多元非线性回归

合集下载

多元非线性回归

多元非线性回归

1
2
例如,常替代弹性CES生产函数模型
Q A[ K (1 ) L ] e ,
Q:产出量, K:资本, L:劳动, :替代参数, :分配参数。 方程两边取对数后,得到:
ln Q ln A 1
1

ln[ K (1 ) L ] ,
f ''(0) [ ln K (1 )ln L]2 ln 2 K (1 )ln 2 L K (1 )(ln K ln L) (1 )ln , L
2 2
于是
1 2 k ln Q ln A ln K (1 )ln L (1 )ln . 2 L
对数变换: lnQ = 0 +1 ln X + 2 ln P1 + 3 ln P0 + . (***) 考虑到零阶齐次性时, lnQ = 0 +1 ln(X P0 ) + 2 ln(P1 P0 ) + , (****)
Q = AX 1 P1 2 P0 3 e ,
(****)式也可看成是对(***)式施加如下约束而得 1 + 2 + 3 = 0.
意味着:所建立的食品需求函数满足零阶齐次性特征。
(2)双曲线模型
1 Y = 0 + 1 + , X 1 设 Z = , 原方程变换为 X Y = 0 +1 Z + .
例如,Y :儿童死亡率; X:人均GDP。
(3)对数模型
ln Y 0 1 X ; 半对数模型 Y 0 1 ln X ,
这时,就需要选择适当类型的曲线模型拟合这种 关系,这就是非线性回归模型或曲线回归模型。 但是,大部分非线性关系又可以通过一些简单的 数学处理,使之化为数学上的线性关系,从而可以运 用线性回归的方法进行计量经济学方面的处理。

可以化为线性的多元非线性回归模型课件

可以化为线性的多元非线性回归模型课件

特征选择
去除无关或冗余的特征,保留对模型 贡献最大的特征。
模型评估的指标
均方误差(MSE)
R方值
ቤተ መጻሕፍቲ ባይዱ
衡量预测值与真实值之间的平均平方差距 。
衡量模型解释的变异比例,值越接近1表示 模型解释的变异比例越高。
调整R方值
交叉验证误差
对R方值进行调整,以考虑模型中的自由度 和样本大小。
将数据分成多个子集,用其中的一部分训 练模型,另一部分测试模型,重复多次以 获得稳定的误差估计。
特点
具有非线性特征,无法通过简单变换 转化为线性模型,需要采用特定的方 法和技巧进行建模和数据分析。
多元非线性回归模型的重要性
揭示非线性关系
在许多实际问题中,变量之间的关系可能并非线性,此时需要采 用多元非线性回归模型来揭示其内在联系。
提高预测精度
相比于线性模型,多元非线性回归模型能够更准确地拟合数据,从 而提高预测精度。
可解释性
选择的模型应易于解释,有助于理解数据背后的机制。
模型优化的方法
参数优化
通过调整模型参数以改进模型的性能 ,如梯度下降法、牛顿法等。
集成学习
将多个模型的预测结果结合起来以提 高预测精度,如bagging、 boosting等。
正则化
通过在损失函数中添加惩罚项来防止 过拟合,如L1、L2正则化等。
03
02
幂回归模型
适用于因变量和自变量之间存在幂 关系的情况。
指数回归模型
适用于因变量和自变量之间存在指 数关系的情况。
04
03
模型选择与优化
模型选择的原则
适应性
选择的模型应能适应数据的特性,包括分布、自变量和因变量之间的关系等。

matlab多元非线性回归及显着性分析(实例)

matlab多元非线性回归及显着性分析(实例)

matlab多元非线性回归及显著性分析给各位高手:小弟有一些数据需要回归分析(非线性)及显著性检验(回归模型,次要项,误差及失拟项纯误差,F值和P值),求大侠帮助,给出程序,不胜感激。

模型:DA TA=... %DA TA前三列是影响因子,第四列为响应值[2 130 75 48.61;2 110 75 56.43;2 130 45 61.32;2 110 45 65.28;1 110 45 55.80;1 130 75 45.65;1 110 75 50.91;1 130 45 67.94;1.5 120 60 74.15;1.5 120 60 71.28;1.5 120 60 77.95;1.5 120 60 74.16;1.5 120 60 75.20;1.5 120 85 35.65;1.5 140 60 48.66;1.5 120 30 74.10;1.5 100 60 62.30;0.5 120 60 66.00;2.5 120 60 75.10];回归分析过程:(1)MA TLAB编程步骤1:首先为非线性回归函数编程,程序存盘为user_function.m function y=user_function(beta,x)b0 = beta(1);b1 = beta(2);b2 = beta(3);b3 = beta(4);x0 = x(:,1);x1 = x(:,2);x2 = x(:,3);x3 = x(:,4);y=b0*x0+b1*x1.^2+b2*x2.^2+b3*x3.^2;(2)MA TLAB编程步骤2:编写非线性回归主程序,程序运行时调用函数user_functionx=[1 2 130 75 48.61;1 2 110 75 56.43;1 2 130 45 61.32;1 2 110 45 65.28;1 1 110 45 55.80;1 1 130 75 45.65;1 1 110 75 50.91;1 1 130 45 67.94;1 1.5 120 60 74.15;1 1.5 120 60 71.28;1 1.5 120 60 77.95;1 1.5 120 60 74.16;1 1.5 120 60 75.20;1 1.5 120 85 35.65;1 1.5 140 60 48.66;1 1.5 120 30 74.10;1 1.5 100 60 62.30;1 0.5 120 60 66.00;1 2.5 120 60 75.10]; %%第1列全是1,第6列是指标变量,其余列是自变量xx=x(:,1:5);yy=x(:,5); %%指定响应变量yy和自变量xxbeta0=[0.5 0.4 0.7 0.5]; %%设置初始回归系数(如何确定初值?)[beta_fit,residual] = nlinfit(xx,yy,@user_function,beta0) %%非线性回归结果beta_fit =91.37571.2712-0.0009-0.0049residual =-4.2935-1.0248-9.2044-9.7957-15.4620-3.4398-2.73111.229311.18898.318914.988911.198912.2389-9.5678-9.3704-2.0767-4.83315.58147.0540即y=.3757+1.2712*x1.^2-0.0009*x2.^2-0.0049*x3.^2;。

多元非线性回归模型

多元非线性回归模型

j表示在其他解释变量保持不变的情况下,
Xj每变化1个单位时,Y的均值E(Y)的变化。
非线性的情况:
(1) ln Yi 1 2 ln X i ui
(2) ln Yi 1 2 X i ui
(3)Yi 1 2 ln X i ui
(4)Yi 1 2 X i 3 X i2 ui
非线性回归模型的线性化
一、双对数模型 二、半对数模型 三、幂函数模型 四、多项式函数模型 五、倒数函数模型
一元线性回归模型
Yi 1 2 X i ui
i=1,2…,n
1表示X每变化一个单位时, 的均值E(Y)的变化。 Y
多元线性回归模型
Yi 1 2 X 2i 3 X 3i k X ki ui i=1,2…,n
Cobb-Dauglas生产函数
Yi AKi Li e

ui
Q:产出量,K:投入的资本;L:投入的劳动
方程两边取对数:
ln Qi = ln A + ln Ki + ln Li+ui
斜率系数衡量的是被解释变量Y关于解释变量X的弹 性, 表示当L不变时,K每变动百分之一,Y的均值 变动的百分比; 表示当K不变时,L每变动百分之 一,Y的均值变动的百分比。
(二)半对数模型
如果设定的非线性模型为
ln Yi 1 2 X i ui
E (lnYi ) E (lnYi 1 ) Y的均值的相对变化 X i X i 1 X的绝对变化
2
斜率系数 2 衡量的是当变量X的绝对量每发生单位变动 时,引起被解释变量Y平均值的相对变动比率。 令
研究119个发展中国家1960-1985年的GDP增长率与 相对人均GDP之间的关系,考虑建立如下模型:

多元非线性回归

多元非线性回归

多元非线性回归11月27日凌晨,网传演员高以翔在节目录制过程中晕倒抢救,并表示高以翔被送到医院进行抢救。

随后有网友拍出高以翔就医的细节,情况十分危险。

上午10点多,经过两个多小时的全力抢救,然而最终还是没能挽救这位偶像的生命,高以翔最终被证实因心源性猝死离世,令人惋惜……其宣传甚至发文,字字带泪,不禁令人感到悲伤……对于高以翔的离世,小数深表遗憾,我们在此向其表示深切的哀悼,希望这位曾经的偶像一路走好,并希望他在另一个世界里没有病痛和烦恼,仍能开心、快乐。

2痛定思痛,防范于未然高以翔的离世令人惋惜!正如他的宣传助理娜娜所说,如果当时以翔没有参加这档节目,而是去旅行或者参加朋友的婚礼,这一悲剧或许也能幸免发生。

但是,人生没有那么多如果,也正因如此,生活中难免留下遗憾。

对于这种结果,除了些许无奈,我们能做的只有去反思和总结整个救援事件过程中存在的疏漏,从而提高人们的急救意识,才能在今后能够避免更多类似的悲剧发生。

据统计,我国每年有55万人发生心源性猝死,相当于每天约1500人因心脏骤停而离世。

令人遗憾的是,我国院外心脏骤停的存活率不足1%,经过心肺复苏培训合格的公众不到全国人口的千分之一。

被动等待救护车和医护人员到现场,往往意味着错过最佳的抢救时间。

小数认为,如果能从引起心源性猝死的一些因素方面入手,并对这些因素进行干预,或许就能够提有效的避免悲剧发生。

小数通过建立了多元非线性回归模型,以此来对急救情况进行相关分析。

3多元非线性回归模型为了分析影响患者被救活概率的因素,小数采用了多元非线性回归模型。

非线性模型的一般形式是:式中,Yi是被解释变量,Xi1,Xi2,…,Xik是解释变量,β1,…, βj是模型参数,μi为扰动项,f (β1,…, βj)是非线性函数。

式中解释变量的个数k与参数个数j不一定相等。

对于非线性回归分析,只有参数的线性回归分析才是重要的,因为变量的非线性可通过适当的重新定义来解决。

多元非线性回归

多元非线性回归

多元非线性回归今天给大家展示的内容是关于多元非线性回归模型,一般对统计分析略有了解的人都会知道,回归模型一般分为一元线性回归模型,多元线性回归模型,还有非线性回归模型,非线性回归模型有一元的,也有两元的,还有多元的!其中最复杂的应该是多元非线性回归模型,复杂在何处:第一,我们事前并不知道该用什么样的非线性模型去拟合数据?第二,即使我们知道了需要的非线性模型,但是里面的参数设置,要靠自己专业和经验来设置,没错——靠经验!问题是我们(除了一些大牛)是没经验的。

为了降低难度,结合今天设计学院一位学姐问的问题,赋文君利用别人的模型,去尝试的复现别人的结果,顺便介绍非线性回归分析的基本步骤!注意,以下内容基本在百度上搜不到!都是赋文君自己摸索出来的。

问题背景为了研究建筑材料的抗压强度,某个硕士研究生设计了一个实验,实验材料:石灰,细砂,水玻璃;实验器材:若见先进设备,其实我也没用那些工程机械。

通过一些列物理等方面的参数分析检验,得出了一些实验结果,在利用回归模型分析和相关性分析深入了解石灰,水玻璃和细砂,抗压强度四者之间的数量关系和相关程度。

抗压强度是因变量,石灰,水玻璃和细砂是自变量。

2.原始数据3.非线性回归分析步骤将数据导入或者录入spss中,接着就可以对其进行回归分析了。

按钮点击顺序,找到“分析”——“回归”——“非线性”:将抗压强度选为因变量,接着要输入模型了,案例论文用的是二阶混料规范多项式:为了便于录入模型和分析,把上面的模型分解开:变量x的前面系数(即参数)分别设定为a,b,c,其中a1表示石灰的系数,a2表示水玻璃的系数,a3表示细砂的系数,b1表示石灰*水玻璃的系数,b2表示石灰*细砂的系数,b3表示水玻璃*细砂的系数,c1 c2 c3分别表示,石灰,水玻璃和细砂平方的系数,d是常数量。

多元非线性回归

多元非线性回归

多元非线性回归
第一,我们事前并不知道该用什么样的非线性模型去拟合数据?
第二,即使我们知道了需要的非线性模型,但是里面的参数设置,要靠自己专业和经验来设置,没错——靠经验!问题是我们(除了一些大牛)是没经验的。

为了降低难度,结合今天设计学院一位学姐问的问题,赋文君利用别人的模型,去尝试的复现别人的结果,顺便介绍非线性回归分析的基本步骤!
问题背景:
为了研究建筑材料的抗压强度,某个硕士研究生设计了一个实验,实验材料:石灰,细砂,水玻璃;实验器材:若见先进设备,其实我也没用那些工程机械。

通过一些列物理等方面的参数分析检验,得出了一些实验结果,在利用回归模型分析和相关性分析深入了解石灰,水玻璃和细砂,抗压强度四者之间的数量关系和相关程度。

抗压强度是因变量,石灰,水玻璃和细砂是自变量。

3.非线性回归分析步骤
将数据导入或者录入spss中,接着就可以对其进行回归分析了。

按钮点击顺序,找到“分析”——“回归”——“非线性”:
为了便于录入模型和分析,把上面的模型分解开:变量x的前面系数(即参数)分别设定为a,b,c,其中a1表示石灰的系数,a2表示水玻璃的系数,a3表示细砂的系数,b1表示石灰*水玻璃的系数,b2表示石灰*细砂的系数,b3表示水玻璃*细砂的系数,c1 c2 c3分别表示,石灰,水玻璃和细砂平方的系数,d是常数量。

多元线性回归和非线性回归-PPT课件

多元线性回归和非线性回归-PPT课件

bi 表示假定其他变量不变,当 xi 每变动一个单 位时,y 的平均变动值
二元线性回归方程
考虑二元线性回归模型
y b b x b x 0 1 1 2 2
E ( y ) b b x b x 0 1 1 2 2
1. b 1 表示 x 2 保持不变时, x 1 每变动一个单位时 E ( y ) 的相应变化量.
bb b
b
b0 ,b1,b2 ,,bp是参数 是被称为误差项的随机变量 y 是x1,,x2 , ,xp 的线性函数加上误差项 包含在y里面但不能被p个自变量的线性关系 所解释的变异性
多元线性回归模型
(基本假定)




1. 解释变量x1,x2,…,xp是确定性变量.不是 随机变量,且要求样本容量的个数应大于解释变 量的个数。 2. 误 差 项 ε 是 一 个 期 望 值 为 0 的 随 机 变 量 , 即 E()=0 3. 对于自变量x1,x2,…,xp的所有值,的方差 2都相同 4. 误差项 ε 是一个服从正态分布的随机变量,即 ε~N(0,2),且相互独立
a. Dependent Variable: y
参数的最小二乘法
y 4 1 2 2 9 0 1 2 5 . 7 0 2 x 2 6 . 7 4 1 x 5 . 8 7 8 x 9 5 . 6 6 8 x 1 2 3 4 4 2 . 2 8 8 x 1 1 . 7 2 4 x 1 8 7 . 5 3 2 x 5 0 . 2 8 0 x 5 8 . 0 8 2 x 5 6 7 8 9 8 1 . 7 2 6 x 4 6 . 7 9 1 x 5 4 . 8 1 7 x 4 1 . 1 2 3 x 1 0 1 1 1 2 1 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元非线性回归分析是一种多元非线性回归模型。

传统的求解多元非线性回归模型的方法仍然是将其转化为标准的线性多元回归模型。

一些非线性回归模型通过适当的数学变换可以得到线性化的表达式,而对于其他非线性回归模型,仅仅通过变量变换是没有帮助的。

属于前者的非线性回归模型通常称为内在线性回归,而后者称为内在非线性回归。

补充资料:线性回归
线性回归是利用数理统计中的回归分析来确定两个或多个变量之间的定量关系的一种统计分析方法。

表达式形式为y=w'x+e,e为误差的正态分布,平均值为0。

在回归分析中,只包含一个自变量和一个因变量,二者之间的关系可用直线近似。

这种回归分析称为单变量线性回归分析。

如果回归分析包含两个或两个以上的自变量,且因变量与自变量之间是线性关系,则称为多元线性回归分析。

在统计学中,线性回归是一种回归分析,它使用称为线性回归方程的最小二乘函数来建模一个或多个自变量和因变量之间的关系。

这个函数是一个或多个模型参数的线性组合,称
为回归系数。

只有一个自变量的情况称为简单回归,有多个自变量的情况称为多元回归。

(这应该再次通过由多个因变量而不是单个标量变量预测的多元线性回归来区分。

)在线性回归中,数据由线性预测函数建模,未知模型参数由数据估计。

这些模型称为线性模型。

最常用的线性回归模型是仿射函数,其中给定值x的条件平均值为x。

在不太常见的情况下,线性回归模型可以是Y或其他分位数条件分布的中值。

与所有形式的回归分析一样,线性回归侧重于给定x值的Y的条件概率分布,而不是x和Y的联合概率分布(在多元分析领域)。

线性回归是第一个经过严格研究并在实际应用中得到广泛应用的回归分析方法。

这是因为与未知参数线性相关的模型比与位置参数非线性相关的模型更容易拟合,并且更容易确定结果估计值的统计特性。

线性回归模型通常采用最小二乘法进行拟合,但也可以采用其他方法进行拟合,如最小化其他规范中的“拟合缺陷”(如最小绝对误差回归)或最小化桥梁回归的惩罚函数最小二
乘法,最小二乘法可用于拟合这些非线性模型。

因此,虽然“最小二乘法”和“线性模型”是紧密相连的,但它们不可能是相等的。

相关文档
最新文档