华师大附中2011届数学复习教学案:充分条件与必要条件
充分条件与必要条件教案02

①例1:下列命题中,哪些 是 的充要条件?
(1) 四边形的对角线相等, 四边形是平行四边形;
(2) , 函数 是偶函数;
(3) , ;
(4) , .
(学生自练 个别回答 教师点评)
②练习教材P14练习第1、2题
③探究:请同学们自己举出一些 是 的充要条件的命题来.
教
学
过
程
④例2:已知: 的半径为 ,圆心O到直线 的距离为 .求证: 是直线 与 相切的充要条件.
(3) 内错角相等, 两直线平行;
(4) 两直线平行, 内错角相等.
二、讲授新课:
1.教学充要条件:
①一般地,如果既有 ,又有 ,就记作 .此时,我们说, 是 的充分必要条件,简称充要条件(sufficient and necessary condition).
②上述命题中(3)(4)命题都满足 ,也就是说 是 的充要条件,当然,也可以说 是 的充要条件.
(5)“ ”是“ ”的充分条件.
3.作业:教材P14页 习题第3、4题
中学数学科教案
上课时间
第周星期第节
课型
课题
1.2.2充要条件
教学目的
进一步理解充分条件、必要条件的概念,同时学习充要条件的概念.
教学设想
教学重点:充要条件概念的理解.
教学难点:理解必要条件的概念.
教Hale Waihona Puke 学过程一、复习准备:
指出下列各组命题中, 是 的什么条件, 是 的什么条件?
(1) , ;
(2) , ;
(教师引导 学生板书 教师点评)
3.小结:充要条件概念的理解.
三、巩固练习:
1.从“ ”、“”与“ ”中选出适当的符号填空:
《数学》教案:课题1.5 充分条件与必要条件

课题1.5 充分条件与必要条件【教学目标】了解“充分条件”“必要条件”及“充要条件”的概念。
【教学重点】“充分条件”“必要条件”及“充要条件”的概念。
【教学难点】“必要条件”的概念。
【教学方法】通过问题引领,激发学习兴趣,在强化基本概念的基础上,通过训练加强各部分知识的联系,注重数学思想方法的渗透和对学生思维能力的培养。
【教学工具】电脑、投影仪、课件。
【教学时间】2课时(90 min)。
【教学过程】☞解决:问题1中,学生自己的介绍已经能充分向老师表明“自己是爸爸的孩子”,故爸爸不需要补充介绍;问题2中,开关A 闭合而开关B断开时,灯不会亮,只有A和B同时闭合灯才会亮。
探索新知1.充分条件☞定义:如果由条件p成立能推出结论q成立,则称条件p是结论q的充分条件,记作p q⇒。
☞举例:由条件“2x=”可以推出结论“(2)(3)0x x--=”是正确的,故“2x=”是“(2)(3)0x x--=”的充分条件。
2.必要条件☞定义:如果由结论q成立能推出条件p成立,则称条件p是结论q的必要条件,记作q p⇒(或p q⇐)。
☞举例:由结论“3x=”成立能推出条件“290x-=”成立,故条件“290x-=”是结论“3x=”的必要条件。
3.充要条件☞定义:如果p既是q的充分条件(p q⇒),又是q的必要条件(q p⇒),则称p是q的充分且必要条件,简称充要条件,记作p q⇔。
☞举例:根据初中所学定理,“两直线平行”是内错角的充分必要条件。
➢例题解析例指出条件p是结论q的什么条件:(1)1p x=-:,||1q x=:;(2)5p x>-:,0q x>:;(3)4p x=:,2(4)0q x-=:;(4)0p x=:,0q xy=:;(5)249p x=:,70q x-=:;(6)4120p x-+<:,3q x>:。
☞分析:解题分三步,第一步要认清条件p和结论q,第二步分别判断p q⇒和q p⇒,第三步下结论。
高中数学复习教案设计:《充分条件与必要条件》

高中数学复习教案设计:《充分条件与必要条件》成功如同谷仓内的金表,早已存在于我们周围,散布于人生的每个角落,只要执著地去寻找,就一定能找到。
下面是本文库为您推荐高中数学复习教案设计:《充分条件与必要条件》。
一、教学目标运用充分条件、必要条件和充要条件教学重难点运用充分条件、必要条件和充要条件二、教学过程一、基础知识(一)充分条件、必要条件和充要条件1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。
2.必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B 是A成立的必要条件。
3.充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A 是B成立的充要条件;同时B也是A成立的充要条件。
(二)充要条件的判断1若成立则A是B成立的充分条件,B是A成立的必要条件。
2.若且BA,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件。
3.若成立则A、B互为充要条件。
证明A是B的充要条件,分两步:(1)充分性:把A当作已知条件,结合命题的前提条件推出B;(2)必要性:把B当作已知条件,结合命题的前提条件推出A。
二、范例选讲例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件(1)在△ABC中,p:A>B q:BC>AC;(2)对于实数x、y,p:x+y≠8 q:x≠2或y≠6;(3)在△ABC中,p:SinA>SinB q:tanA>tanB;1(4)已知x、y∈R,p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0解:(1)p是q的充要条件(2)p是q的充分不必要条件(3)p是q的既不充分又不必要条件(4)p是q的充分不必要条件练习1(变式1)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不充分条件是( C )A、x4 C、│x-1│>1 D、│x-2│>3例2.填空题(3)若A是B的充分条件,B是C的充要条件,D是C的必要条件,则A 是D的条件.答案:(1)充分条件(2)充要、必要不充分(3)A=> B C=> D故填充分。
充分条件和必要条件教案(教师

充分条件和必要条件教案(教师版)第一章:引言教学目标:1. 让学生理解充分条件和必要条件的概念。
2. 让学生掌握如何判断充分条件和必要条件。
教学内容:1. 引入充分条件和必要条件的概念。
2. 通过实例让学生理解充分条件和必要条件的区别。
教学步骤:1. 向学生介绍充分条件和必要条件的概念。
2. 通过举例说明充分条件和必要条件的区别。
3. 让学生进行练习,判断给出的条件是充分条件还是必要条件。
教学评估:1. 通过课堂提问检查学生对充分条件和必要条件的理解程度。
2. 通过练习题检查学生判断充分条件和必要条件的能力。
第二章:充分条件教学目标:1. 让学生理解充分条件的意思。
2. 让学生掌握如何判断一个条件是充分条件。
教学内容:1. 定义充分条件的概念。
2. 讲解如何判断一个条件是充分条件。
1. 向学生解释充分条件的概念。
2. 通过举例让学生理解如何判断一个条件是充分条件。
3. 让学生进行练习,判断给出的条件是否是充分条件。
教学评估:1. 通过课堂提问检查学生对充分条件的理解程度。
2. 通过练习题检查学生判断充分条件的能力。
第三章:必要条件教学目标:1. 让学生理解必要条件的概念。
2. 让学生掌握如何判断一个条件是必要条件。
教学内容:1. 定义必要条件的概念。
2. 讲解如何判断一个条件是必要条件。
教学步骤:1. 向学生解释必要条件的概念。
2. 通过举例让学生理解如何判断一个条件是必要条件。
3. 让学生进行练习,判断给出的条件是否是必要条件。
教学评估:1. 通过课堂提问检查学生对必要条件的理解程度。
2. 通过练习题检查学生判断必要条件的能力。
第四章:充分条件和必要条件的区别1. 让学生理解充分条件和必要条件的区别。
2. 让学生掌握如何判断一个条件是充分条件还是必要条件。
教学内容:1. 讲解充分条件和必要条件的区别。
2. 讲解如何判断一个条件是充分条件还是必要条件。
教学步骤:1. 向学生讲解充分条件和必要条件的区别。
充分条件和必要条件教案

充分条件和必要条件教案教案:充分条件和必要条件目标:了解充分条件和必要条件的概念,学会判断充分条件和必要条件的方法。
一、导入(5分钟)1.引入话题:“如果你希望参加篮球队,必须会打篮球。
”你认为这句话是什么意思呢?2.听听同学的回答,引导他们思考充分条件和必要条件的概念。
二、概念讲解(15分钟)1.充分条件:在一个条件语句中,如果假设的条件成立,那么结果就一定成立。
也即A是B的充分条件,表示如果A成立,那么B一定成立。
如:“会打篮球”是“参加篮球队”的充分条件。
2.必要条件:在一个条件语句中,如果结果成立,那么假设的条件也一定成立。
也即A是B的必要条件,表示如果B成立,那么A一定成立。
如:“参加篮球队”是“会打篮球”的必要条件。
3.举例说明:“如果一个人是中国公民,那么他一定会说中文。
”这句话中,“是中国公民”是“会说中文”的充分条件,“会说中文”是“是中国公民”的必要条件。
4.提问互动:“如果对于一个人来说,会说中文,那么他一定是中国公民吗?”同学们思考一下。
可以请同学们举例来说明。
三、判断方法(20分钟)1.以实例为基础,引导学生进行判断。
2.举例1:“如果昨天下雨,那么今天会打雷。
”请同学们判断这个条件语句中充分条件和必要条件是什么?3.举例2:“如果一个图形是四边形,那么它的内角和一定是360度。
”请同学们判断这个条件语句中充分条件和必要条件是什么?4.理清判断方法:-充分条件要求条件在成立时结果一定成立。
-必要条件要求结果在成立时条件一定成立。
五、练习(30分钟)1.在小组中进行讨论,找出以下条件语句中的充分条件和必要条件。
-如果天气很好,那么我们就去野餐。
-如果水温超过100摄氏度,那么水会沸腾。
-如果一个数是偶数,那么它可以被2整除。
2.举报练习:“如果一个人有继续深造的愿望,那么他必须考取研究生。
”请同学们判断这个条件语句中充分条件和必要条件是什么?对于其他同学提出的条件语句也进行判断。
充分条件和必要条件教案(教师)

一、教案简介本教案旨在帮助学生理解充分条件和必要条件的概念,掌握其判断方法,并能够运用到实际问题中。
通过本节课的学习,学生应能理解充分条件和必要条件的定义,判断一个条件是充分还是必要,以及两者之间的关系。
二、教学目标1. 知识与技能:理解充分条件和必要条件的定义;判断一个条件是充分还是必要;掌握充分条件和必要条件的关系。
2. 过程与方法:通过实例分析,让学生体验充分条件和必要条件的判断过程;运用逻辑推理,引导学生发现充分条件和必要条件之间的关系。
3. 情感态度价值观:培养学生严谨的逻辑思维能力;让学生感受数学与实际生活的紧密联系,提高学生学习数学的兴趣。
三、教学重点与难点重点:充分条件和必要条件的定义及其判断方法。
难点:充分条件和必要条件之间的关系。
四、教学准备1. 教学材料:教材、PPT、实例分析题。
2. 教学工具:投影仪、计算机。
五、教学过程1. 导入新课:通过一个生活实例,如“天气预报中说‘明天下雨’,请问‘带伞’是‘明天下雨’的充分条件还是必要条件?”引导学生思考充分条件和必要条件的概念。
2. 讲解充分条件和必要条件的定义:根据教材,给出充分条件和必要条件的定义,并通过PPT展示,让学生清晰地理解这两个概念。
3. 判断练习:给出一些判断题,让学生判断所给条件是充分还是必要,如“大学生必须年满18岁,年满18岁是成为大学生的必要条件吗?”让学生在实践中掌握判断方法。
4. 实例分析:分析一些实际问题,如“一个房子的条件是有一个卧室,‘有卧室’是‘这是一个房子’的充分条件还是必要条件?”让学生体验充分条件和必要条件的判断过程。
5. 讲解充分条件和必要条件的关系:通过PPT展示,引导学生发现充分条件和必要条件之间的关系,如“充分条件不一定必要,必要条件不一定充分”。
6. 课堂小结:对本节课的内容进行总结,强调充分条件和必要条件的判断方法及其关系。
7. 布置作业:设计一些练习题,让学生巩固所学知识,如“判断下列条件中,哪些是充分条件,哪些是必要条件?”六、教学拓展1. 通过举例让学生理解充分条件和必要条件在现实生活中的应用,如合同签订、法规制定等。
高考教案-《充分条件与必要条件》教学设计
《充分条件与必要条件》教学设计一、教材分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的学习特别是数学推理的学习打下基础。
在新教材中,在“充要条件”这节内容前,安排了“逻辑联结词”和“四种命题”这二节内容作为必要的知识铺垫,特别是“逻辑联结词”这部分内容是第一次进入中学数学教材,安排在充要条件之前讲授,既可以使学生丰富并深化对命题的理解,也便于老师讲透充要条件这一基本数学概念。
二、学情分析:新教材在这一节中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的.由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。
三、教学目标设计:(一)知识目标:1、正确理解充分条件、必要条件、充要条件三个概念。
2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。
3、在理解定义的基础上,可以自觉地对定义进行转化,转化成推理关系及集合的包含关系。
(二)能力目标:1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。
2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。
3、培养学生的建构能力:“善建构”,通过反复的观察分析和类比,对归纳出的结论,建构于自己的知识体系中。
(三)情感目标:1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。
2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。
3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。
四、教学重点:充分条件,必要条件和充要条件三个概念教学重点:充要条件五、教学结构设计:数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。
充分条件、必要条件教学设计
《充分条件与必要条件》教学设计一、教学目标1•知识与技能:⑴正确理解充分条件、必要条件和充要条件;⑵能正确判断充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件。
2•过程与方法:通过对充分条件、必要条件和充要条件概念的理解及运用,培养学生分析、判断和归纳的逻辑思维能力。
3•情感、态度和价值观:先由一段审判视频进行导课,给学生渗透知法、守法的法律意识。
再通过主动探究、合作学习、感受探索的乐趣与成功的喜悦,从中体会数学的理性与严谨性。
二、教学重点与难点重点:充分条件、必要条件和充要条件的定义。
难点:(1)充分条件、必要条件和充要条件三个概念在论证中的正确运用;(2)“q的什么条件是p"转化为“p是q的什么条件”。
三、教学方法与手段采用探究式教学方法。
通过多媒体辅助教学,充分调动学生的参与课堂的主动性与积极性。
四、教学基本流程五•教学情境设计(一)创设情境,渗透法律意识1•教师借助多媒体播放一段关于抢劫罪”的审判视频。
2.师生活动教师提出问题:(1)同学们,看完这段视频,你们有何感想?⑵视频中审判长先陈述一系列的“理由依据”,才得出审判的结果,请问理由依据”与审判结果”之间有什么关系?学生经过思考回答老师提出的上述问题,问题1的回答主要围绕不要触犯法律方面。
老师可以引导学生回答问题⑵,理由依据”必须是充分的,审判结果”才能让人信服,说明理由依据”对于审判结果”来说必须是充分的;若没有审判结果”,则这一系列的理由依据”毫无实际意义,说明审判结果”对理由依据”来说是必要的。
3.设计意图问题⑴的提出是向学生渗透法律意识,让学生知法、守法,不要去触犯法律。
问题⑵让学生理解理由依据”与审判结果”是充分必要的关系,从而引入新课《充分条件与必要条件》,既激起了学生的兴趣,又激发了学生的求知欲。
(二)提出问题,引入充分条件、必要条件和充要条件的定义1.思考:判断下列命题的真假(1)若a>b>0,则a2>b2;⑵若x>5,贝Ux>10;(3)若ac>bc,则a>b;(4)若整数a是6的倍数,则整数a是2和3的倍数。
【公开课教案】《充分条件与必要条件》教案设计
《充分条件和必要条件》教学设计一、教材分析1.内容分析:充要条件是中学数学中最重要的数学概念之一,主要讨论命题的条件与结论之间的逻辑关系,为今后数学推理的学习打下基础。
因此,高考说明明确要求达到B级。
与老教材相比,苏教版新教材作了3方面的调整,①时间调整:将这部分内容从高一上学期移到高二选修2-1中,教学时间后移,学生的逻辑思维能力逐渐加强,从而更加能够接受和理解;②定义的处理:新教材的定义显得更简洁、精炼;③题量大幅增大。
新教材更好地贯彻了“淡化形式,注重实质”这一教学观。
在“充要条件”这节内容前,还安排了“四种命题”作为必要的知识铺垫。
这部分内容是第一次进入中学数学教材,安排在充要条件之前讲授,既可以使学生丰富并深化对命题的理解,也便于老师讲透充要条件这一基本数学概念。
2.学情分析:从学生学习的角度看,学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难.因此,我在讲解这节内容时,不一味拔高要求,追求一步到位,而是在今后的教学中滚动式地逐步深化,使之与学生的知识结构同步发展完善。
二、教学目标1.知识目标:①正确理解充分条件、必要条件、充要条件的概念。
②熟练理解四种命题及其真假的判别,并进一步理解充分条件、必要条件、充要条件的概念③在理解定义的基础上,自觉地对定义进行转化,转化成推理关系及集合的包含关系。
2.能力目标:①培养学生的观察与类比能力:“多观察”,“勤类比”,通过大量的问题,会观察其共性及个性;②培养学生的归纳能力:“善归纳”,对一些事例,观察后进行归纳总结出一般规律;③培养学生的建构能力:“重建构”,通过反复的观察分析和类比,把归纳出的结论,建构到自己的知识体系中。
3.情感目标:①通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受;②通过对命题的四种形式及充分条件,必要条件的理解,培养学生的辩证唯物主义观点;③通过“多观察、勤类比、善归纳、重建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于进取的精神。
完整版《充分条件与必要条件》教学设计
引导学生总结归纳,形成正确的概念体 系。
巩固练习与拓展延伸
设计练习题,让学生运用所学知 识解决问题,加深对充分条件和
必要条件的理解。
拓展延伸,引导学生思考充分条 件和必要条件在实际生疑问,进行课堂互 动,促进知识内化。
03
教学方法与手段
启发式教学法应用
3
提供个性化辅导
针对学习困难的学生,教师需要提供个性化的辅 导和支持,帮助他们克服学习障碍,提高学习效 果。
THANKS
感谢观看
。
成果展示
各小组选派代表展示讨论成果, 其他小组进行补充和质疑。
分享交流环节
分享学习心得
学生分享自己在探究过程中的学习心得和体会。
交流不同观点
学生就充分条件与必要条件的理解进行交流,探讨不同观点。
教师总结提升
教师对学生的分享和交流进行总结,提升学生的认识水平。
自我评价和反思环节
自我评价
01
学生对自己在本次活动中的表现进行评价,包括参与度、合作
小组的实力均衡。
明确讨论任务
给每个小组分配明确的 讨论任务,如分析某个 问题中的充分条件和必
要条件等。
小组内讨论
小组成员在组内展开讨 论,互相交流看法和思
路,共同解决问题。
小组间交流
各小组之间进行交流和 分享,互相学习和借鉴 ,提高整体学习效果。
多媒体辅助教学应用
制作课件
根据课程内容制作精美的课件 ,包括文字、图片、动画等元 素,增强视觉效果和吸引力。
演示实验
通过多媒体演示相关实验或操 作过程,帮助学生更好地理解 充分条件和必要条件的概念及 应用。
视频教学
播放与课程内容相关的视频资 料,如专家讲座、案例分析等 ,丰富教学手段和内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:1.8 充分条件与必要条件(1)教学目的:1.使学生正确理解充分条件、必要条件和充要条件三个概念,并能在判断、论证中正确运用2.在师生、学生间的数学交流中增强逻辑思维活动,为用等价转化思想解决数学问题打下良好的逻辑基础.教学重点:正确理解三个概念,并在分析中正确判断教学难点:充分性与必要性的推导顺序授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:这一大节通过若干实例,讲述充分条件、必要条件和充要条件的有关知识.这一大节的重点是充要条件.学习简易逻辑知识,主要是为了培养学生进行简单推理的技能,发展学生的思维能力,在这方面,逻辑联结词“或”、“且”、“非”与充要条件的有关内容是十分必要的.关于充分条件、必要条件与充要条件,本章对教学要求的尺度,还是控制在对初中代数、几何的有关问题的理解上为宜.教学过程:一、复习引入:同学们,当某一天你和你的妈妈在街上遇到老师的时候,你向老师介绍你的妈妈说:“这是我的妈妈”.那么,大家想一想这个时候你的妈妈还会不会补充说:“你是她的孩子”呢?不会了!为什么呢?因为前面你所介绍的她是你的妈妈就足于保证你是她的孩子.那么,这在数学中是一层什么样的关系呢?今天我们就来学习这个有意义的课题—充分条件与必要条件.二、讲解新课:⒈符号“⇒”的含义前面我们讨论了“若p则q”形式的命题,其中有的命题为真,有的命题为假.“若p 则q”为真,是指由p经过推理可以得出q,也就是说,如果p成立,那么q一定成立,记作p⇒q,或者q⇐p;如果由p推不出q,命题为假,记作p q.简单地说,“若p则q”为真,记作p⇒q(或q⇐p);“若p则q”为假,记作p q(或q p).符号“⇒”叫做推断符号.例如,“若x>0,则x2>0”是一个真命题,可写成:x>0 ⇒x2>0;又如,“若两三角形全等,则两三角形的面积相等”是一个真命题,可写成:两三角形全等⇒两三角形面积相等.说明:⑴“p⇒q”表示“若p则q”为真;也表示“p蕴含q”.⑵“p⇒q”也可写为“q⇐p”,有时也用“p→q”.练习:1⑴⑵⑶⑷.练习:课本P35答案:⑴⇒;⑵⇒;⑶;⑷.⒉什么是充分条件?什么是必要条件?如果已知p⇒q,那么我们就说,p是q的充分条件,q是p的必要条件.在上面是两个例子中,“x>0”是“x2>0”的充分条件,“x2>0”是“x>0”的必要条件;“两三角形全等”是“两三角形面积相等”的充分条件,“两三角形面积相等”是“两三角形全等”的必要条件.⒊充分条件与必要条件的判断1.直接利用定义判断:即“若p⇒q成立,则p是q的充分条件,q是p的必要条件”.(条件与结论是相对的)三、范例例1指出下列各组命题中,p是q的什么条件,q是p的什么条件:⑴ p:x=y;q:x2=y2.⑵ p:三角形的三条边相等;q:三角形的三个角相等.分析:可根据“若p则q”与“若q则p”的真假进行判断.解:⑴由p⇒q,即x=y⇒x2=y2,知p是q的充分条件,q是p的必要条件.⑵由p⇒q,即三角形的三条边相等⇒三角形的三个角相等,知p是q的充分条件,q是p的必要条件;又由q⇒p,即三角形的三个角相等⇒三角形的三条边相等,知q也是p的充分条件,p也是q的必要条件.练习:课本P练习:2⑴⑵⑶⑷.35答案:⑴∵p⇒q,∴p是q的充分条件,q是p的必要条件;⑵∵q⇒p,∴p是q的必要条件,q是p的充分条件;⑶∵p⇒q,∴p是q的充分条件,q是p的必要条件;又∵q⇒p,∴q也是p的充分条件,p也是q的必要条件.⑷∵p⇒q,∴p是q的充分条件,q是p的必要条件;又∵q⇒p,∴q也是p的充分条件,p也是q的必要条件.以上是直接利用定义由原命题判断充分条件与必要条件的方法.那么,如果由命题不是很好判断的话,我们可以换一种方式,根据互为逆否命题的等价性,利用它的逆否命题来进行判断.2.利用逆否命题判断:即“若┐q⇒┐p成立,则p是q的充分条件,q是p的必要条件”.例2(补)如图1,有一个圆A,在其内又含有一个圆B. 请回答:⑴命题:若“A为绿色”,则“B为绿色”中,“A为绿色”是“B为绿色”的什么条件;“B为绿色”又是“A为绿色”的什么条件.⑵命题:若“红点在B内”,则“红点一定在A内”中,“红点在B 内”是“红点在A内”的什么条件;“红点在A内”又是“红点在B内”的什么条件.解法1(直接判断):⑴∵“A为绿色⇒B为绿色”是真的,∴由定义知,“A为绿色”是“B为绿色”的充分条件;“B为绿色”是“A为绿色”的必要条件.⑵如图2⑴,∵“红点在B内⇒红点在A内”是真的,∴由定义知,“红点在B内”是“红点在A内”的充分条件;“红点在A内”是“红点在B内”的必要条件.解法2(利用逆否命题判断):⑴它的逆否命题是:若“B不为绿色”则“A不为绿色”. ∵“B不为绿色⇒ A不为绿色”为真,∴“A为绿色”是“B为绿色”的充分条件;“B为绿色”是“A为绿色”的必要条件.⑵它的逆否命题是:若“红点不在A内”,则“红点一定不在B内”. 如图2⑵,∵“红点不在A内⇒红点一定不在B内”为真,∴“红点在B 内”是“红点在A内”的充分条件;“红点在A内”是“红点在B内”的必要条件.如何理解充分条件与必要条件中的“充分”和“必要”呢?下面我们以例2为例来说明.先说充分性:说条件是充分的,也就是说条件是充足的,条件是足够的,条件是足以保证的.例如,说“A为绿色”是“B为绿色”的一个充分条件,就是说“A为绿色”,它足以保证“B为绿色”.它符合上述的“若p则q”为真(即p⇒q)的形式.再说必要性:必要就是必须,必不可少.从例2的图可以看出,如果“B为绿色”,A可能为绿色,A也可能不为绿色.但如果“B不为绿色”,那么“A不可能为绿色”.因此,必要条件简单说就是:有它不一定,没它可不行.它满足上述的“若非q则非p”为真(即┐q⇒┐p)的形式.总之,数学上的充分条件、必要条件的“充分”、“必要”两词,与日常生活中的“充分”、“必要”意义相近,不过,要准确理解它们,还是应该以数学定义为依据.例2的问题,若用集合观点又怎样解释呢?请同学们想一想.四、练习:(补充题)用“充分”或“必要”填空,并说明理由:⒈“a和b都是偶数”是“a+b也是偶数”的充分条件;⒉“四边相等”是“四边形是正方形”的必要条件;⒊“x≠3”是“|x|≠3”的充分条件;⒋“x-1=0”是“x2-1=0”的充分条件;⒌“两个角是对顶角”是“这两个角相等”的充分条件;⒍“至少有一组对应边相等”是“两个三角形全等”的必要条件;⒎对于一元二次方程ax2+bx+c=0(其中a,b,c都不为0)来说,“b2-4ac≥0”是“这个方程有两个正根”的必要条件;⒏“a=2,b=3”是“a+b=5”的充分条件;⒐“a+b是偶数”是“a和b都是偶数”的必要条件;⒑“个位数字是5的自然数”是“这个自然数能被5整除”的充分条件.五、小结:本节主要学习了推断符号“⇒”的意义,充分条件与必要条件的概念,以及判断充分条件与必要条件的方法.判断充分条件与必要条件的依据是:若p⇒q(或若┐q⇒┐p),则p是q的充分条件;若q⇒p(或若┐p⇒┐q),则p是q的必要条件.六、作业:1.课本P内容,熟悉巩固有关内容.34-352.设A是C的充分条件,B是C的充分条件,D是C的必要条件,D是B的充分条件,那么,D是A的什么条件?A是B的什么条件?解:由题意作出逻辑图(右图),便知,D是A的必要条件;A是B的充分条件.3.预习:课本P内容.35-36七、板书设计(略)八、课后记:课题:1.8 充分条件与必要条件(2)教学目的:1.使学生理解充要条件的概念,掌握充要条件的判断;2.在师生、学生间的数学交流中增强逻辑思维活动,为用等价转化思想解决数学问题打下良好的逻辑基础.教学重点:正确理解三个概念,并在分析中正确判断教学难点:充分性与必要性的推导顺序授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:这一节是在上一节学习了充分条件、必要条件概念的基础上,进一步学习充要条件的有关知识.重点是充要条件.关于充分条件、必要条件与充要条件,还是控制在对初中代数、几何的有关问题的理解上为宜.教学过程:一、复习引入:⒈什么叫做充分条件?什么叫做必要条件?若p⇒q(或若┐q⇒┐p),则说p是q的充分条件,q是p的必要条件.⒉指出下列命题中,p是q的什么条件,q是p的什么条件:⑴p:x>2,q:x>1;⑵p:x>1,q:x>2;⑶p:x>0 ,y>0,q:x+y<0;⑷p:x=0,y=0,q:x2+y2=0.解:⑴∵x>2⇒x>1,∴p是q的充分条件,q是p的必要条件.⑵∵x>1x>2,但x>2⇒x>1,∴p是q的必要条件,q是p的充分条件.⑶∵x>0 ,y>0x+y<0,x+y<0,∴p不是q的充分条件,p也不是q的必要条件;q不是p的充分条件,q也不是p的必要条件.⑷∵x=0,y=0⇒x2+y2=0,∴p是q的充分条件,q是p的必要条件;又x2+y2=0⇒x=0,y=0,∴q是p的充分条件,p是q的必要条件.⒊在问题⑷中,p既是q的充分条件,p又是q的必要条件,此时,我们统说,p是q 的充分必要条件,简称充要条件.下面我们用数学语言来表述这个概念.二、讲解新课:⒈什么是充要条件?如果既有p⇒q,又有q⇒p,就记作p⇔q.此时,p既是q的充分条件,p又是q的必要条件,我们就说,p是q的充分必要条件,简称充要条件.(当然此时也可以说q是p 的充要条件)例如,“x=0,y=0”是“x2+y2=0”的充要条件;“三角形的三条边相等”是“三角形的三个角相等”的充要条件.说明:⑴符号“⇔”叫做等价符号.“p⇔q”表示“p⇒q且p⇐q”;也表示“p等价于q”. “p⇔q”有时也用“p↔q”;⑵“充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”,“仅当”表示“必要”.⒉几个相关的概念若p⇒q,但p q,则说p是q的充分而不必要条件;若p q,但p⇐q,则说p是q的必要而不充分条件;若p q,且p q,则说p是q的既不充分也不必要条件.例如,“x>2”是“x>1”的充分而不必要的条件;“x>1”是“x>2”的必要而不充分的条件;“x>0 ,y>0”是“x+y<0”的既不充分也不必要的条件.⒊充要条件的判断方法四种“条件”的情况反映了命题的条件与结论之间的因果关系,所以在判断时应该:⑴确定条件是什么,结论是什么;⑵尝试从条件推出结论,从结论推出条件(方法有:直接证法或间接证法);⑶确定条件是结论的什么条件.4.怎样用集合的观点对“充分”、“必要”、“充要”三种条件进行概括?答:有两种说法:⑴若A⊆B,则A是B的充分条件,B是A的必要条件;若A=B,则A 是B的充要条件(此时B也是A的充要条件).在含有变量的命题中,凡能使命题为真的变量x的允许值集合,叫做此命题的真值集合.⑵若p⇒q,说明p的真值集合⊆q的真值集合,则p是q的充分条件,q是p的必要条件;若p⇔q,说明p,q的真值集合相等,即p,q等价,则p是q充要条件(此时q也是p的充要条件).三、范例例(P例2)指出下列各组命题中,p是q的什么条件(在“充分而不必要条件”、“必要35而不充分条件”、“充要条件”、“既不充分也不必要条件”中选出一种)?⑴p:(x-2)(x-3)=0;q:x-2=0.⑵p:同位角相等;q:两直线平行.⑶p:x=3;q:x2=9.⑷p:四边形的对角线相等;q:四边形是平行四边形.解:⑴∵(x-2)(x-3)=0x-2=0,(x-2)(x-3)=0⇐x-2=0,∴p是q的必要而不充分的条件;⑵∵同位角相等⇔两直线平行,∴p是q的充要条件;⑶∵x=3⇒x2=9, x=3x2=9,∴p是q的充分而不必要的条件;⑷∵四边形的对角线相等四边形是平行四边形,四边形的对角线相等四边形是平行四边形,∴p是q的既不充分也不必要的条件.四、练习:1习题:3.⑴假;⑵假;⑶假;⑷真.课本P36练习:1,2;P36-38习题:3.答案:练习:1.⑴;⑵⇔;⑷⇔.2.⑴充分而不必要的条件;⑵充分而不必要的条件;⑶充要条件;⑷必要而不充分的条件.五、小结:六、作业:内容,进一步熟悉和巩固有关概念和方法.(一)复习:课本P34-36(二)书面:课本P习题1.8:1,2.36-37答案:1.⑴p:x>0,y>0;q:x+y>0. (∵⇒)⑵p:x>3;q:x>5.(∵⇐)⑶p:判别式b2-4ac≥0;q:方程ax2+bx+c=0(a≠0)有实根.(∵⇔)⑷p :x>y ;q :x 2>y 2. (∵)2.⑴充分而不必要的条件;⑵必要而不充分的条件;⑶必要而不充分的条件;⑷充要条件;⑸必要而不充分的条件;⑹必要而不充分的条件.(三)思考题:试寻求关于x 的方程x 2+mx+n=0有两个小于1的正根的一个充要条件.(练习册P 15探索题2)解法1:关于x 的方程x 2+mx+n=0有两个小于1的正根⇔方程在(0,1)内有实根⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧>><-<≥∆0)1(0)0(1200f f m ⇔⎪⎪⎩⎪⎪⎨⎧>++><<-≥-01002042n m n m n m ⇔⎪⎪⎩⎪⎪⎨⎧>++<<<<-≥-011002042n m n m n m . 解法2:方程在(0,1)内有实根⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧>-->-+->>+≥∆0)1)(1(0)1()1(00021212121x x x x x x x x ⇔⎪⎪⎩⎪⎪⎨⎧>++><<-≥-01002042n m n m n m⇔⎪⎪⎩⎪⎪⎨⎧>++<<<<-≥-011002042n m n m n m .七、板书设计(略) 八、课后记:。