岩石弹塑性本构模型
弹塑性本构模型理论课件

。
材料屈服强度影响规律
屈服强度定义
材料开始发生明显塑性变形的最小应力值,反映了材料抵抗塑性变 形的能力。
屈服强度对弹塑性行为的影响
屈服强度越大,材料抵抗塑性变形的能力越强,进入塑性阶段所需 的应力水平越高,材料的塑性变形能力越差。
屈服强度的影响因素
材料的晶体结构、化学成分、温度、应变速率等都会影响屈服强度 的大小。
材料弹性模量影响规律
弹性模量定义
01
材料在弹性阶段内,应力与应变之比,反映了材料抵抗弹性变
形的能力。
弹性模量对弹塑性行为的影响
02
弹性模量越大,材料的刚度越大,相同应力作用下产生的弹性
变形越小,进入塑性阶段所需的应力水平越高。
弹性模量的影响因素
03
材料的晶体结构、化学成分、温度等都会影响弹性模量的大小
弹性阶段
材料在受力初期表现出弹性行为,应 力与应变呈线性关系,卸载后无残余 变形。
屈服阶段
当应力达到屈服强度时,材料进入塑 性阶段,应力不再增加但应变继续增 加,卸载后有残余变形。
强化阶段
材料在塑性阶段表现出应变硬化特性 ,随着塑性应变的增加,屈服强度逐 渐提高。
理想弹塑性模型
无强化阶段的弹塑性模型,屈服后应 力保持恒定,应变无限增加。
通过实验测定金属材料的弹性模量、屈服强度、硬化模量等参 数,为模拟提供准确数据。
利用有限元软件建立金属材料的弹塑性行为模型,进行加载、 卸载等模拟过程。
将模拟结果与实验结果进行对比,验证弹塑性本构模型在金属 材料行为模拟中的准确性和可靠性。
实例二:混凝土结构弹塑性损伤评估
损伤模型选择
针对混凝土结构的损伤特点,选择合适 的弹塑性损伤本构模型,如塑性损伤模
邓肯张本构模型在FLAC3D中的开发与实现

邓肯张本构模型在FLAC3D中的开发与实现一、本文概述随着计算机技术的不断发展和数值模拟方法的日益成熟,岩土工程领域的数值模拟分析已成为研究岩土工程问题的重要手段。
邓肯张本构模型(Duncan-Chang Constitutive Model)作为一种能够描述岩土材料非线性、弹塑性行为的本构模型,在岩土工程领域具有广泛的应用。
然而,在岩土工程数值模拟软件FLAC3D中,邓肯张本构模型并未直接内置,因此需要对其进行开发与实现。
本文旨在探讨邓肯张本构模型在FLAC3D中的开发与实现过程。
将介绍邓肯张本构模型的基本原理和特点,包括其应力-应变关系、屈服准则、硬化法则等。
然后,将详细阐述如何在FLAC3D中通过用户自定义本构模型(User-Defined Constitutive Model)接口实现邓肯张本构模型,包括模型的初始化、应力更新、应变更新等关键步骤。
还将讨论邓肯张本构模型在FLAC3D中的数值实现方法,如如何设置模型参数、如何处理模型的非线性问题等。
通过本文的研究,旨在为FLAC3D用户提供一种在岩土工程数值模拟中应用邓肯张本构模型的有效方法,也为其他岩土工程数值模拟软件的本构模型开发与实现提供借鉴和参考。
本文的研究成果将有助于提高岩土工程数值模拟的准确性和可靠性,推动岩土工程领域的数值模拟研究向更高水平发展。
二、邓肯张本构模型基本理论邓肯张本构模型(Duncan-Chang Model)是一种广泛使用的岩土工程材料本构模型,主要用于描述土的应力-应变关系。
该模型基于土的弹塑性理论,能够模拟土的非线性、弹塑性和剪胀性等行为。
邓肯张本构模型的基本假设包括土的应力-应变关系是非线性的,土的应力路径对其后续行为有影响,以及土的体积变化与其应力状态有关。
模型的核心在于其应力-应变关系的数学描述,其中包括弹性部分和塑性部分。
在弹性部分,邓肯张模型采用了切线弹性模量来描述土的弹性行为,这个模量随着应力的变化而变化,体现了土的非线性弹性特性。
应变空间的软岩统一弹塑性软化本构模型

Ab ta t I r e o a p y t eu iid sr n t h o y tk n e so sp stv o t e r c n sr c : n o d rt p l h n f te g h t e r a ig t n in a o i et h o k a d e i s i e g n e ig c so rl a i gc mp e so sp stv ,t ee p r e t l o d t n f i l o l n ie rn u t ma i tk n o r s ina o iie h x e i n a n ii so mp e y m c o s c mp e so n i p e t n in tss a e s b tt t d i h x r sin o h nfe te g h o rs in a d sm l e so e t r u siu e n t e e p e so f t e u i d sr n t i
t e r eie o o k a d s i m ae il ,wh r o r s in i e a d d a o iie n h h o yi d rv d f rr c n ol t ras s e ec mp e so sr g r e sp stv ,a d t e
t e r ,a d t e rltv a a ee s a e d tr ie h o y n h ea ie p rm tr r e em n d, h n e a x r s in o nfe te g h e c n e p e so f u i d sr n t i
岩土塑性力学原理_广义塑性力学_郑颖人_2004

⎧J1 = (σx −σm) +(σy −σm) +(σz −σm) = Sx + Sy + Sz = 0 ⎪ 1 2 2 2 J2 = 6 (σx −σy )2 +(σy −σz )2 +(σz −σx )2 +6(τxy +τyz +τzx) ⎪ ⎨ 1 2 2 2 = 6 (σx −σy ) +(σy −σz ) +(σz −σx ) = 1 SijSij (八面体剪应力倍 2 ⎪ ⎪J = S S S +2τ τ τ − S τ 2 − S τ 2 − S τ 2 = S S S数) xy yz zx x yz y zx z xy 1 2 3 (与剪应力方向有 ⎩3 x y z 关)
0⎤ ⎡σ m 0 ⎢0 σ 0 ⎥ = σ mδ ij m ⎥ ⎢ 0 σm⎥ ⎢0 ⎦ ⎣
⎡ S x τ xy τ xz ⎤ ⎥ ⎢ Sij = σ ij − σ mδ ij = ⎢τ yx S y τ yz ⎥ ⎢τ zx τ zy S z ⎥ ⎦ 27 ⎣
应力张量分解及其不变量
应力偏量Sij的不变量
则 2 2 rσ = x + y = :
= τ π = PQ
1 3
(
(σ 1 − σ 2 ) + (σ 2 − σ 3 ) + (σ 3 − σ 1 )
2 2
平面矢径大小)
2
π
y 1 2σ 2 − σ 1 − σ 3 1 tan θσ = = = µσ x 3 σ1 − σ 3 3
(
π
平面矢径方向)
⎧ I1 =σ 1 +σ 2 +σ 3 ⎪ ⎨ I 2 =−(σ 1σ 2 +σ 2σ 3 +σ 3σ 1 ) ⎪ I 3 =σ 1σ 2σ 3 ⎩
《岩土弹塑性力学》课件

02
数值模拟的精度和稳 定性
数值模拟的精度和稳定性是评价数值 模拟技术的重要指标,需要不断改进 数值方法和模型参数,提高模拟结果 的可靠性和精度。
03
数值模拟的可视化和 后处理
可视化技术和后处理技术是数值模拟 的重要组成部分,能够直观地展示模 拟结果和进行结果分析,需要不断改 进和完善相关技术。
THANKS
感谢您的观看
弹塑性力学的未来发展
随着科技的不断进步和应用领域的拓展,弹塑性力学将进 一步发展并应用于更广泛的领域,如新能源、环保、生物 医学等。
Part
02
岩土材料的弹塑性性质
岩土材料的弹性性质
弹性模量
表示岩土材料在弹性范围内抵抗变形的能力,是 材料刚度的度量。
泊松比
描述材料横向变形的量,表示材料在单向受拉或 受压时,横向变形的收缩量与纵向变形的关系。
各向同性假设
假设材料在各个方向上具 有相同的物理和力学性质 ,即材料性质不随方向变 化而变化。
弹塑性力学的历史与发展
弹塑性力学的起源
弹塑性力学起源于20世纪初,随着材料科学和工程技术的 不断发展,人们对材料在复杂应力状态下的行为有了更深 入的认识。
弹塑性力学的发展
弹塑性力学经过多年的发展,已经形成了较为完善的理论 体系和研究方法,为解决工程实际问题提供了重要的理论 支持。
《岩土弹塑性力学》 PPT课件
• 弹塑性力学基础 • 岩土材料的弹塑性性质 • 岩土弹塑性本构模型 • 岩土弹塑性力学的应用 • 岩土弹塑性力学的挑战与展望
目录
Part
01
弹塑性力学基础
弹塑性力学定义
弹塑性力学
是一门研究材料在弹性变形和塑性变形共同作用下的力学行为的学科。
岩土工程中的弹塑性理论与分析技术

岩土工程中的弹塑性理论与分析技术岩土工程是研究土体和岩石力学行为以及相关工程问题的学科。
在岩土工程中,土体和岩石常常会受到外力的作用,从而产生弹性变形和塑性变形。
弹性变形是指在加载或卸载外力后,土体和岩石能够恢复到原始形状的能力。
而塑性变形是指土体和岩石在加载或卸载外力后,无法完全恢复原始形状的能力。
为了研究土体和岩石在弹性和塑性阶段的力学特性,人们提出了弹塑性理论与分析技术。
弹塑性理论与分析技术是将弹性理论与塑性理论相结合,用于描述土体和岩石在受力过程中的力学行为。
弹塑性理论首先研究土体和岩石的弹性行为。
弹性是指土体和岩石在外力作用下,能够恢复到原始形状的能力。
弹性理论利用应力和应变的关系来描述土体和岩石的弹性行为。
常见的弹性理论有胡克定律、泊松比理论等。
这些理论可以用来计算土体和岩石的弹性应力、应变和变形。
然而,在实际的工程中,土体和岩石常常会出现塑性变形。
塑性变形是指土体和岩石在加载或卸载外力后,无法完全恢复原始形状的能力。
塑性行为涉及到土体和岩石内部颗粒的移动和变形,因此塑性变形的研究要比弹性变形复杂得多。
弹塑性理论与分析技术的目的就是要研究土体和岩石的弹塑性行为,并提供相应的分析方法。
弹塑性理论与分析技术的主要内容包括:1. 弹性塑性模型:弹塑性模型是描述土体和岩石在加载或卸载过程中的应力和应变关系的数学模型。
常见的模型有Cam-Clay模型、Mohr-Coulomb模型、Drucker-Prager模型等。
这些模型可以用来计算土体和岩石的应力应变状态,从而得到土体和岩石的强度参数和变形特性。
2.弹塑性本构关系:弹塑性本构关系是描述土体和岩石在受力过程中力学行为的数学方程。
本构关系可以用来计算土体和岩石的应力、应变和变形。
常见的本构关系有弹性本构关系、弹塑性本构关系等。
这些本构关系可以用来计算土体和岩石的弹性和塑性变形。
3.弹塑性分析方法:弹塑性分析方法可以用来计算土体和岩石的应力、应变和变形。
2.4岩石的变形特性

(2)应力—应变全过程曲线形态
在刚性机下,峰值前后的全部应力—应变曲线分5个阶段:1-3阶段
同普通试验机。
CD阶段(应变软化阶段):
①该阶段试件变形主要表现为沿宏观断裂面的块体滑移;
②试件仍具有一定的承载力,承载力随应变的增大而减小,但
并不降到零,具有明显的软化现象。
D点以后(摩擦阶段):反映断裂面的摩擦所具有的抵抗外力的能力。
P
C
B
A O
D
峰后曲线特点: ① 第5阶段岩石的原生和新生裂隙贯穿,到达D点后,靠碎
块间的摩擦力承载,故 D —称为残余应力。 ② 承载力随着应变增加而减少,有明显的软化现象。
(3)全应力—应变曲线的补充性质
① 曲线呈近似对称性; ② C点后卸载有残余应变, ③ 每次加载与卸载曲线都不重合,且围成一环形面积,称 为塑性滞环, ④ 加载曲线不过原卸载点,但在邻近处和原曲线光滑衔接。
⑤弹性后效特性:
由蠕变方程看出,应力保持一定时,模型应变由弹簧的瞬时应变和粘 壶的蠕变应变组成。如果在某一时刻卸除载荷,弹簧应变将立即恢复,而 粘壶的蠕变应变将残留保持不变,即该模型无弹性后效,存在永久应变。
分3个阶段: (1)原生微裂隙压密阶段(OA级)
特点:① 1 1 曲线 ,曲线斜率↑,应变率随应力增 加而减小;
②变形:塑性,非线性(变形不可恢复) 原因:微裂隙闭合(压密)。裂隙岩石明显,坚 硬少裂隙岩石不明显,甚至不出现本段。
(2)弹性变形阶段(AB段) 特点:① 1 1 曲线是直线; ② 弹性模量E为常数(卸载,变形可恢复) 原因:岩石固体部分变形,B点开始屈服,B点对应的应 力为屈服极限 B 。
岩石刚度:k s
与
k
s
岩石力学第5章 岩体的本构关系与强度理论

= + + + +
λ
σ
所以有
λ =
ε σ
伊柳辛理论可以写成(弹ຫໍສະໝຸດ 性共有) 伊柳辛理论可以写成= = =
ε σ ε σ ε σ
γ γ γ
=
ε τ σ
ε = τ σ
=
ε τ σ
弹性部分
= = =
塑性部分(总应变偏量与弹性
应变偏量之差)
γ γ γ
= = =
τ τ τ
= = =
ε σ ε σ ε σ
γ γ γ
=
ε σ
τ τ τ
ε = σ ε = σ
式中关键是等效应变与等效应力的比值 式中关键是等效应变与等效应力的比值
⑷ 形变理论应满足的条件 加载应为单调增加,尽量不中断,更不能卸载 材料是不可压缩的 应力应变曲线具有幂化形式 小变形(弹性与塑性变形为同一量级) ⑸ Davis-儒柯夫试验 儒柯夫试验 试验材料—铜材 拉力与内压比值k不同(同一试件k为常数) 做出σi~εi曲线 结论:类似单轴简单加载
ε ε ,有 σ σ
=
φ
所以:
=
+φ
= =
+
这就是Hencky 本构方程,它 本构方程, 这就是 包括了弹性变形 弹性变形与 包括了弹性变形与塑性变形
ε σ
=
+
=
+φ
=
+
ε σ
⑶ 应变偏量与应力偏量成比例
= =
γ = τ
= λ
γ = τ
γ = τ
= λ
主应力、 主应力、主应变偏量关系
= =
应变强度(参见公式(1-29)page 20) 应变强度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常温常压下岩石的典型应力-应变曲线
如图所示为一般岩石在普通室温和大气压条件下进行 的单轴压缩试验典型应力-应变曲线,曲线大致分为四 个区域:
第I阶段(OA段):应力-应变曲线上弯,即随着 变形的增加,产生同样大小的应变所需增加的应 力越来越大; 第II阶段(AB段):应力-应变曲线接近与直线, 它的斜率即为岩石的弹性模量E,B点对应的应力 称为弹性极限或屈服应力;
从弹性状态开始第一次屈服的屈服条件称初始屈服条 件,他可以表示为:
Hale Waihona Puke f ij 0当产生了塑性变形,屈服条件的形式发生变化,此时 的屈服条件称后继屈服条件,他可以表示为:
f
ij
,
p ij
,
0
其中,
p ij
D p ijkl kl
p
ij
d
p ij
=
p
ij
d
p ij
p
p ij
第IV阶段(CD段):出现应力降低、应变增加的现象, 称为应变软化。
岩石单轴压缩试验表明:
(1)在塑性状态,弹塑性材料具有历史相关性或路径 相关性,这使得本构方程的表述要比非线性弹性复杂;
(2)岩石体积应变和平均压力之间不是线性的,岩石 体积应变既有静水压力作用下的压缩体积应变,又有 受剪引起的塑性体积应变。在硬化阶段,压缩体积应 变是主要的,表现为岩石的体积压缩。而在软化阶段, 岩石的塑性体积应变不断增大,岩石体积膨胀,称为 剪胀现象;
ij
=
1+vs Es
ij
vs Es
kkij
和 ij
K
s
2 3
Gs
kk ij
2Gs sij
式中:Es是材料的割线杨氏模量;vs是割线泊松比;
Ks是割线体积模量;Gs是割线剪切模量;
用增量形式表示各向同性的弹性介质的本构关系如下:
d
ij
=
1+vt Et
d ij
vt Et
d kkij
和d ij
第III阶段(BC段):曲线逐渐下弯,C点处达到峰值, 其对应的压应力值称为压缩强度,在这区域任何点
P处卸载,应力应变将沿PQ下降,当压应力降为零时, 应变却没有完全消失,说明岩石中存在残余应变,称 为塑性变形,如果重新加载,应力-应变将沿QR上升至 R点,岩石仅发生弹性变形,相当于把弹性极限从B点 对应的应力值提高到R点对应的应力值,这种现象称 为应变硬化。
一、非线性弹性理论 构架图
二、应力空间表述 的弹塑性本构关系
1、应力-应变关系 的多值性
2、岩石屈服条件 和屈服面
3、塑性状态的加卸载准则
4、弹塑性本构方 程
引言 岩石塑性力学的特点
1、不仅静水压力可以引起岩石塑性体积的变化,而且 偏应力也可能引起塑性体积应变—剪胀;
2、岩石屈服准则不仅考虑剪切屈服,还要考虑体积应 变屈服,表现在屈服面上,岩石塑性力学的屈服面是 封闭的,且越来越多的采用双屈服面和多重屈服面;
f
1, 2,3
1 2
1
3
1 2
1
2
sin
c cos
0
德鲁克-普拉格(Drucker-Prager)屈服条件
德鲁克-普拉格屈服条件也是一种等向硬化-软化模型, 在做弹塑性分析时,多采用德鲁克-普拉格屈服准则, 屈服函数可表示为
1
f I1 J2 2 K 0
式中: I1是应力第一不变量,I1=1+ 2 +3
用Cauchy方法给出的本构方程
按Cauchy方法可以这样定义弹性介质:在外力作用下, 物体内各点的应力状态和应变状态之间存在着一一对 应的关系,弹性介质的响应仅与当时的状态有关,而 与应力路径或应变路径无关,假设了应力和应变都是 瞬时发生的。
用全量形式表示各向同性的弹性介质的本构关系如下:
3、岩石塑性力学不受稳定材料的限制,可考虑出现软 化阶段的所谓不稳定材料;
一、非线性弹性理论
在岩石力学中使用弹塑性理论是将岩石介质看作是一 种连续介质,严格来说,岩石介质的应力-应变关系都 是非线性的。
本构关系是关于一个物质质点的力学性质,一般认为 他是与应力和应变有关,而与应力梯度和应变梯度无 关。为了直观的描述质点的状态,引入应力空间和应 变空间两个概念。
服面可表示为
f f *
ij
p ij
H 0
库伦(Coulomb)屈服条件
库伦屈服条件是一种等向硬化-软化模型,他认为当材 料某平面的剪应力达到某一特定值时,材料就进入屈 服,而这一特定值不仅与材料自身性质有关,而且与 该平面上的正应力有关,一般表示为
c n tan
主应力的表示形式为
.
p ij
12
对于一个介质指点,它的状态可以用外变量 i,j 内
变量
p ij
和
来完全表述。
一般的,使分f<0的状态称为弹性状态,这时介质对无
限小的外部作用的反应是弹性;使f=0的状态称为塑性
状态,这时介质对外部作用的反应是弹塑性的;而f>0
的状态是不存在的。
硬化材料的屈服面模型
(1)等向硬化-软化模型:塑性变形发展时,屈服面做均匀 扩大(硬化)或均匀收缩(软化),如果 f * 0是初始屈服面,
那么等向硬化-软化模型的后继屈服面可表示为
f f * ij H 0
(2)随动硬化模型:塑性变形发展时,屈服面的大小和形状
保持不变,仅是整体的在应力空间中做平动,其后继屈服面可
表示为
f
f*
ij
p ij
0
(3)混合硬化模型:对于大多数实际材料,屈服面的硬化规
律大概介于等向硬化-软化和随动硬化之间,这种模型的后继屈
K
t
2 3 Gt
d
kk
ij
2Gtdsij
式中:Et是材料的切线杨氏模量;vt是切线泊松比; Kt是切线体积模量;Gt是切线剪切模量;
二、应力空间表述的弹塑性本构 关系
1、应力-应变关系的多值性 同一应力有多个应变值与它对应,本构关系采用应力
和应变增量的关系表达。
据ler(米勒)1965年,对28类岩石进行岩石力 学性质实验结果,将单轴压缩下应力-应变曲线(只考 虑峰前曲线,破坏之前)概括地划分成如图所示的六 种类型。
(3)岩石具有明显的Bauschinger效应。
本构关系的复杂性 塑性阶段本构关系包括三组方程: 屈服条件:塑性状态的应力条件 加-卸载准则:材料进入塑性状态后继续塑性变形或回
到弹性状态的准则,通式写成:
ij,Ha =0
本构方程:
ij=f ij 或 dij =f dij
2、岩石屈服条件和屈服面