全国卷文科数学概率统计汇总

合集下载

高考概率统计文科知识点

高考概率统计文科知识点

高考概率统计文科知识点在文科高考中,概率统计是一个重要的考试内容。

理解和掌握概率统计的知识点对于应对考试至关重要。

下面将介绍一些高考概率统计的文科知识点。

一、概率的基本概念概率是指在某个事物中某个事件发生的可能性大小。

在高考文科中,概率的基本概念主要包括样本空间、随机事件、事件的概率等。

1.1 样本空间样本空间是指一个试验所有可能结果的集合。

例如,一次掷骰子的样本空间为S={1,2,3,4,5,6}。

1.2 随机事件随机事件是指在试验中可能发生的事件。

在样本空间中取一个子集,就表示一个随机事件。

例如,掷骰子出现奇数点数可以表示为A={1,3,5}。

1.3 事件的概率事件的概率是指事件发生的可能性大小。

事件A的概率可以用P(A)表示。

例如,在掷骰子实验中,掷出1的概率为P(A)=1/6。

二、基本概率公式高考文科中,基本概率公式主要包括加法公式和乘法公式。

2.1 加法公式加法公式是指对于两个不相容事件A和B,它们的概率之和等于事件A或B发生的概率。

公式如下:P(A∪B) = P(A) + P(B),其中∪表示并集。

2.2 乘法公式乘法公式是指对于两个独立事件A和B,它们同时发生的概率等于事件A发生的概率乘事件B发生的概率。

公式如下:P(A∩B) = P(A) * P(B),其中∩表示交集。

三、条件概率和独立性在概率统计中,条件概率和独立性是两个重要的概念。

3.1 条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

设A和B是两个事件,且P(A)>0,那么B在A发生的条件下的概率记作P(B|A),计算公式为:P(B|A) = P(A∩B) / P(A)。

3.2 独立性两个事件A和B相互独立,是指事件A的发生与否不影响事件B的发生与否。

具体而言,如果满足以下条件,则称事件A和B是独立事件:P(A∩B) = P(A) * P(B)。

四、排列组合在高考概率统计中,排列组合是非常重要的知识点。

概率统计文科知识点总结

概率统计文科知识点总结

概率统计文科知识点总结概率统计的知识点涉及很多,包括基本概率论、统计学基础、抽样调查、推断统计、多元统计分析等等。

同时,概率统计还包括了一系列数学工具和模型,如随机变量、概率分布、统计推断和假设检验等内容。

下面我们来具体总结一下文科领域中概率统计的知识点。

1.基本概率论概率论是概率统计的基础,在文科领域中,基本概率论的内容包括了概率的定义、事件的概率、条件概率、独立事件、概率分布等内容。

了解基本概率论可以让文科学生更好地理解概率统计的相关知识,对于后续的学习具有重要的作用。

2.统计学基础统计学基础是概率统计的另一个重要内容,包括了统计量、样本集中趋势、样本离散程度、概率分布等内容。

统计学基础是文科领域中概率统计的重要组成部分,它主要用来描述和分析文科数据的规律和特征。

3.抽样调查抽样调查是文科领域中概率统计的一个重要应用,它主要用来获取文科数据样本。

在实际的文科研究中,抽样调查是获取数据的常用方法,通过对抽样调查的了解可以帮助文科学生更好地进行文科研究和分析。

4.推断统计推断统计是文科领域中概率统计的一个重要内容,它主要用来从样本数据中推断总体数据的特征和规律。

推断统计包括了点估计、区间估计、假设检验等内容,通过推断统计可以帮助文科学生更好地分析文科数据。

5.多元统计分析多元统计分析是文科领域中概率统计的一个拓展内容,它主要用来分析多个变量之间的关系。

在文科研究中,多元统计分析可以帮助文科学生更好地理解文科数据之间的关系,对于文科研究具有重要的意义。

除了上述内容之外,文科领域中概率统计还包括了一系列数学工具和模型,如随机变量、概率分布、统计推断和假设检验等内容。

这些内容都是文科学生在概率统计学习中需要重点掌握的知识点。

总的来说,概率统计在文科领域中有着重要的地位,它不仅可以帮助文科学生更好地理解文科数据的规律和特征,还可以帮助文科学生更好地进行文科研究和分析。

因此,文科学生在学习概率统计的过程中需要重点掌握上述知识点,通过理论学习和实际应用,不断提高自己的概率统计分析能力。

专题七-统计与概率-数学(文科)-全国卷地区专用

专题七-统计与概率-数学(文科)-全国卷地区专用

P1=2145,则小波
不去唱歌的概率⑥ 为________.
—— 体验高
考 —[答—案]
11 15
核心知识聚焦
⇒ 互斥事件的 概率 关键词:3 互斥事件、
对立事件,如⑤⑥.
——主干知识 — —
[解析] P=1-P1=1-145=1115.
第16讲 统计
—— 基础知识必备 — —
第16讲 统计
► 考向一 古典概型
(2)要使 S4=2,需出现 3 个 1,1 个-1,所以基本事 件的总数是 2×2×2×2=16,满足 S4=2 的基本事件有 4 个,所以 S4=2 的概率为146=14.
第16讲 统计
► 考向二 几何概型
考向:从基本事件的无限性构建几何模型.
考例:2010 年 T14,近五年新课标全国卷共考查了 1 次.
第16讲 统计
规范解答 8.高考中常见的概率问题 解:(1)第 3 组的人数为 0.3×100=30,第 4 组的人数 为 0.2×100=20,第 5 组的人数为 0.1×100=10.(2 分) 因为第 3,4,5 组共有 60 名志愿者,所以利用分层抽 样的方法在 60 名志愿者中抽取 6 名志愿者,每组抽取的人 数1600分×别6=为1命:.所题第以考3应向组从探,究第36003×,64=,35;组第中4各组抽,取2600×3 名6=,22;名第,51组名, 志愿者.(4 分) (2)根据频率分布直方图,样本的平均数的估计值为: 22.5×(0.01×5)+27.5×(0.07×5)+32.5×(0.06×5)+ 37.5×(0.04×5)+42.5×(0.02×5)=6.45×5=32.25(岁). 所以这 100 名志愿者样本的平均数为 32.25 岁.(6 分)

全国卷文科数学概率统计汇总

全国卷文科数学概率统计汇总

概率统计高考题1.[2016.全国卷3.T5] 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A.158 B. 81 C. 151 D. 3012.[2016.全国卷2.T8] 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710 B. 58 C.38 D.3103.[2015.全国卷1.T4] 如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为( ) A.103 B.15 C.110 D.1204.[2015.全国卷2.T3]根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 5.[2013.全国卷 1.T3]从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ) A.12 B.13 C.14D.166.[2012.全国卷.T3]在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A. -1B.0C. 12D. 17.[2011.全国卷.T6]有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A.13 B. 12 C.23 D.348.[2014.全国卷1.T13] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年概率为9.[2014.全国卷2.T13]甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为10.[2013.全国卷2.T13]从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是 11.[2010.全国卷.T14]设函数()y f x =为区间(]0,1上的图像是连续不断的一条曲线,且恒有()01f x ≤≤,可以用随机模拟方法计算由曲线()y f x =及直线0x =,1x =,0y =所围成部分的面积,先产生两组i 每组N 个,区间(]0,1上的均匀随机数1, 2.....n x x x 和1, 2.....n y y y ,由此得到V 个点()(),1,2....x y i N -。

最新各地高考数学文科分类汇编——统计与概率

最新各地高考数学文科分类汇编——统计与概率

(全国1卷3)答案:(全国1卷19)答案:(全国2卷5)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6B.0.5C.0.4D.0.3答案:D(全国2卷18)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模y t型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.答案:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y$=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y$=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y$=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.(全国3卷5)答案:B(全国3卷14)答案:分层抽样(全国3卷18)答案:(北京卷17)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)答案:(天津卷15)(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(I)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(II)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.答案:(I)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比分别为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的志愿者中分别抽取3人,2人,2人.(II)(i)解:从抽取的7名同学中随机抽取2名同学的所有可能结果为{},A B ,{},A C ,{},A D ,{},A E ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,{},F G ,共21种.(ii)解:由(I),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{},A B ,{},A C ,{},B C ,{},D E ,{},F G ,共5种.所以,事件M 发生的概率5()21P M =.。

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练

高考文科数学概率与统计题型归纳与训练高考文科数学概率与统计题型归纳与训练近年来,随着高考评价重点的转变,我国高考数学概率与统计所占的比重越来越大,也极大地影响了学生的试题解答,特别是对文科类学生而言。

因此,归纳与训练概率与统计的题型对提升高考成绩非常有效。

一、高考概率与统计试题类型1、概率题:(1)概率概念题:要求判断某事件的可能性大小、求概率大小、比较概率大小,以及用中文描述概率大小等概念性问题。

(2)条件概率及贝叶斯公式:求两事件同时发生的条件概率,用贝叶斯公式求解概率问题。

(3)随机变量和概率分布:讨论正态分布、泊松分布等随机变量的概率分布。

2、统计学题:(1)数据的勘误析:把调查所得原始数据准确地归类编单,以便找出这些数据中蕴含的结论。

(2)图表分析:分析调查对象之间的关系,从折线图、饼形图、柱形图等图表中获取相应的数据。

二、概率与统计的训练方法1、理论思考训练:多看有关概率、统计的权威论文和教材,把基本概念牢牢掌握,把常见的概率公式及统计公式及推导式脱口而出。

2、示范练习:对常考的知识点补充示范练习,可以通过复现例题和大量习题来熟悉该知识点,从而深入理解,提高解题能力。

3、联系模拟考试:利用模拟考试把学过的知识点和技巧联系起来,在试题中能够驾轻就熟地掌握各试题技巧,大大提升实力。

4、强化记忆:记忆知识点、公式要选择相应的方法,通过反复记忆和熟习,把重点内容融会贯通,熟练记忆几个重点的式子和结论有助于考试的取得好成绩。

总之,学习概率与统计,除了要用心去理解之外,还需要不断的训练,把一些重点的知识点、公式强化记忆,加深理解,才能在考试中取得较好的成绩。

全国各地高考数学试题分类汇编11概率与统计文

全国各地高考数学试题分类汇编11概率与统计文

全国各地高考文科数学试题分类汇编11:概率与统计一、选择题 1 .( 高考安徽(文))若某公司从五位大学毕业生甲、乙、丙、丁、戌中录用三人,这五人被录用的机会均等,则甲或乙被 录用的概率为 ( )A .23B .25C .35D .910【答案】D 2 .( 高考重庆卷(文))下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[20,30)内的概率为( )A .B .0.4C .D . 【答案】B 3 .( 高考湖南(文))已知事件“在矩形ABCD 的边CD 上随机取一点P,使△APB 的最大边是AB”发生的概率为.21,则ADAB=____ ( )A .12B .14C .32D .74【答案】D 4 .( 高考江西卷(文))集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是( )A .23B .13C .12D .16【答案】C 5 .( 高考湖南(文))某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n=___ D .____ ( ) A .9 B .10 C .12 D .13 【答案】D 6 .( 高考山东卷(文))将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91,现场做的9个分数的茎叶图后来有一个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为 ( )A .1169B .367 C .36D 677【答案】B 7 .( 高考四川卷(文))某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),,[30,35),[35,40]时,所作的频率分布直方图是0.04组距频率0.05组距频率0.04组距频率0.04组距频率0.010.020.030.010.020.030.040.010.020.030.010.020.03(B)(A)(C)(D)【答案】A8 .( 高考课标Ⅰ卷(文))从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )8 7 79 4 0 1 0 9 1xA.B.Error! Cannot insert return character.C.1 4D.1 6【答案】B9 .(高考陕西卷(文))对一批产品的长度(单位: mm)进行抽样检测, 下图喂检测结果的频率分布直方图.根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为()A.B.0.20 C.D.【答案】D10.(高考江西卷(文))总体编号为01,02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08 B.07 C.02 D.01【答案】D11.(高考辽宁卷(文))某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[)[)20,40,40,60,[)[)60,80,820,100,若低于60分的人数是15人,则该班的学生人数是()A.45B.50C.55D.60【答案】B12.四名同学根据各自的样本数据研究变量,x y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:① y与x负相关且 2.347 6.423y x=-; ② y与x负相关且 3.476 5.648y x=-+;③ y与x正相关且 5.4378.493y x=+; ④ y与x正相关且 4.326 4.578y x=--.其中一定不正确...的结论的序号是 A.①② B.②③ C.③④D. ①④【答案】D13.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b yˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A.a a b b'>'>ˆ,ˆ B.a a b b '<'>ˆ,ˆ C.a a b b '>'<ˆ,ˆ D.a a b b '<'<ˆ,ˆ 【答案】C二、填空题 14.( 高考浙江卷(文))从三男三女6名学生中任选2名(每名同学被选中的机会相等),则2名都是女同学的概率等于_________.【答案】1515.( 高考湖北卷(文))在区间[2,4]-上随机地取一个数x ,若x 满足||x m ≤的概率为56,则m =__________. 【答案】316.( 高考福建卷(文))利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为_______【答案】3117.( 高考重庆卷(文))若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为____________.【答案】2318.( 高考辽宁卷(文))为了考察某校各班参加课外书法小组的人数,在全校随机抽取5个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为____________. 【答案】10 19.( 上海高考数学试题(文科))某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为________. 【答案】78 20.( 高考湖北卷(文))某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4 则(Ⅰ)平均命中环数为__________; (Ⅱ)命中环数的标准差为__________.【答案】(Ⅰ)7 (Ⅱ)2 21.( 高考课标Ⅱ卷(文))从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.【答案】1522.( 上海高考数学试题(文科))盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是_______(结果用最简分数表示). x 1 2 3 4 5 6 y21334【答案】57三、解答题 23.( 高考江西卷(文))小波已游戏方式决定是去打球、唱歌还是去下棋.游戏规则为以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.(1) 写出数量积X 的所有可能取值 (2) 分别求小波去下棋的概率和不.去唱歌的概率 【答案】解:(1) x 的所有可能取值为-2 ,-1 ,0, 1. (2)数量积为-2的只有25OA OA •一种数量积为-1的有15OA OA •,1624263435,,,,OA OA OA OA OA OA OA OA OA OA •••••六种 数量积为0的有13143646,,,OA OA OA OA OA OA OA OA ••••四种 数量积为1的有12234556,,,OA OA OA OA OA OA OA OA ••••四种 故所有可能的情况共有15种. 所以小波去下棋的概率为1715p = 因为去唱歌的概率为2415p =,所以小波不去唱歌的概率2411111515p p =-=-= 24.( 高考陕西卷(文))有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 组别 ABCDE人数5010015015050干评委, 其中从组中抽取了6人. 请将其余各组抽取的人数填入下表.组别 ABCDE人数 50 100 150 150 50 抽取人数61号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率. 【答案】解: (Ⅰ) 按相同的比例从不同的组中抽取人数.从B 组100人中抽取6人,即从50人中抽取3人,从100人中抽取6人,从100人中抽取9人. (Ⅱ) A 组抽取的3人中有2人支持1号歌手,则从3人中任选1人,支持支持1号歌手的概率为32· B 组抽取的6人中有2人支持1号歌手,则从6人中任选1人,支持支持1号歌手的概率为62· 现从抽样评委A 组3人,B 组6人中各自任选一人,则这2人都支持1号歌手的概率926232=⋅=P .所以,从A,B 两组抽样评委中,各自任选一人,则这2人都支持1号歌手的概率为92.25.( 高考四川卷(文))某算法的程序框图如图所示,其中输入的变量x 在24,,3,2,1 这24个整数中等可能随机产生. (Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =;(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大.【答案】解:(Ⅰ)变量x 是在24,,3,2,1 这24个整数中等可能随机产生的一个数,共有24种可能. 当x 从23,21,19,17,15,13,11,9,7,5,3,1这12个数中产生时,输出y 的值为1,故211=P ; 当x 从22,20,16,14,10,8,4,2这8个数中产生时,输出y 的值为2,故312=P ; 当x 从24,18,12,6这4个数中产生时,输出y 的值为3,故613=P . 所以输出y 的值为1的概率为21,输出y 的值为2的概率为31,输出y 的值为3的概率为61. (Ⅱ)当2100n =时,甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率如下,比较频率趋势与概率,可得乙同学所编写程序符合算法要求的可能性较大.26.( 高考辽宁卷(文))现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求:(I)所取的2道题都是甲类题的概率; (II)所取的2道题不是同一类题的概率.【答案】27.( 高考天津卷(文))某产品的三个质量指标分别为x , y , z , 用综合指标S = x + y + z 评价该产品的等级. 若S ≤4, 则该产品为一等品. 先从一批该产品中, 随机抽取10件产品作为样本, 其质量指标列产品编号A 1 A 2 A 3 A 4 A 5输出y 的值为1的频率 输出y 的值为2的频率 输出y 的值为3的频率甲 21001027 2100376 2100697乙 21001051 2100696 2100353质量指标(x, y, z) (1,1,2) (2,1,1) (2,2,2) (1,1,1) (1,2,1) 产品编号A6A7A8A9A10质量指标(x, y, z) (1,2,2) (2,1,1) (2,2,1) (1,1,1) (2,1,2)(Ⅱ) 在该样品的一等品中, 随机抽取两件产品,(⒈) 用产品编号列出所有可能的结果;(⒉) 设事件B为“在取出的2件产品中, 每件产品的综合指标S都等于4”, 求事件B发生的概率.【答案】28.(高考湖南(文))某人在如图3所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收货量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:这里,两株作物“相近”是指它们之间的直线距离不超过1米. (Ⅰ)完成下表,并求所种作物的平均年收获量;(Ⅱ)在所种作物中随机选取一株,求它的年收获量至少为48kg 的概率. 【答案】解: (Ⅰ) 由图知,三角形中共有15个格点,与周围格点的距离不超过1米的格点数都是1个的格点有2个,坐标分别为(4,0),(0,4). 与周围格点的距离不超过1米的格点数都是2个的格点有4个,坐标分别为(0,0), (1,3), (2,2),(3,1). 与周围格点的距离不超过1米的格点数都是3个的格点有6个,坐标分别为(1,0), (2,0), (3,0),(0,1,) ,(0,2),(0,3,).与周围格点的距离不超过1米的格点数都是4个的格点有3个,坐标分别为(1,1), (1,2), (2,1).如下表所示:Y 51 48 45 42 频数2463平均年收获量4615==u .(Ⅱ)在15株中,年收获量至少为48kg 的作物共有2+4=6个. 所以,15株中任选一个,它的年收获量至少为48k 的概率P=4.0156=. 29.( 高考安徽(文)) 为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下: 甲 乙 7 4 55 3 3 2 5 3 3 85 5 4 3 3 3 1 0 06 0 6 9 1 1 2 2 3 3 5 8 6 6 2 2 1 1 0 07 0 0 2 2 2 3 3 6 6 9 7 5 4 4 28 1 1 5 5 8 2 09 0(Ⅰ)若甲校高三年级每位学生被抽取的概率为,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(Ⅱ)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,x x ,估计12x x -的值.【答案】解:(1)30300.056000.05n n =⇒== 255306p == (2)174013504246092670922805290230x +++⨯++⨯++⨯++⨯++⨯==208430254014503176010337010208059030x +++⨯++⨯++⨯++⨯+==2069302120842069150.5303030x x ===--30.( 高考课标Ⅱ卷(文))经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直图,如右图所示.经销商为下一个销售季度购进了130t 该农产品.以X(单位:t≤100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率.【答案】31.( 高考广东卷(文))从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85)[85,90)[90,95)[95,100)频数(个)5102015(1) 根据频数分布表计算苹果的重量在[90,95)的频率; /频率组距0.0100.0150.0200.0250.030100110120130140150需求量/x t(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率. 【答案】(1)重量在[)90,95的频率200.450==; (2)若采用分层抽样的方法从重量在[)80,85和[)95,100的苹果中共抽取4个,则重量在[)80,85的个数541515=⨯=+; (3)设在[)80,85中抽取的一个苹果为x ,在[)95,100中抽取的三个苹果分别为,,a b c ,从抽出的4个苹果中,任取2个共有(,),(,),(,),(,),(,),(,)x a x b x c a b a c b c 6种情况,其中符合“重量在[)80,85和[)95,100中各有一个”的情况共有(,),(,),(,)x a x b x c 种;设“抽出的4个苹果中,任取2个,求重量在[)80,85和[)95,100中各有一个”为事件A ,则事件A 的概率31()62P A ==;32.( 高考山东卷(文))某小组共有A B C D E 、、、、五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2) 如下表所示:A B C D E 身高 体重指标(Ⅰ)从该小组身高低于的同学中任选2人,求选到的2人身高都在以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在以上且体重指标都在[,中的概率 【答案】33.(高考北京卷(文))下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【答案】解:(I)在3月1日至3月13日这13天中,1日.2日.3日.7日.12日.13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(II)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气质量重度污染的概率为413.(III)从3月5日开始连续三天的空气质量指数方差最大.34.(高考福建卷(文))某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附表:【答案】解:(Ⅰ)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名 所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=(人), 记为1A ,2A ,3A ;25周岁以下组工人有400.052⨯=(人),记为1B ,2B 从中随机抽取2名工人,所有可能的结果共有10种,他们是:12(,)A A ,13(,)A A ,23(,)A A ,11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B 其中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =(Ⅱ)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手:生产能手 非生产能手 合计25周岁以上组 15 45 60 25周岁以下组 15 25 40合计30 70 100 所以得:222()100(15251545)251.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”35.( 高考大纲卷(文))甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I)求第4局甲当裁判的概率;(II)求前4局中乙恰好当1次裁判概率. 【答案】(Ⅰ)记1A 表示事件“第2局结果为甲胜”,2A 表示事件“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12=A A A •.12121()=P()()()4P A A A P A P A •==. (Ⅱ)记1B 表示事件“第1局结果为乙胜”,2B 表示事件“第2局乙参加比赛时,结果为乙胜”,3B 表示事件“第3局乙参加比赛时,结果为乙胜”,B 表示事件“前4局中恰好当1次裁判”. 则1312312B B B B B B B B =•+••+•.1312312()()P B P B B B B B B B =•+••+• 1312312()()()P B B P B B B P B B =•+••+•1312312()()()()()()()P B P B P B P B P B P B P B =•+••+•111484=++ 58=. 36.( 高考课标Ⅰ卷(文))(本小题满分共12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 2.5服用B 药的20位患者日平均增加的睡眠时间:3.2 1.6(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (3)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?【答案】(本小题满分共12分)(1) 设A 药观测数据的平均数为 ,B 药观测数据的平均数为 ,又观测结果可得120x=++++++++++++++++++=, 1(0.50.50.60.80.9 1.1 1.2 1.2 1.3 1.4 1.6 1.7 1.8 1.9 2.1202.4 2.5 2.6 2.73.2 1.6y =+++++++++++++++++++= 由以上计算结果可得x >y,因此可看出A 药的疗效更好(2)由观测结果可绘制如下茎叶图: A 药 B 药 6 0. 5 5 6 8 9 8 5 5 2 21. 1 2 2 3 4 6 7 8 9 9 8 7 7 6 5 4 3 3 22. 1 4 5 6 7 5 2 1 03.2从以上茎叶图可以看出,A 药疗效的试验结果有的叶集中在茎上,而B 药疗效的试验结果有10的叶集中在茎0,1上,由此可看出A 药的疗效更好.37.(本小题满分13分,(Ⅰ)小问9分,(Ⅱ)、(Ⅲ)小问各2分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,算得10180ii x==∑,10120i i y ==∑,101184i i i x y ==∑,1021720i i x ==∑.(Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+; (Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y bx a =+中,1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-,其中x ,y 为样本平均值,线性回归方程也可写为y bx a =+.。

概率统计(文科)

概率统计(文科)

文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率P(A)e(0,1)(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1•某校高一年级有900名学生,其中女生400名•按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.2•某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取名学生.3.某校老年、中年和青年教师的人数见右表,米用分层抽样的方法调查教类另U人数师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年老年教师900教师人数为中年教师1800 4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是青年教师1600 5•若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为•合计4300 6•重庆市2013年各月的平均气温(°C)数据的茎叶图如右图:o吕9则这组数据的中位数是•1252003127•某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国豕,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图的频率分布直方图.(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(III)估计居民月均用水量的中位数.0Q.511622.533.544.6月满意度评分低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意A 地区用户满意度评分的频率分布直方司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.(II) 根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(I) 应收集多少位女生的样本数据?(II) 根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(&10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;满意度评分分组 [50,60) [60,70) [70,80) [80,90) [90,100] 频数 2 8 14 10 6B 地区用户满意度评分的频数分布表 (I)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分 的平均值及分散程度(不要求计算出具 体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(III)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体 育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间 与性别有关”.n (ad 一bc\附:尺2步畝+d 儿+枫+d )P (2>k)0.10 0.05 0.01 0.005 k2.7063.8416.6357.8799.(2015全国II 文)某公03511.(2014全国I文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(I)在下表中作出这些数据的频率分布直方图: 12.(2014广东文)某车间20名工人年龄数据如下表: 年皤7舁工人執7人1912日329330531斗323401昔讦20(I)求这20名工人年龄的众数与极差;(II)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(III)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.14.___________________________________________________ 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(II)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是.(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95 16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是.的产品至少要占全部产品80%”的规定?17. (2016天津文)甲、乙两人下棋,两人下成和棋的概率为1,甲获胜的概率是-,则甲不23输的概率为.18. 已知5件产品中有2件次品,其余为合格品•现从这5件产品中任选2件,恰有一件次品 的概率为.24. 如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴19.某单位N 名员工参加“社区低碳你我他”活动•他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.区间 [25,30) [30,35) [35,40) [40,45) [45,50] 人数25 ab5丰25. 为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174 176 176 176 178 儿子身高y (cm )17517517617717722. ____________________________________________ 在区间[-2,3]上随机选取一个数x ,则x <1的概率为23. ___________________________________ 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是.(I )求y 关于t 的回归方程y =bt+a ;(II )利用(I )中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情4550年龄/驴(I )求正整数a ,b ,N 的值;(II )现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(III )在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率. 20.(2016全国丨文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( A.1B.1C.-D.- 21.(2016全国II 文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒•若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()10 B.5D.—10 则y 对X 的线性回归方程为()A .y =x 一1B .y =x +1C .y =88+-x广告费用x (万元)4 2 35 销售额y (万元)4926395426.某产品的广告费用x 与销售额y 的统计数据如下:D .y =176根据上表可得回归方程y =bx+a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元B .65.5万元C .67.7万元D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长•设某地区城乡居民人民币储蓄存款(年 底余额)如下表:年份 2011 2012 2013 2014 2015 时间代号t1 2 3 4 5 储蓄存款y (千亿兀)567810年(1=6)的人民币储蓄存款.V--‘’ty-nty _‘附:回归方程$=几+<2中,,a=y-bt.乙/2-nt 2i=l28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:乙校:(1)计算兀y 的值;况,并 预测 该地 区 2016P^Ki>k)0.10 0.05 0.010 k2.7063.8416.635参考数据与(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2X2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.公式:由列联表中数(a+b)(?+d)C+c)a+d),临界值表:29.—次考试中,5名学生的数学、物理成绩如下表所示:学生 A B C D E 数学成绩兀(分) 89 91 93 95 97 物理成绩y (分)8789899293(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90 分的概率;(2 )性回归100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.0.08°1—r---—r方程(系数精确到0.01).''''(1)求频率分布表中a、b的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标II)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:附:回归直线的方程是:y=bx+a上年度出险次数0 1 2 3 4 >5保费0.85a a 1.25a 1.5a 1.75a2a其中b=㈠(j——,a=y-b x;设该险种一续保人一年内出险次数与相应概率如下:ii=130•为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取一年内出险次数0 1 2 3 4 >5 概率0.30 0.15 0.20 0.20 0.10 0.05(I)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答•试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.34.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(I)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);A地区B帥反4567S9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国卷文科数学概率统计
汇总
This manuscript was revised on November 28, 2020
概率统计高考题
1.[2016.全国卷] 小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是( ) A.158 B. 81 C. 151 D. 30
1 2.[2016.全国卷] 某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710 B. 58 C.38 D.310 3.[2015.全国卷] 如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为( ) A.
103 B.15 C.110 D.1
20
4.[201
5.全国卷]根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是( )
A

C .2006相关
5.[2013.2的概率是( ) A.
12 B.13 C.14 D.1
6 6.[2012.全国卷.T3]在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不
全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =1
2x +1上,则这组样本数据的
样本相关系数为( )
A. -1 C. 1
2
D. 1
7.[2011.全国卷.T6]有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( ) A.13 B. 12 C.23 D.34 8.[2014.全国卷] 将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为
2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011
年 2012年 2013年 190020002100220023002400250026002700
9.[2014.全国卷]甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为
10.[2013.全国卷]从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是 11.[2010.全国卷.T14]设函数()y f x =为区间(]0,1上的图像是连续不断的一条曲线,且恒有
()01f x ≤≤,可以用随机模拟方法计算由曲线()y f x =及直线0x =,1x =,0y =所围成部分的面积,先产生两组i 每组N 个,区间(]0,1上的均匀随机数1, 2.....n x x x 和1, 2.....n y y y ,由此得到V 个点
()(),1,2....x y i N -。

再数出其中满足1()(1,2.....)y f x i N ≤
=的点数1N ,那么由随机模拟方法可得S 的近
似值为
12. [2016.全国卷]下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图. 注:年份代码1–7分别对应年份2008–2014.
(Ⅰ)由折线图看出,可用线性回归模型拟合y 与t 的关系, 请用相关系数加以说明;
(Ⅱ)建立y 关于t 的回归方程(系数精确到), 预测2016年我国生活垃圾无害化处理量. 参考数据:71
9.32i i y ==∑,7
1
40.17i i i t y ==∑,
7
2
1
()
0.55i
i y y =-=∑,≈. 参考公式:1
2
2
1
1
()()
()(y
y)n
i
i
i n n
i i
i i t t y y r t t ===--=
--∑∑∑,
回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:1
2
1
()()
()
n
i
i
i n
i i t t y y b t t ==--=
-∑∑,
=.a y bt - 13.[2015.全国卷] 某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表。

A 地区用户满意度评分的频率分布直方图
B 地区用户满意度评分的频数分布表 满意度评分分组
频 数
2
8 14
10
6
4567890 满意度评分O
100
频率/
O
频率/组
(1)在上图中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);
(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:
估计哪个地区的满意度等级为不满意的概率大说明理由。

14.[2013.全国卷] 为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:
服用B药的20位患者日平均增加的睡眠时间:
(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好
(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好
15.[2013.全国卷] 经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元。

根据历史资料,得到销售季度内市场需求量的频率分布直方图,如右图所示。

经销商为下一个销售季度购进了130t该农产品。

以X(单位:t,100150
≤≤)表示下一
X
个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润。

(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57000元的概率;
16.[2011.全国卷.T19] 某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:
(1)分别估计用A配方,B配方生产的产品的优质品率;
(2)已知用B配方生产的一件产品的利润y(元)与其质量指标值t的关系式为
估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润。

相关文档
最新文档