单自由度振动
单自由度振动系统

单自由度振动系统m质量,k刚度,c阻尼,有时有p激振力单自由度振动系统,指用一个独立参量便可确定系统位置的振动系统。
只要以它的平衡位置取为坐标原点,任一瞬时的质点坐标x(线位移)或 (角位移)就可以决定振动质点的瞬时位置。
根据牛顿定律:mx+cx+kx=F1.单自由度系统无阻尼自由振动mx+kx=0;x+kmx=0;令w m2=k/m,求微分方程的解,得x=c1e iw n t+c2e−iw n t=c1+c2cosw n t+i c1−c2sinw n t=b1cosw n t+b2sinw n t将其合成一个简谐振动,并代入初始条件:t=0时,x=x0,x=x0x=Asin(w n t+φ); A=x2+x02w n2; φ=tg−1x0w nx01.1固有频率系统的圆频率和频率只与系统本身的物理性质(弹性和惯性)有关,因此当振动系统的结构确定后,系统的振动频率就固定不变,而不管运动的初始条件如何,也和振幅的大小无关,因此成为固有圆频率和固有频率。
w n=km ;f n=12πkm1.2固有频率计算方法1)公式法。
根据公式w n=km计算2)静变形法。
根据质量块所处平衡位置的弹簧变形计算。
3)能量法。
根据能量守恒定律,由于无阻尼,无能量损失,12mx2+12kx2=E,将x的方程代入上式,系统的最大动能等于系统的最大弹性势能,计算求出。
4)瑞利法。
考虑到系统弹簧质量的计算方法,如假设系统的静态变形曲线作为假定的振动形式,根据推倒,得出系统的固有频率为w n=km+ρl3,式中加入的部分为“弹簧等效质量”不同振动系统的等效质量不同,只需先算出弹性元件的动能,根据T s =12m s x 2,计算即可。
1.3扭转振动根据扭转运动的牛顿定律 M =I θ,M 为施加到转动物体上的力矩,I 转动物体对于转动轴的转动惯量,θ角加速度。
圆盘转动惯量为I ,轴的转动刚度为kθ。
系统受到干扰后做扭转自由振动,振动时圆盘上受到一个由圆轴作用的与θ方向相反的弹性恢复力矩-K θθ。
结构力学课件之单自由度体系的振动

2.2 单自由度体系的强迫振动
单自由度体系的强迫振动的微分方程: y m ky P(t) y k P(t) 2 P(t) y 可写成: y m y 2. 当荷载为简谐荷载时: P(t) F sin t 2 m P(t) ky y F sin t y m 3. 微分方程的解为: m y m受力图 y F 2 1 2 (sint sin t) yst (sint sin t) m 1 2 1 2 为动力系数。 F yst 2 为静荷载F作用下的振幅。 1 2 m 时,振幅会趋近于无穷大,这种现象叫共振。
tg
1
y0 0 v
2.1 单自由度体系的自由振动
三、结构的自振周期 y 从微分方程的解: (t) a sin(t ) 知位移是周期函数; 自振周期T:振动一周需要的时间; T 2 2 m 2 m k 自振频率f:单位时间的振动次数; f 1 T 2 圆频率或角频率:2 时间内的振动次数; 2 2 2f k 1 T m m 自振周期的性质:
2 k EI 2 2 4 3 4 48EI 2 1 48EIg k 1 3 m m m Ql
11 5
EI
0.5l
1 EI
0.5l
0.25l 2n 2 500 52.36 / s 2. 荷载频率: 60 60 M 1 1 2 2 5.93 3. 动力系数: 为动力位移和动力应 52.36
1. 自振周期仅与结构的质量和刚度有关;与外界的干扰力无关。 2. 质量越大,周期越大; 刚度越大,周期越小。 3. 自振周期是结构动力性能的一个重要指标。
例1:图示等截面竖直悬臂杆,长度为l,截面面积为A,惯性矩 为I,弹性模量为E。杆顶重物的质量为m。杆的质量忽略不 计,试分别计算水平振动和竖向振动的自振周期。 解:解题的依据 T 2 2 m 2 m m k
单自由度振动系统

n
x0
sin n t
系统总响应
振动系统总的响应=上述两部分响应之和
x x1 x2 x0 cos nt
n
x0
sin nt
叠加性是线性系统的重要特征
数字特征
A ——振幅,振动物体离开静平衡位置的最 大位移 ——圆频率 n T ——振动周期,旋转矢量转动一周 ( 2 ),振动物体的位移值也就重复一次, 振动周期:振动重复一次所需要的时间间隔 f ——振动频率,单位时间内完成的振动的 次数
总动能: Ts Tm 1 1 lx 2 1 mx 2 1 m 1 l x 2 T 23 2 2 3
系统微分方程
系统的势能:
由: 微分方程:
1 2 U kx 2
d T U 0 dt
1 x m l kx 0 3
例三
如右图,弹簧 在静平衡位置 长度为 l ,单 位长度的质量 为 ,求系统 的固有频率。
基本假设
假设系统的变形是线性的,即当弹簧下段 的位移为 x 的时候,在距离弹簧上端 u 的截 u 面振幅为 l x ,假定系统的速度分布也满足 线性要求(在端点处显然成立)
0
0
设质量块的位移为 x ,速度为 x ,
1 f T
固有特性
n
k m
m T 2 n k 2
1 n 1 f T 2 2 k m
可见,上述三个量都由振动系统的参数确定,而 与初始条件无关,是系统的固有特性,因而又称 作:固有圆频率、固有周期和固有频率
系统的初始条件只决定振动的振幅和初相位
系统参数对振动特性的影响
2-单自由度自由振动

第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
31
给出初始条件:t=0时 x x0 , x v0
则可确定系数B和D B v0 ( 2 1)n x0 2n 2 1
D v0 ( 2 1)n x0 2n 2 1
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
不大,特别是当阻尼很小(<<1)时,可
以忽略阻尼对振动频率和周期的影响。
第2章 单自由度系统自由振动
2.5 具有黏性阻尼的振动系统
40
2.6 对数衰减率
振幅衰减的快慢程度可用相邻振幅 的比值来表示,称为衰减率或减幅率或 减缩率;也可以用衰减率的自然对数来 表示,称为对数衰减率。
第2章 单自由度系统自由振动
第2章 单自由度系统自由振动
2.3 能量法
22
P15例2-3-2 利用能量法求纯滚动圆盘 系统作微幅振动的固有频率。
第2章 单自由度系统自由振动
2.3 能量法
23
2.4 瑞利法
一般不考虑弹性元件的质量对振动系统的 影响,若这些质量不可忽略的时候,“瑞利法” 的思想,是将这些弹性元件所具有的多个集中 质量或分布质量简化到系统的集中质量上去, 从而变成典型的单自由度振动系统。
T 2 n
周期是系统振动一次所需要的时间,单位 为秒(s)。
周期的倒数称为频率,是系统每秒钟振动 的次数,单位为1/秒(1/s)或赫兹(Hz)。记作 f
f 1 n T 2
第2章 单自由度系统自由振动
2.2 自由振动系统
13
固有频率n和频率 f 只相差常数2,因
此经常通称为固有频率。是振动分析中极
已知质量为m,弹簧的刚 度系数为k。取质量的静平衡 位置为坐标原点,当重物偏离 x 时,利用牛顿定律可得到运 动微分方程:
单自由度系统振动

ϕ = Φ sin( pn t + α )
角速度及系统的最大动能分别为
&= ϕ
dϕ = Φpn cos( p n t + α ) dt 1 1 2 & max = I BΦ 2 p n I Bϕ 2 2
(a)
Tmax =
如取平衡位置为系统的势能零点。设在平衡位置时,弹簧的伸长量为δst 。此时,弹性力 Fst=kδst , 方向向上。
当物块在静平衡位置时,它的静位移 δ st 等于每根弹簧的静变形之和,即
δ st = δ 1st + δ 2 st
(d)
因为弹簧是串联的,其特征是:二弹簧受力相等,即每 根弹簧所受的拉力都等于重力 mg 。
δ 1 st =
mg mg , δ 2 st = k1 k2
(e)
如果用一根弹簧常量为 k 的弹簧来代替原来的两根弹簧, 此弹簧的静变形等于 δ st (图 2-3(b))。
图 2-5 扭振系统
20
PDF created with pdfFactory Pro trial version
定圆轴的抗扭刚度为 k n ,它表示使圆盘产生单位扭角所需的力矩。根据刚体转动微分方程建立该系 统的运动微分方程
&& = −k nϕ I Oϕ
令
pn =
代入式(2-6) ,自由振动的振幅为
2 gh
2 A = x0 +(
&0 2 x 2 ) = δ st + 2hδ st pn mgl 3 96 EJh (1 + 1 + ) 48 EJ mgl 3
梁的最大挠度为
2 δ max = A + δ st = δ st + 2hδ st + δ st =
单自由度振动系统的运动方程解析解的应用案例分析

单自由度振动系统的运动方程解析解的应用案例分析单自由度振动系统是机械工程中非常重要的一类振动系统。
它的运动方程可用解析解表示,这在许多实际问题的解决中发挥着重要作用。
本文将通过分析两个应用案例,展示单自由度振动系统运动方程解析解的实际应用。
案例一:弹簧振子考虑一个弹簧振子系统,由一个质量为m的物体通过一个弹簧与固定支撑相连。
假设摩擦系数为零,物体只有沿水平方向的振动。
根据牛顿第二定律可以得到以下运动方程:m a=−aa其中a是物体的加速度,k是弹簧的劲度系数,x是物体的位移。
通过简单的求解可以得到该系统的解析解为:a = a cos(a_0 t + a)其中A和a分别是振幅和相位,a_0 是系统的固有角频率,有关常数可以通过初始条件来确定。
这个方程给出了振子在任意时间点的位移,通过振幅和相位可以描述振动的特征。
在实际应用中,我们可以利用这个方程来分析弹簧振子的运动规律,如计算特定时刻的位移、速度和加速度等。
案例二:简谐受迫振动考虑一个简谐受迫振动系统,它除了由弹簧力驱动外,还受到外部激励力F(t)的作用。
运动方程可以表示为:m a=−aa +F(t)其中F(t)是外部激励力的函数形式,可以是任意周期性函数。
在这种情况下,运动方程没有解析解,但我们可以通过变换方法将其转化为解析解出现的形式。
一个常见的方法是利用复指数形式的解,并通过计算使运动方程等号两边的实部和虚部相等。
通过求解可以得到:a = a cos(a_0 t + a) + a_p其中a_p是该系统的稳态解,表示受迫振动的特定解,由外部激励力决定,A和a是自由振动的振幅和相位。
这个方程描述了受迫振动系统的运动,可以用于分析系统在不同激励力下的响应,如共振频率、相位差等。
总结起来,单自由度振动系统运动方程解析解的应用案例分析有助于我们深入理解振动系统的运动行为。
通过解析解,我们可以更好地预测和控制系统的振动特性,为相关工程问题提供解决思路。
单自由度体系自由振动,速度相位与位移相位的关系

单自由度体系(Single Degree of Freedom System, SDOF)是工程动力学中的一个重要概念,它对于描述系统的振动特性有着重要的作用。
在自由振动过程中,速度相位与位移相位之间存在着密切的关系。
本文将从单自由度体系自由振动的基本原理入手,探讨速度相位与位移相位之间的关系,希望通过本文的介绍,读者能够对这一问题有更加清晰的认识。
一、单自由度体系自由振动的基本原理1. 自由振动的基本概念自由振动是指在没有外界干扰的情况下,系统在一定的初位移或初速度作用下,由于其自身的惯性和弹性特性而产生的振动现象。
在工程领域中,自由振动是一种非常常见的振动形式,因此研究自由振动对于工程设计和分析有着重要的意义。
2. 单自由度体系的定义单自由度体系是指系统中只有一个自由度可以自由变化的体系。
在动力学领域中,单自由度体系被广泛应用于描述各种机械、土木和航空航天结构的振动特性。
它是一种简化模型,但对于许多实际工程问题的分析具有较高的适用性。
3. 自由振动的基本方程单自由度体系的自由振动可以通过一阶微分方程来描述。
其基本方程可以表示为:\[m\ddot{x}+c\dot{x}+kx=0\]其中,\(m\)为系统的质量,\(c\)为系统的阻尼系数,\(k\)为系统的刚度,\(x\)为系统的位移函数,\(t\)为时间。
二、速度相位与位移相位的定义1. 速度相位的定义在振动过程中,速度相位是指速度\(v\)相对于位移\(x\)的相位差。
通常用一个角度来表示,它可以用来描述振动的快慢和超前滞后关系。
2. 位移相位的定义位移相位是指位移\(x\)相对于某一固定参考点的相位差。
它也通常用一个角度来表示,可以用来描述振动的相对位置。
三、速度相位与位移相位的关系速度相位与位移相位之间存在着密切的关系。
在自由振动过程中,它们之间满足以下关系:\[tan(\phi_v-\phi_x)=\frac{2\zeta}{1-\omega^2}\]其中,\(\phi_v\)为速度相位,\(\phi_x\)为位移相位,\(\zeta\)为系统的阻尼比,\(\omega\)为系统的固有频率。
单自由度体系的自由振动

令
ω2 = k
m
y + ω 2 y = 0
运动方程的解 y + ω 2 y = 0 可由振动的初 2
始条件来确定
常系数的线性齐次微分方程,其通解为
y(t) = A1 cosωt + A2 sinωt
若当 t = 0 时 y = y0 初位移
y(0) = y0 = A1 cosω × 0 + A2 sin ω × 0
因此,自振周期(或频率)的计算十分重 要。
例 计算自振频率
14
EI=常数
如果让振动体系沿振动方向发生单位位移时,所有刚 结点都不能发生转动(如横梁刚度为无穷大的刚架) 计算刚度系数方便。
两端刚结的杆的侧移刚度为:12EI
l3
一端铰结的杆的侧移刚度为:3EI
l3
例 计算自振频率
1
k11
EI=常数
12 EI l3
y = y0 初速度
y(0) = y0 = −ωA1 sinω × 0 + ωA2 cosω × 0
A1 = y0
A2
=
y0
ω
y(t)
=
y0
cosωt
+
y0
ω
sin ωt
位移的多项表达式
位移、速度的单项表达式
3
y(t)
=
y0
cosωt
+
y0
ω
sin ωt
若令
y(t) = a sinϕ cosωt + a cosϕ sin ωt
结构自振周期、频率
6
自振周期的倒数称为工程频率 f = 1
(或频率),记作 f
T
频率 f 表示单位时间内的振动次数,其常用单位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ቤተ መጻሕፍቲ ባይዱ第 10 章
单自由度系统的振动
教学提示:机械系统(力学系统)在其平衡位置附近所做的往复运动称为振动。振动问 题是工程中一个重要问题。本章仅研究单自由度系统的振动,讨论振动的基本特征。 教学要求:掌握建立各种类型的自由度系统振动(自由振动,阻尼振动,强迫振动)微 分方程的方法及其解的表达式。理解恢复力、阻尼力和激振力的概念。对各种类型振动规 律有清晰的理解,会计算有关的物理量;深刻理解自由振动的固有频率(或周期)、振幅、 初相位角的概念。会应用各种方法求固有频率。了解阻尼对自由振动的影响。深刻理解受 迫振动的激振力、幅频曲线、共振的概念。
10.1
单自由度系统的自由振动
振动问题是工程中一个重要问题,如图 10.1 和图 10.2 所示实例。
图 10.1
图 10.2
10.1.1
振动微分方程
系统偏离平衡位置后,仅在恢复力作用下维持的振动称为自由振动。 如图 10.3 所示为单自由度系统自由振动的简化模型,它是从实际振动系统中抽象出的 简图。设弹簧原长为 l0 ,刚度系数为 k,物块质量为 m,静平衡时,弹簧变形为 δ st (称静变 形),有 mg = kδ st (10-1) 以平衡位置为原点,建立图示坐标。物块在一般位置的受力如图 10.3 所示,则其振动 微分方程为 ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������