 =1-x 成立的条件是.3. 当 x时,二次根式 有意义.4.x 取何值时,下列各式在实数范围内有意义。

(1)(2)(3)( 4) 若 = , 则 x 的 取 值 范 围 是 ( 5) 若 = x + 3 , 则 x 的 取 值 范 围x +1是。

6. 若有意义,则 m 能取的最小整数值是 ;若 是一个正整数,则正整数 m 的最小值是.7. 当 x 为何整数时,+1 有最小整数值,这个最小整数值为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十一章二次根式复习(1)

1.二次根式:式子(a≥0)叫做二次根式。

2.最简二次根式:满足下列两个条件的二次根式,叫做最简二次根式;
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式。

如不是最简二次根式,因被开方
数中含有4是可开得尽方的因数,又如,,..........都不是最
简二次根式,而,,5 ,都是最简二次根式。

3.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。

如, , 就是同类二次根式,因为=2 ,
=3 ,它们与的被开方数均为2。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说
这两个代数式互为有理化因式。

如与,a+ 与a- ,- 与+ ,互为有理化因式。

二次根式的性质:
1. (a≥0)是一个非负数, 即≥0;
2.非负数的算术平方根再平方仍得这个数,即:( )2=a(a≥0);
3.某数的平方的算术平方根等于某数的绝对值,即=|a|=
4.非负数的积的算术平方根等于积中各因式的算术平方根的积,即= ·(a ≥0,b≥0)。

5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即=
(a≥0,b>0)。

21.2 二次根式的乘除
1. 二次根式的乘法
两个二次根式相乘,把被开方数相乘,根指数不变,即(≥0,≥0)。

说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,、
都是非负数;
(2)(≥0,≥0)可以推广为(≥0,≥0);
(≥0,≥0,≥0,≥0)。

(3)等式(≥0,≥0)也可以倒过来使用,即(≥
0,≥0)。

也称“积的算术平方根”。

它与二次根式的乘法结合,可以对一些二次根式进行化简。

2. 二次根式的除法
两个二次根式相除,把被开方数相除,根指数不变,即(≥0,>0)。

说明:(1)法则中、可以是单项式,也可以是多项式,要注意它们的取值范围,≥0,
在分母中,因此>0;
(2)(≥0,>0)可以推广为(≥0,>0,≠0);
(3)等式(≥0,>0)也可以倒过来使用,即(≥0,>0)。

也称“商的算术平方根”。

它与二根式的除法结合,可以对一些二次根式进行化简。

3. 最简二次根式
(1)被开方数中不含能开方开得尽的因数或因式; (2)被开方数中不含分母。

知识点一:二次根式的概念:
1.下列各式中,是二次根式的有 。

(填写序号) ①
7;②9 ③2a ④2x +2⑤—3⑥
()
2
—5⑦
2x ——2⑧22n +1⑨
2n+1392.下列各式中,是二次根式的有 。

(填写序号) ①
a a — 22n 2a — 2a ——1 2a +1 5知识点二:二次根式的被开方数中字母的取值范围
1.当字母取何值时,下列各式为二次根式? 22a +b x —3 12x 2x —3

2b — 1
x +0.1
2.当x 取何值时,下列各式有意义? x+3+6x — ⑵
2x —1
⑶x 2x —1— ⑸
2x +x ——2
知识点三.二次根式的基本性质:
1.计算下列各式。

⑴2
⑵ 2
⑶ 2

2
⎛ ⎝—

2

2

2
(m ≤0)
2.把下列各式在实数范围里因式分解:
⑴x 2—5 ⑵ 2
x — ⑶ x 4—4 ⑷ 2
x
2.化简下列各式:


3.方程4x —8,当y >0时,m 的取值范围( )
.0
m 1A .m 2B ≥ .m 2C .m 2D ≤
4.若整数m 且m
5
,则m 的值是
5.(2
1?
的整数解有( )
A. 0个
B. 1个
C. 2个
D. 3个
6.有意义,则a 的取值是
7.若3,则2xy 的值为( ) A. —15 B. 15 C.152

D.
152
9.知识点三:二次根式的乘法
1.计算下列各式。

⑴ ⑵ ⑶
⑷ (—
(— ⑹
⑺x y ≥≥0,0)
2.计算下列各式。

⑴ ⑵
⑶ ⑷

⑹ ⑺
⑻ (—
知识点四.最简二次根式
1.积的算术平方根

⑵ ⑶ a b c ,,均大于0)
2.商的算术平方根



a 0)
3.下列各式中,那些是最简二次根式,那些不是?不是的请说明理由。

⑵ ⑹ (x+3—
4.计算下列各式:
(— ⑶ x x
x ÷—2—2
x 的是偶数,对代数式
(x+2。

相关文档
最新文档