离散数学练习题(含答案2)(1)

合集下载

离散数学试题及答案

离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。

答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。

答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。

答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。

答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。

解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。

反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。

由于R是自反的,所以(a, a) ∈ R,与假设矛盾。

因此,R一定是反自反的。

答案完整证明了该结论。

2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。

解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。

所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。

《离散数学》试题带答案(二)

《离散数学》试题带答案(二)

《离散数学》试题带答案试卷九试题与答案一、 填空 30% (每空 3分)1、 选择合适的论域和谓词表达集合A=“直角坐标系中,单位元(不包括单位圆周)的点集”则A= 。

2、 集合A={Φ,{Φ}}的幂集P (A) = 。

3、 设A={1,2,3,4},A 上二元关系R={<1,2>,<2,1>,<2,3>,<3,4>}画出R的关系图。

4、 设A={<1,2>,<2 , 4 >,<3 , 3 >} , B={<1,3>,<2,4>,<4,2>},则B A ⋃= 。

B A = 。

5、 设|A|=3,则A 上有 个二元关系。

6、 A={1,2,3}上关系R= 时,R 既是对称的又是反对称的。

7、 偏序集><≤R A ,的哈斯图为,则≤R = 。

8、 设|X|=n ,|Y|=m 则(1)从X 到Y 有 个不同的函数。

(2)当n , m 满足 时,存在双射有 个不同的双射。

9、 2是有理数的真值为 。

10、Q :我将去上海,R :我有时间,公式)()(Q R R Q →∧→的自然语言为 。

11、公式)()(Q P P Q ∧⌝∧→的 主合取范式是 。

12、 若} ,, , {21m S S S S =是集合A 的一个分划,则它应满足 。

二、 选择 20% (每小题 2分)1、 设全集为I ,下列相等的集合是( )。

A 、} |{是偶数或奇数x x A =;B 、)}2( |{y x I y y x B =∧∈∃=;C 、)}12( |{+=∧∈∃=y x I y y x C ;D 、},4,4,3,3,2,2,1,1,0|{ ----=x D 。

2、 设S={N ,Q ,R},下列命题正确的是( )。

A 、S S N N ∈∈∈2 ,2则; B 、S N S Q Q N ⊂∈⊂则 ,; C 、R N R Q Q N ⊂⊂⊂则 ,; D 、S N S N ⋂⊂Φ⊂Φ⊂Φ则 ,。

(完整版)离散数学题目及答案

(完整版)离散数学题目及答案

数理逻辑习题判断题1.任何命题公式存在惟一的特异析取范式 ( √ ) 2. 公式)(q p p →⌝→是永真式 ( √ ) 3.命题公式p q p →∧)(是永真式 ( √ ) 4.命题公式r q p ∧⌝∧的成真赋值为010 ( × ) 5.))(()(B x A x B x xA →∃=→∀ ( √ )6.命题“如果1+2=3,则雪是黑的”是真命题 ( × ) 7.p q p p =∧∨)( ( √ )8.))()((x G x F x →∀是永真式 ( × ) 9.“我正在撒谎”是命题 ( × ) 10. )()(x xG x xF ∃→∀是永真式( √ )11.命题“如果1+2=0,则雪是黑的”是假命题 ( × ) 12.p q p p =∨∧)( ( √ )13.))()((x G x F x →∀是永假式 ( × )14.每个命题公式都有唯一的特异(主)合取范式 ( √ ) 15.若雪是黑色的:p ,则q →p 公式是永真式 ( √ ) 16.每个逻辑公式都有唯一的前束范式 ( × ) 17.q →p 公式的特异(主)析取式为q p ∨⌝ ( × ) 18.命题公式 )(r q p →∨⌝的成假赋值是110 ( √ ) 19.一阶逻辑公式)),()((y x G x F x →∀是闭式( × )单项选择题1. 下述不是命题的是( A )A.花儿真美啊! B.明天是阴天。

C.2是偶数。

D.铅球是方的。

2.谓词公式(∀y)(∀x)(P(x)→R(x,y))∧∃yQ(x,y)中变元y (B)A.是自由变元但不是约束变元B.是约束变元但不是自由变元C.既是自由变元又是约束变元D.既不是自由变元又不是约束变元3.下列命题公式为重言式的是( A )A.p→ (p∨q)B.(p∨┐p)→qC.q∧┐q D.p→┐q4.下列语句中不是..命题的只有(A )A.花儿为什么这样红?B.2+2=0C.飞碟来自地球外的星球。

离散数学习题一,二参考答案

离散数学习题一,二参考答案

《离散数学》习题一参考答案第一节 集合的基数1.证明两个可数集的并是可数集。

证明:设A ,B 是两可数集,},,,,,{321 n a a a a A =,},,,,,{321 n b b b b B = ⎪⎩⎪⎨⎧-→j b i a N B A f j i 212: ,f 是一一对应关系,所以|A ∪B|=|N|=0ℵ。

2.证明有限可数集的并是可数集证:设k A A A A 321,,是有限个可数集,k i a a a a A in i i i i ,,3,2,1),,,,,(321 ==⎪⎩⎪⎨⎧+-→==i k j a N A A f ij k i i )1(:1,f 是一一对应关系,所以|A|=| k i i A 1=|=|N|=0ℵ。

3.证明可数个可数集的并是可数集。

证:设 k A A A A 321,,是无限个可数集, ,3,2,1),,,,,(321==i a a a a A in i i i i⎪⎪⎩⎪⎪⎨⎧+-+-+→=∞=i j i j i a N A A f ij i i )2)(1(21:1 , 所以f 是一一对应关系,所以|A|=| ∞=1i i A |=|N|=0ℵ。

4.证明整系数多项式所构成的集合是可数集。

证明:设整系数n 次多项式的全体记为}|{1110Z a a x a x a x a A i n n n n n ∈++++=--则整系数多项式所构成的集合 ∞==1N n A A ;由于k x 的系数k a 是整数,那么所有k x 的系数的全体所构成的集合是可数集,由习题2“有限个可数集的并是可数集”可得n A 是可数集,再又习题4“可数个可数集的并是可数集”得出整系数多项式所构成的集合 ∞==1N n A A 也是可数集。

5.证明不存在与自己的真子集等势的有限集合.证明:设集合A 是有限集,则|A|=n ,若B 是A 的真子集,则|B|≤|A|=n ,A-B ≠φ,即|A-B|=|A|-|AB|>0;又A=(A-B )∪B ,(A-B )B=φ,所以,,就是|A|>|B|,即得结论。

《离散数学》考试题库及答案(二)

《离散数学》考试题库及答案(二)

《离散数学》考试题库及答案试卷五试题与答案一、填空15%(每空3分)1、设G 为9阶无向图,每个结点度数不是5就是6,则G 中至少有 个5度结点。

2、n 阶完全图,K n 的点数X (K n ) = 。

3、有向图 中从v 1到v 2长度为2的通路有 条。

4、设[R ,+,·]是代数系统,如果①[R ,+]是交换群 ②[R ,·]是半群③ 则称[R ,+,·]为环。

5、设],,[⊕⊗L 是代数系统,则],,[⊕⊗L 满足幂等律,即对L a ∈∀有 。

二、选择15%(每小题3分)1、 下面四组数能构成无向简单图的度数列的有( )。

A 、(2,2,2,2,2); B 、(1,1,2,2,3); C 、(1,1,2,2,2); D 、(0,1,3,3,3)。

2、 下图中是哈密顿图的为( )。

3、 如果一个有向图D 是强连通图,则D 是欧拉图,这个命题的真值为( )A 、真;B 、假。

4、 下列偏序集( )能构成格。

5、 设}4,41,3,31,2,21,1{=s ,*为普通乘法,则[S ,*]是()。

A 、代数系统;B 、半群;C 、群;D 、都不是。

三、证明 48%1、(10%)在至少有2个人的人群中,至少有2 个人,他们有相同的朋友数。

2、(8%)若图G 中恰有两个奇数度顶点,则这两个顶点是连通的。

3、(8%)证明在6个结点12条边的连通平面简单图中, 每个面的面数都是3。

4、(10%)证明循环群的同态像必是循环群。

5、(12%)设]1,0,,,,[-+⨯B 是布尔代数,定义运算*为)()(*b a b a b a ⨯+⨯=,求证[B ,*]是阿贝尔群。

四、计算22%1、在二叉树中1) 求带权为2,3,5,7,8的最优二叉树T 。

(5分) 2) 求T 对应的二元前缀码。

(5分)2、 下图所示带权图中最优投递路线并求出投递路线长度(邮局在D 点)。

答案:一、填空(15%)每空3 分1、 6;2、n ;3、2;4、+对·分配且·对+分配均成立;5、a a a a a a =⊕=⊗且。

离散数学考试题及答案

离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。

B. 如果今天是周一,那么明天是周三。

C. 如果今天是周一,那么明天是周四。

D. 如果今天是周一,那么明天是周五。

答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。

答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。

答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。

答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。

答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。

答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。

例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。

2. 解释什么是逻辑蕴含,并给出一个例子。

答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。

例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。

如果今天是周一,那么根据逻辑蕴含,明天必须是周二。

3. 请描述什么是二叉搜索树,并给出它的一个性质。

答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。

它的一个性质是中序遍历可以得到一个有序序列。

四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。

离散数学练习题及答案

离散数学练习题及答案

一、填空题1、集合的表示方法有两种: 法和 法。

请把“奇整数集合”表示出来{ }。

1、列举;描述;}12|{Z k k x x ∈+=,2、无向连通图G 含有欧拉回路的充分必要条件是不含有奇数度结点.2*、连通有向图D 含有欧拉回路的充分必要条件是D 中每个结点的入度=出度. 3、设R 是集合A 上的等价关系,则R 所具有的关系的三个特性是 、自反性、对称性、传递性.4、有限图G 是树的一个等价定义是:连通无回路(或任一等价定义).5、设N (x ):x 是自然数,Z (y );y 是整数,则命题“自然数都是整数,而有的整数不是自然数”符号化为∀x (N (x )→Z (x ))∧∃x (Z (x )∧⌝N (x ))6、在有向图的邻接矩阵中,第i 行元素之和,第j 列元素之和分别为 、结点v i 的出度和结点v j 的入度. 7、设A ,B 为任意命题公式,C 为重言式,若C B C A ∧⇔∧,那么命题B A ↔是重言式的真值是 1 .8、命题公式)(Q P →⌝的主析取范式为P ∧⌝Q .9、 设图G =<V ,E >和G '=<V ',E '>,若 ,则G '是G 的真子图,若V '=V ,E '⊆E ,则G '是G 的生成子图. E E V V E E V V ⊆'='⊂'⊂',;或 10、在平面图>=<E V G ,中,则∑=ri ir 1)deg(=2∣E ∣,其中r i(i =1,2,…,r )是G 的面.11、设}2,1{},,{==B b a A ,则从A 到B 的所有映射是11、σ1={(a ,1),(b ,1)};σ2={(a ,2),(b ,2)};σ3={(a ,1),(b ,2)};σ4={(a ,2),(b ,1)}12、表达式∀x ∃yL (x ,y )中谓词的定义域是{a ,b ,c },将其中的量词消除,写成与之等价的命题公式为 12、(L (a ,a )∨L (a ,b )∨L (a ,c ))∧(L (b ,a )∨L (b ,b )∨L (b ,c ))∧(L (c ,a )∨L (c ,b )∨L (c ,c )) 12*、设个体域D ={a ,b },公式)),()((y x yH x G x ∃→∀消去量词化为 (G (a )→(H (a ,a )∨H (a ,b )))∧ (G (b )→(H (b ,a )∨H (b ,b )))13、含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 14、设R ,S 都是集合A 上的等价关系,则对称闭包s (R ⋂S )= R ⋂S15、设G 是连通平面图,v ,e ,r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式是2=-+e r v16、设G 是n 个结点的简单图,若G 中每对结点的度数之和≥n ,则G 一定是哈密顿图. 17、一个有向树T 称为根树,若 ,其中 ,称为树根,称为树叶. 若有向图T 恰有一个结点的入度为0,其余结点入度为1;入度为0的结点;出度为0的结点.18、图的通路中边的数目称为 . 结点不重复的通路是 通路. 边不重复的通路是 通路. 通路长度;初级;简单. 19、设A 和B 为有限集,|A|=m ,|B|=n ,则有 个从A 到B 的关系,有 个从A 到B 的函数,其中当m ≤n 时有 个入射,当m=n 时,有 个双射。

离散数学试题及答案解析

离散数学试题及答案解析

离散数学试题及答案解析一、选择题1. 在集合{1,2,3,4}中,含有3个元素的子集有多少个?A. 4B. 8C. 16D. 32答案:B解析:含有3个元素的子集可以通过组合数公式C(n, k) = n! / [k!(n-k)!]来计算,其中n为集合的元素个数,k为子集中的元素个数。

在本题中,n=4,k=3,所以C(4, 3) = 4! / [3!(4-3)!] = 4。

2. 下列哪个命题是真命题?A. 所有偶数都是整数。

B. 所有整数都是偶数。

C. 所有整数都是奇数。

D. 所有奇数都是整数。

答案:A解析:偶数是指能被2整除的整数,因此所有偶数都是整数,选项A是真命题。

选项B、C和D都是错误的,因为并非所有整数都是偶数或奇数。

二、填空题1. 逻辑运算符“非”(NOT)的真值表是:当输入为真时,输出为______;当输入为假时,输出为真。

答案:假解析:逻辑运算符“非”(NOT)是一元运算符,它将输入的真值取反。

如果输入为真,则输出为假;如果输入为假,则输出为真。

2. 命题逻辑中,合取词“与”(AND)的真值表是:当两个命题都为真时,输出为真;否则输出为______。

答案:假解析:合取词“与”(AND)是二元运算符,只有当两个命题都为真时,输出才为真;如果其中一个或两个命题为假,则输出为假。

三、简答题1. 解释什么是等价关系,并给出一个例子。

答案:等价关系是定义在集合上的一个二元关系,它满足自反性、对称性和传递性。

例如,考虑整数集合上的“同余”关系。

对于任意整数a,b,如果a和b除以同一个正整数n后余数相同,则称a和b模n同余。

这个关系是自反的(a同余a),对称的(如果a同余b,则b同余a),并且是传递的(如果a同余b且b同余c,则a同余c)。

2. 什么是图的连通性?一个图是连通的需要满足什么条件?答案:图的连通性是指在无向图中,任意两个顶点之间都存在一条路径。

一个图是连通的需要满足以下条件:图中的任意两个顶点v和w,都可以通过图中的边相互到达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离散数学试题
第一部分选择题
一、单项选择题
1.下列是两个命题变元p,q的小项是(C )
A.p∧┐p∧q B.┐p∨q
C.┐p∧q D.┐p∨p∨q
2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐q
C.p∧q D.p∧┐q
3.下列语句中是命题的只有( A )
A.1+1=10 B.x+y=10
C.sinx+siny<0 D.x mod 3=2
4.下列等值式不正确的是( D )
A.┐(∀x)A⇔(∃x)┐A
B.(∀x)(B→A(x))⇔B→(∀x)A(x)
C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)
D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)
5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是(C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))
B.Q(x,z)→(∀y)R(x,y,z)
C.Q(x,z)→(∃x)(∀y)R(x,y,z)
D.Q(x,z)
6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )
A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}
C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}
7.设A={Ø},B=P(P(A)),以下正确的式子是(A )
A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈B
C.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B
8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是(A )
A.(X-Y)-Z=X-(Y∩Z)
B.(X-Y)-Z=(X-Z)-Y
C.(X-Y)-Z=(X-Z)-(Y-Z)
D.(X-Y)-Z=X-(Y∪Z)
9.在自然数集N上,下列定义的运算中不可结合的只有( D )
A.a*b=min(a,b)
B.a*b=a+b
C.a*b=GCD(a,b)(a,b的最大公约数)
1 / 7
2 / 7
D .a*b=a(mod b)
10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系
11.设R 是A 上的二元关系,且R ·R R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射
CDACCDAADADB
第二部分 非选择题
二、填空题
1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c)
;(x ∃)S(x)等价于
命题公式 S(a)∨S(b) ∨S(c) 。

2.设R 为A 上的关系,则R 的自反闭包r(R)= _R ∪A I _ ,对称闭包s(R)= _R ∪R ~。

3.某集合A 上的二元关系R 具有对称性,反对称性,自反性和传递性,此关系R 是 A I _ ,其关系矩阵是 只有主对角线上元素为1 。

三、计算题 1.(4分)如果论域是集合{a,b,c},试消去给定公式中的量词:)0y x )(x )(y (=+∀∃。

2.用等值演算求下面公式的主析取范式。

)()(P Q Q P ∨⌝→→⌝
3 /
7
3.用等值演算法求公式)()(Q P Q P ⌝→↔→⌝的主合取范式。

4.(6分)在偏序集<Z,≤>中,其中Z={1,2,3,4,6,8,12,14},≤是Z 中的整除关系,求集合
D={2,3,4,6}的极大元,极小元,最大元,最小元,最小上界和最大下界。

4 /
7
5.设集合A={1,2,3,4,5},A 上的划分为π={{1,2,3},{4,5}},试求:
1) 写出划分π诱导的等价关系R ;
2) 写出关系矩阵R M ; 3) 画出关系图。

6. 设A ={a ,b ,c ,d },R 是A 上的二元关系,且R ={<a ,b >,<b ,a >,<b ,c >,<c ,d >},求r (R )、s (R )和t (R )。

解 r (R )=R ∪I A ={<a ,b >,<b ,a >,<b ,c >,<c ,d >,<a ,a >,<b ,b >,<c ,c >,<d ,d >}
s (R )=R ∪R -1
={<a ,b >,<b ,a >,<b ,c >,<c ,d >,<c ,b >,<d ,c >}
5 / 7
R 2
={<a ,a >,<a ,c >,<b ,b >,<b ,d >} R 3
={<a ,b >,<a ,d >,<b ,a >,<b ,c >} R 4
={<a ,a >,<a ,c >,<b ,b >,<b ,d >}=R 2
t (R )=i i R ∞
=1Y ={<a ,b >,<b ,a >,<b ,c >,<c ,d >,<a ,a >,<a ,c >,<b ,b >,<b ,d >,<a ,
d >}
7.已知集合A 和B 且|A|=n ,|B|=m ,求A 到B 的二元关系数是多少?A 到B 的函数数是多少?
解:因为|P(A ×B)|=2|A ×B|=2|A||B|=2mn ,所以A 到B 的二元关系有2mn 个。

因为|BA|=|B||A|=mn ,所以A 到B 的函数mn 个。

四、证明题
1.设R 和S 是二元关系,证明1
11)(---=S R S R Y Y
2.设A={a,b,c},R={(a,a),(a,b),(b,c)},验证rs(R)=sr(R)。

3.设R 是A 上的二元关系,试证:R 是传递的当且仅当
R R ⊆2
,其中2R 表示R R •。

6 /
7
4.证明下列结论:
(1)R Q P R Q P →∧⇒→∨
(2)D A D C B C A B A ⇒∨∧⌝→∧→),(),()( 解:(1)1 P ∧Q P 附加前提 2 P T ,1,I 2 3 P ∨Q
T ,2,I 1
4 P ∨Q →R P
5 R
T ,3,4,I 3
6 P ∧Q →R
CP (2)1 ⌝D
P 假设前提 2 D ∨A P
3 A
T ,1,2,I 5
4 (A →B)∧(A →C) P
5 A →B T ,4,I 2
6 B
T ,3,5,I 3 7 A →C T ,4,I 2 8 C
T ,3,7,I 3 9 B ∧C
T ,6,8 ,合取式 10 ⌝(B ∧C )
P
11
(B ∧C )∧⌝(B ∧C ) T ,9,10,合取式,矛盾
5. 已知R 和S 是非空集合A 上的等价关系,试证:1)R ∩S 是A 上的等价关系;2)对a ∈A ,
[a]R∩S=[a]R∩[a]S。

解:x∈A,因为R和S是自反关系,所以<x,x>∈R、<x,x>∈S,因而<x,x>∈R∩S,故R∩S是自反的。

x、y∈A,若<x,y>∈R∩S,则<x,y>∈R、<x,y>∈S,因为R和S是对称关系,所以因<y,x>∈R、<y,x>∈S,因而<y,x>∈R∩S,故R∩S是对称的。

x、y、z∈A,若<x,y>∈R∩S且<y,z>∈R∩S,则<x,y>∈R、<x,y>∈S且<y,z>∈R、<y,z>∈S,因为R和S是传递的,所以因<x,z>∈R、<x,z>∈S,因而<x,z>∈R∩S,故R∩S 是传递的。

总之R∩S是等价关系。

2)因为x∈[a]R∩S⇔<x,a>∈R∩S⇔
<x,a>∈R∧<x,a>∈S⇔ x∈[a]R∧x∈[a]S⇔ x∈[a]R∩[a]S
所以[a]R∩S=[a]R∩[a]S。

五、应用题
1.所有的主持人都很有风度。

李明是个学生并且是个节目主持人。

因此有些学生很有风度。

请用谓词逻辑中的推理理论证明上述推理。

(论述域:所有人的集合)
7 / 7。

相关文档
最新文档