数学建模论文(蒙特卡罗的多服务台和单服务台排队系统)

合集下载

数学建模论文(蒙特卡罗的多服务台和单服务台排队系统)

数学建模论文(蒙特卡罗的多服务台和单服务台排队系统)

课程名称:数学建模与数学实验学院:专业:姓名:学号:指导老师:利用Monte Carlo方法模拟单服务台排队系统和多服务台排队系统摘要蒙特卡罗方法(Monte Carlo)又称统计模拟法随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。

本文通过两个具体的服务机构为例,分别说明如何利用蒙特卡洛方法模拟单服务台排队系统和多服务台排队系统。

单服务台排队系统(排队模型之港口系统):通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。

多服务台排队系统(开水供应模型):为了解决水房打水时的拥挤问题。

根据相关数据和假设推导,最终建立了多服务窗排队M/G/n模型,用极大似然估计和排队论等方法对其进行了求解,并用Matlab软件对数据进行了处理和绘图。

用灵敏度分析对结果进行了验证。

本模型比较完美地解决了水房排队拥挤问题,而且经过简单的修改,它可以用于很多类似的排队问题。

关键词:蒙特卡洛方法,排队论,拟合优度,泊松流,灵敏度分析。

一、问题重述港口排队系统:一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。

船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。

一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。

开水供应系统:学院开水房的供水时间有限,水房面积有限,水管易受水垢堵塞。

根据调查数据可知:通畅时几乎无人排队,堵塞时水房十分拥挤。

由此可以看出水房设计存在问题,我们可以把开水房看成是一个随即服务系统,应用排队论的方法对系统运行状态做定量的描述。

数学建模排队论模型

数学建模排队论模型

可以证明,顾客在系统中逗留时间服从参数为μλ的负指数分布。
(2)顾客在系统中的平均逗留时间
1
则顾客在系统中的平均等待时间
q1 1()
Little公式
L与, Lq 是衡,量q 排队系统质量的很重要的效率度量
上式称为LittleL 公 式。 L qq
表明系统中的顾客数,等于一个顾客在系
统时间L内来到的新的顾客数;
(三)Poisson流与指数分布
1.最简单流与Poisson过程
记随机过程{x(t):t≥0}为时间[0,t]内流 (事件)发生的次数,例如对于随机到来某电话交换台 的呼叫,以x(t)表示该交换台在[0,t]这段时间 内收到呼叫的次数;若是服务机构,可以用x(t)表 示该机构在[0,t]时间内来到的顾客数。
p N ( t ) p N 1 ( t ) p N ( t )
即 满Pn (足t) 微分方程
pn (t)pn 1(t)( )pn(t)pn 1(t) p 0 (t) p 0(t)p 1(t) pN (t)pN 1(t)pN (t)
n1 ,2 , ,N 1
在稳态情况下, pn ,pn(t) ,pn则(t)0
服务规则
服 离去 务 机 构
排队系统
在排队论中,我们把要求服务的对象称为“顾 客”,而将从事服务的机构或人称为“服务台”。 在顾客到达服务台时,可能立即得到服务,也可 能要等待到可以利用服务台的时候为止。
排队系统中的“顾客”与“服务台”这两个名词 可以从不同的角度去理解。
排队系统
上、下班的工人乘公共汽车 病人到医院看病 高炮击退敌机
最简单流应 x(t):t具0有以下特征称
(1)流具有平衡性
对任何 a和0 0 t1 t,2 tn x ( a t i) x ( a ) ( 1 i n )

单服务员排队模型及其蒙特卡洛模拟

单服务员排队模型及其蒙特卡洛模拟

单服务员排队模型及其蒙特卡洛模拟
张建航;李宗成;宋晓峰
【期刊名称】《现代电子技术》
【年(卷),期】2006(29)24
【摘要】单服务员的排队模型(M/M/1模型)是排队论中重要的排队系统.介绍排队论的基本概念,讨论和研究单服务员排队模型的过程和基本原理,通过数学计算得出单服务员排队模型中重要的运行指标.针对典型实例,借助于计算机软件包Matlab 6.5进行了蒙特卡洛模拟.
【总页数】3页(P44-45,48)
【作者】张建航;李宗成;宋晓峰
【作者单位】西安通信学院,陕西,西安,710106;西安通信学院,陕西,西安,710106;西安通信学院,陕西,西安,710106
【正文语种】中文
【中图分类】O226;TP311.12
【相关文献】
1.单服务员排队模型在青藏电务管理系统中的应用 [J], 周旭;张振江
2.单服务员排队模型某些指标的优化研究 [J], 尹向飞;陈焕然
3.多服务台等待制排队模型M/G/c/∞的蒙特卡洛模拟 [J], 王培勋;王志芳
4.服务员强制休假的M/M/1排队模型主算子的点谱 [J], 阿里米热·阿布拉
5.具有备用服务员和不耐烦顾客的排队模型及其仿真 [J], 潘恒毅
因版权原因,仅展示原文概要,查看原文内容请购买。

实验2单服务台单队列排队系统仿真

实验2单服务台单队列排队系统仿真

实验2排队系统仿真一、学习目的1.了解仿真的特点2.学习如何建构模型3.熟悉eM-Plant基本的对象和操作4.掌握排队系统的特点与仿真的实现方法二、问题描述该银行服务窗口为每个到达的顾客服务的时间是随机的,表2.4是顾客服务时间纪录的统计结果表2.4 每个顾客服务时间的概率分布对于上述这样一个单服务待排队系统,仿真分析30天,分析该系统中顾客的到达、等待和被服务情况,以及银行工作人员的服务和空闲情况。

三、系统建模3.1 仿真目标通过对银行排队系统的仿真,研究银行系统的服务水平和改善银行服务水平的方法,为银行提高顾客满意度,优化顾客服务流程服务。

3.2.系统建模3.2.1 系统调研1. 系统结构: 银行服务大厅的布局, 涉及的服务设备2. 系统的工艺参数: 到达-取号-等待-服务-离开3. 系统的动态参数: 顾客的到达时间间隔, 工作人员的服务时间4. 逻辑参数: 排队规则, 先到先服务5. 系统的状态参数: 排队队列是否为空, 如果不为空队长是多少, 服务台是否为空6. 系统的输入输出变量:输入变量确定其分布和特征值,顾客的到达时间间隔的概率分布表和每个顾客被服务时间的概率分布. 输出变量根据仿真目标设定. 包括队列的平均队长、最大队长、仿真结束时队长、总服务人员、每个顾客的平均服务时间、顾客平均排队等待服务时间、业务员利用率等。

3.2.2系统假设1.取号机前无排队,取号时间为02.顾客排队符合先进先出的排队规则3.一个服务台一次只能对一个顾客服务4.所有顾客只有一种单一服务5.仿真时间为1个工作日(8小时)6.等候区的长度为无限长3.2.3系统建模系统模型:3.2.4 仿真模型1.实体:银行系统中的实体是人(主动体)2.属性:到达时间间隔、接受服务的时间、接受服务类型3.事件:顾客到达、开始取号、取号结束、进入队列、出队列、接受服务、服务完成、离开银行。

4.活动:到达、取号、排队、服务、离开5.资源:取号机、排队的座椅、服务柜台4 系统仿真4.1 eM-plant 界面与主要控件介绍1. 实体:eM-Plant 中包括3类实体:entity ,container ,transporter 。

优先级队列的应用——多服务台排队系统的模拟

优先级队列的应用——多服务台排队系统的模拟

多服务台排队系统的模拟一、与单服务台排队系统相比1.在多服务台系统中,先到达的顾客先获得服务,这个规则仍然存在;但后获得服务的顾客可能先离开,这是因为每个顾客要求的服务时间是不一样的。

如果各科i要求的是一个复杂业务,服务台j提供服务;而顾客i+1要求的是一个简单业务,服务台k提供服务,那么顾客i+1虽然比顾客i晚到达,却比顾客i先离开。

2.在单服务台系统中,到达次序和离开次序是一致的,所以只需要一个先进先出的队列;在多服务台系统中,离开事件不再与到达事件保持一致,先处理的到达事件对应的离开事件可能比后处理的到达事件对应的离开事件发生得晚,因此需要一个优先级队列,将事件发生得时间作为优先级,发生时间早的事件先处理,发生时间晚的事件后处理。

二、多服务台排队系统模拟过程1.模拟开始时,产生所有的到达事件,存入优先级队列,此时队列只有到达事件。

2.模拟器开始处理事件。

首先从队列中取出一个事件,这是第一个顾客的到达事件,根据各科的服务要求生成对应的服务时间,当前时间+服务时间=这个顾客的离开时间,生成一个这个时候离开的事件插入队列,这样在队列中就有了两类事件:到达事件和离开事件。

3.这样模拟器从队列中取出的事件也可能是离开事件,这时只要将这个离开事件从队列中删去,为它服务的服务台就可以为别的顾客服务。

综上:(1)产生所有的顾客到达事件,存入事件队列;(2)模拟器从事件队列中取事件,按照不同的事件类型处理事件。

①若是到达事件,先检查有没有空闲的服务台,如果有,则为此顾客生成服务时间,并产生一个离开事件,插入事件队列。

②如果处理到达事件时,没有空闲的服务台,则该顾客进入到等待队列排队。

等待队列是一个普通的先进先出的队列。

(3)如果处理的是离开事件,则释放该服务台。

如果此时等待队列有人排队,则服务台为他服务,并统计等待时间,如果等待队列没有人排队则置服务台为空闲。

三、伪代码产生CustomNum个顾客的到达事件,按时间的大小存入事件队列;置等待队列为空;置所有柜台为空闲;设置等待时间为0;While(事件队列非空){队头元素出列;设置当前时间为该事件发生的时间;switch(事件类型){case 到达:if(柜台有空){柜台数-1;生成所需的服务时间;修改事件类型为“离开”;设置事件发生时间为当前时间+服务时间;重新存入事件队列;}else 将该事件存入等待队列;case 离开:if(等待队列非空){队头元素出队;统计该顾客的等待时间;生成所需的服务时间;修改事件类型为“离开”;设置事件发生时间为当前时间+服务时间;存入事件队列;}else 空闲柜台+1;}}计算平均等待时间;返回;四、代码分析代码清单6-9 模拟类的定义class simulator{//以下定义了保存模拟参数的数据成员int noOfServer; //服务台的个数int arrivalLow; //到达间隔时间的下界int arrivalHigh; //到达间隔时间的上界int serviceTimeLow; //服务间隔时间的下界int serviceTimeHigh; //服务间隔时间上界int customNum; //模拟的顾客数struct eventT//定义了一个私有内嵌类eventT,用于保存一个事件信息,是事件队列和等待队列中的元素类型,eventT有两个数据成员,time表示事件发生的时间,type表示事件类型{int time; //事件的大小取决于事件发生的时间,发生时间早的事件优先级高,发生时间晚的事件优先级低int type; //事件类型,0为到达,1为离开bool operator<(const eventT &e)const{return time<e.time;}};public: //两个公有函数simulator();//模拟类的构造函数int avgWaitTime();//模拟类的平均等待时间函数};代码清单6-10 构造函数的实现simulator::simulator()//模拟参数的输入{ cout<<"请输入柜台数:"; cin>>noOfServer;cout<<"请输入到达时间间隔的上下界(最小间隔时间最大间隔时间):";cin>>arrivalLow>>arrivalHigh;cout<<"请输入服务时间的上下界(服务时间上界服务时间下界):";cin>>serviceTimeLow >>serviceTimeHigh;cout<<"请输入模拟的顾客数:";cin>>customNum;srand(time(NULL)); //完成随机数发生器的初始化}代码清单6-11 avgWaitTime函数的实现int simulator::avgWaitTime()//根据模拟参数进行模拟,并统计出平均等待时间{ int serverBusy=0; //正在工作的服务台数int currentTime; //表示现在模拟到了什么时间int totalWaitTime=0; //记录整个模拟过程中所有顾客的等待时间总和linkQueue<eventT>waitQueue; //定义了一个类型为eventT的链接队列waitQueue,这个队列是等待队列,用来保存正在排队的顾客信息priorityQueue<eventT>eventQueue; //定义了一个类型为eventT的优先级队列eventQueue,保存的是整个模拟过程中发生的所有事件eventT currentEvent;//根据模拟参数中指定的顾客数生成所有顾客的到达事件,并存入事件队列int i;currentEvent.time=0;currentEvent.type=0;for(i=0;i<customNum;++i){ currentEvent.time+=arrivalLow+(arrivalHigh-arrivalLow+1)*rand()/(RAND_MAX+1); //每个顾客的到达时间为前一顾客的到达时间加上随机生成的到达时间间隔eventQueue.enQueue(currentEvent);}while(!eventQueue.isEmpty())//只要队列非空,就要处理事件,直到队列为空{currentEvent=eventQueue.deQueue();//先从事件队列中取出一个事件currentTime=currentEvent.time; //把模拟时钟直接拨到事件发生的时间switch(currentEvent.type) //然后根据事件发生类型进行不同的处理{case 0: //如果是到达事件if(serverBusy!=noOfServer) //首先检查有没有空闲的服务台{++serverBusy; //如果有空闲的,则分配服务台currentEvent.time+=serviceTimeLow+(serviceTimeHigh-serviceTimeLow+1)*rand()/(RAND_MAX+1); //离开时间=服务时间+当前时间currentEvent.type=1; //服务完后,生成一个离开事件eventQueue.enQueue(currentEvent); //入队,事件队列}else waitQueue.enQueue(currentEvent);//否如果没有空闲的服务台,这位顾客要到等待队列排队,入队,等待队列break;case 1: //若是离开事件if(!waitQueue.isEmpty())//检查有没有顾客在排队,即等待队列是否为空{currentEvent=waitQueue.deQueue();//若有顾客在排队,则为等待队列队头的顾客服务,即让等待队列队头元素出队totalWaitTime+=currentTime-currentEvent.time; //把这位顾客的等待时间加入到总的等待时间,currentTime为当前时间,currentEvent.time为顾客进入到等待队列的时间,即事件发生的事件currentEvent.time=currentTime+serviceTimeLow+(serviceTimeHigh-serviceTimeLow+1)*rand()/(RAND_MAX+1);//currentEvent.time在这指离开时间=当前时间+随机数生成的服务时间currentEvent.type=1; //服务完后,生成一个离开事件eventQueue.enQueue(currentEvent); //入队,事件队列}else--serverBusy; //若没有人排队,则服务台可以休息,所以正在工作的服务台-1}}return totalWaitTime/customNum; //计算并返回平均等待时间}。

蒙特卡洛方法及其建模应用2016.4(2)资料

蒙特卡洛方法及其建模应用2016.4(2)资料

1 e μt t 0 P( Z t ) t0 0 则 EZ 1 ,即为每个顾客平均服务时间为 μ 1 μ ,从 而单位时间内被服务的顾客的平均数为 μ ,称为平均
服务率 .
(iii) 排队规则 按顾客的到达的先后顺序服务,即先到先服务. 满足以上三个条件的模型在排队论中记为模型 M/M/s模型,其中s为服务员的个数. (2).数量特征(只讨论s=1情形) ρ λ (i) 平均队长 L 1 ρ μ λ 稳态下系统内等待服务的顾客数,其数学期 望称为平均等待队长,即 λ ρ2 Lq (其中 ρ ( ρ 1) 称为服务强度.) μ 1 ρ
(3). 服务机构
(i)服务台数量及构成形式. 从数量上说,服务台有单 服务台和多服务台之分. 从构成形式上看,服务台有: ①单队一---单服务台式;②单队一---多服务台并联 式;③多队一---多服务台并联式;④单队一---多服 务台串联式;⑤单队一---多服务台并串联混合式, 以及多队多服务台并串联混合式等等.
稳态系统的顾客等待时间的期望值.
(ii).其它常用数量指标 s ——系统中并联服务台的数目; λ ——平均到达率;
1 λ ——平均到达间隔; μ ——平均服务率; 1 μ ——平均服务时间; N ——稳态系统任一时刻的状态(即系统中 所有顾客数); U ——任一顾客在稳态系统中的逗留时间; Q ——任一顾客在稳态系统中的等待时间;
排队论所要研究解决的问题:
面对拥挤现象,人们通常的做法是增加服务设施 但是增加的数量越多,人力、物力的支出就越大,甚
至会出现空闲浪费,如果服务设施太少,顾客排队等
待的时间就会很长,这样对顾客会带来不良影响.如 何做到既保证一定的服务质量指标,又使服务设施费 用经济合理,恰当地解决顾客排队时间与服务设施费 用大小这对矛盾,就是随机服务系统理论——排队论 所要研究解决的问题。

排队随机服务系统的模拟与R

排队随机服务系统的模拟与R

统计计算课程设计题目排队随机服务系统的模拟摘要排队系统是日常生活中常见的服务系统,排队系统是由一个或多个服务员组成的为顾客提供服务的系统,由于现实问题的复杂性,故利用计算机对系统进行模拟,来推测系统的性能,是一个重要的方法。

本文利用蒙特卡洛方法,并用R 软件来模拟双服务台的串联排队系统,并估计出顾客在两个服务台的平均逗留时间和排队中的顾客平均数关键词:双服务台串联排队系统R软件1 绪论设置服务台的目的是提供完善的服务。

从方便顾客的角度考虑,自然是服务机构越大,服务效率越高越方便。

但是服务机构如果过大,设备过多,人力物力的开支相应增加,将造成不必要的浪费,因此又必须同时考虑机构的经济效益,特别是对有些服务机构,所以,必须在服务机构设置之前就根据顾客的输入过程与服务过程对系统未来设计和控制随机服务系统,使得在充分满足顾客需要的条件下,保证服务机构的花费最为经济。

两个服务台的串联排队系统。

设有一个由两个服务台串联组成的服务机构(双服务太串联排队系统)。

顾客在第一个服务台接受服务后进入第二个服务台,服务完毕后离开。

假定顾客达到第一个服务台的时间间隔是均值为1分钟的指数分布,顾客在第一个和第二个服务台的服务时间分别是均值为0.7分和0.9分的指数分布。

请模拟这种双服务台串联排队系统(分别模拟600分和1000分的系统);并估计出顾客在两个服务台的平均逗留时间和排队中的顾客平均数。

2方法介绍一两个服务台排队系统,在这个系统中,顾客按照指数分布,每个到达的顾客首先接受第一个服务台的服务,其服务完成之后再接受第二个服务员的服务。

这样的系统称为串联排队系统。

如果服务台1是空闲的,来到的顾客就接受服务员1 的服务;否则,来到的顾客就进入到等候接受服务员1服务的队伍中排队。

类似地,当顾客接受完服务员1的服务后,如果服务员2是空闲的,此顾客就接受服务员2 的服务;否则,此顾客进入到等候接受服务员2服务的队伍中排队。

在接受完服务员2的服务后此顾客就离开系统。

(强烈推荐)单服务台排队系统建模与仿真研究报告

(强烈推荐)单服务台排队系统建模与仿真研究报告

(强烈推荐)单服务台排队系统建模与仿真研究报告(此⽂档为word格式,下载后您可任意编辑修改!)物流系统建模与仿真单服务台排队系统仿真研究报告——选重庆⼤学A区门⼝中国银⾏分⾏某⼀服务窗⼝为单服务台排队系统研究对象⼀、系统基本背景社会的进步越来越快,⼈们的⽣活节奏也随之越来越快。

在科技的发展,新技术的普及下, 我国的银⾏业以计算机和信息技术、互联⽹技术为前提, 通过⼤量资⾦和科技的投⼊, 不断地开发出新产品和新业务。

另外有⽹上银⾏、⽀付宝等新业务的出现, ⼤⼤提⾼了⼯作效率。

然⽽现代的⾦融服务并不是都可以靠刷卡来解决, 许多技术还不完善, 这些新技术也并不适合所有顾客群,去银⾏办理业务的顾客仍然经常性地出现排队现象。

顾客等待时间过长, 造成顾客满意度下降, ⽭盾较为突出, 因此本报告试利⽤单服务台排队论的⽅法, 定性定量地对具有排队等候现象的银⾏服务系统进⾏统计调查与分析研究,希望能帮助改进银⾏⼯作效率, 优化系统的运营。

本报告研究对象为中国银⾏重庆⼤学处分⾏某⼀服务窗⼝,数据取⾃银⾏内唯⼀⾮现⾦业务柜台。

研究对象的选取虽然不是最典型的,但是综合考虑了研究地域范围和⼩组成员作业时间有限,另有其他⽅案由于各种原因⽆法进⾏,故选择离学校较近的有代表性的中国银⾏中的服务窗⼝作为最终⽅案。

中国银⾏简介:中国银⾏是中国历史最为悠久的银⾏之⼀,在⼤家对银⾏的概念中有着⼀定地位。

中国银⾏主营传统商业银⾏业务,包括公司⾦融业务、个⼈⾦融业务和⾦融市场业务。

公司业务以信贷产品为基础,致⼒于为客户提供个性化、创新的⾦融服务和融资、财务解决⽅案。

个⼈⾦融业务主要针对个⼈客户的⾦融需求,提供包括储蓄存款、消费信贷和银⾏卡在内的服务。

作为中国⾦融⾏业的百年品牌,中国银⾏在稳健经营的同时,积极进取,不断创新,创造了国内银⾏业的许多第⼀,在国际结算、外汇资⾦和贸易融资等领域得到业界和客户的⼴泛认可和赞誉。

⼆、系统描述该银⾏⼯作时间为上午8:30⾄下午16:30(周⼀⾄周⽇),另周末不办理对公业务,属于每天8⼩时⼯作制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:数学建模与数学实验学院:专业:姓名:学号:指导老师:利用Monte Carlo方法模拟单服务台排队系统和多服务台排队系统摘要蒙特卡罗方法(Monte Carlo)又称统计模拟法随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。

将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解。

本文通过两个具体的服务机构为例,分别说明如何利用蒙特卡洛方法模拟单服务台排队系统和多服务台排队系统。

单服务台排队系统(排队模型之港口系统):通过排队论和蒙特卡洛方法解决了生产系统的效率问题,通过对工具到达时间和服务时间的计算机拟合,将基本模型确定在//1M M排队模型,通过对此基本模型的分析和改进,在概率论相关理论的基础之上使用计算机模拟仿真(蒙特卡洛法)对生产系统的整个运行过程进行模拟,得出最后的结论。

多服务台排队系统(开水供应模型):为了解决水房打水时的拥挤问题。

根据相关数据和假设推导,最终建立了多服务窗排队M/G/n模型,用极大似然估计和排队论等方法对其进行了求解,并用Matlab软件对数据进行了处理和绘图。

用灵敏度分析对结果进行了验证。

本模型比较完美地解决了水房排队拥挤问题,而且经过简单的修改,它可以用于很多类似的排队问题。

关键词:蒙特卡洛方法,排队论,拟合优度,泊松流,灵敏度分析。

一、问题重述港口排队系统:一个带有船只卸货设备的小港口,任何时间仅能为一艘船只卸货。

船只进港是为了卸货,响铃两艘船到达的时间间隔在15分钟到145分钟变化。

一艘船只卸货的时间有所卸货物的类型决定,在15分钟到90分钟之间变化。

开水供应系统:学院开水房的供水时间有限,水房面积有限,水管易受水垢堵塞。

根据调查数据可知:通畅时几乎无人排队,堵塞时水房十分拥挤。

由此可以看出水房设计存在问题,我们可以把开水房看成是一个随即服务系统,应用排队论的方法对系统运行状态做定量的描述。

二、基本假设港口排队系统:通过对问题的重述,那么,每艘船只在港口的平均时间和最长时间是多少?若一艘船只的等待时间是从到达到开始卸货的时间,每艘船只的平均等待时间和最长等待时间是多少?卸货设备空闲时间的百分比是多少?船只排队最长的长度是多少?开水供应系统:假设Ⅰ、顾客流满足参数为λ的Poisson分布,其中λ为单位时间到达的顾客平均数。

每个顾客所需的服务时间相互独立,顾客流是无限的,在观测期间平稳。

假设Ⅱ、排队方式为单一队列的等候制,先到先服务。

虽然水房内有多个服务台,每个服务台都有自己的队列,但同时顾客总是自由转移到最短的队列上,不可能出现有顾客排队而服务器空闲的情况。

本文最后对两种排队方式的比较也表明这一假设是合理的。

假设Ⅲ、水房共有20个并联的服务台(水龙头),设每个服务台的服务时间服从某个相同的分布,t和σ分别是服务时间的均值和均方差,γ=σ/ t为偏离系数。

由于锅炉及输水管容量的限制,使t依赖于正在进行服务的水龙头个数m,设此时平均服务时间t(m)。

且存在一临界值当m<= m0 时,t(m)为常数t0;m>m0时,管道中的水便分给 m 个龙头流出,从而 t(m)> t0,且 t(m)是 m 的单增函数。

假设Ⅳ、污垢的积累与时间成线性变化,设为f(x)=kT(k>0,表示污垢积累速率;T为距上次清理污垢时间间隔。

假设Ⅴ、单位时间为 10 秒。

显然,假设Ⅱ、Ⅲ、Ⅳ都是合理的,对假设Ⅰ进行拟合优度检验,得出假设Ⅰ也是合理的。

三、符号约定开水供应系统用到的符号和参数:L ——系统内顾客数的期望值;Lq——系统内排队顾客数的数学期望;W ——顾客在系统内的平均逗留时间;Wq——顾客排队等待时间的期望;P0——系统内有服务台空闲的概率;ρ=t /n ——系统的服务强度(即用水龙头的程度);n ——水龙头的个数。

α——Wq的上限值β——Po的上限值四、问题分析港口排队系统:排队论:排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。

本题研究的是生产系统的效率问题,可以将磨损的工具认为顾客,将打磨机当做服务系统。

//1M M:较为经典的一种排队论模式,按照前面的Kendall记号定义,前面的M代表顾客(工具)到达时间服从泊松分布,后面的M则表示服务时间服从负指数分布,1为仅有一个打磨机。

排队论研究的基本问题1.排队系统的统计推断:即判断一个给定的排队系统符合于哪种模型,以便根据排队理论进行研究。

2.系统性态问题:即研究各种排队系统的概率规律性,主要研究队长分布、等待时间分布和忙期分布等统计指标,包括了瞬态和稳态两种情形。

3.最优化问题:即包括最优设计(静态优化),最优运营(动态优化)。

为了得到一些合理的答案,利用计算器或可编程计算器来模拟港口的活动。

假定相邻两艘船到达的时间间隔和每艘船只卸货的时间区间分布,加入两艘船到达的时间间隔可以是15到145之间的任何数,且这个区间内的任何整数等可能的出现。

再给出模拟这个系统的一般算法之间,考虑有5艘传至的假象情况。

对每艘船只有以下数据:相邻两艘船到达的时间间隔20 30 15 120 25卸货时间55 45 60 75 80 因为船1在时钟于t=0分钟计时开始后20分钟到达,所以港口卸货设备在开始时空空闲了20分钟。

船1立即开始卸货,卸货用时55分,其间,船2在时钟开始计时后t=20+30=50分中到达。

在船1与t=20+55=75分钟卸货完毕之前,船2不能开始卸货,这意味着船2在卸货前必须等待75-50=25分钟。

在船2开始卸货之前,船2于t=50+15=65分钟到达,因为船2在t=75分钟开始卸货,并且卸货需45分钟,所以在船2与t=75+45=120分钟卸货完毕之前,船3不能开始卸货。

这样,船3必须等待120分钟。

船4在t=65+120=185分钟之前没有到达,因此船3已经在t=120+60=180分钟卸货完毕,港口卸货设备空闲185-180=5分钟,并且,船4到达后立即卸货。

最后,在船4于t=185+75=260分钟卸货完毕之前,船5在t=185+25=210到达,于是船5在开始卸货前等待260-210=50分钟。

五、模型的建立和求解港口排队系统:对于问题中存在的服务系统,建立排队论模型,在仅能为一艘船通过是一个标准的//1M G 模型:所谓//1M G 模型,就是输入过程为泊松流时,服务时间为任意的条件之下的,服务机器只有一个得时候。

对于//1M G 模型,服务时间T 的分布式一般的,(但是要求期望值()E T 和()Var T 方差都存在),其他条件和标准的//1M M 型相同。

为了达到稳态1ρ<还是必要的,其中有()E T ρλ=。

单服务员的排队模型设:(1) 船只到来间隔时间服从参数为0.1的指数分布.(2) 对船只的服务时间服从[4,15]上的均匀分布.(3) 排队按先到先服务规则,队长无限制.系统的假设:(1) 船只源是无穷的;(2) 排队的长度没有限制;(3) 到达系统的船只按先后顺序依次进入服务, 即“先到先服务”。

符号说明w :总等待时间;c i :第i 个顾客的到达时刻;b i :第i 个顾客开始服务时刻;e i :第i 个顾客服务结束时刻;x i :第i-1个顾客与第i 个顾客之间到达的间隔时间;y i :对第i 个顾客的服务时间c i =c i-1+ x ie i =b i +y ib i =max(c i ,e i-1)单服务台单队系统… …船只到达 进入队列服务台 接受服务 船只离去开水供应模型:由假设Ⅱ、Ⅲ可知,若 n 时,则 n 个服务台是相互独立,服从相同分布,即是一个 M/G/n 型排队模型。

如果则相当于服务台之间可以相互帮助的服务系统,平均服务时间 t 为正在服务的服务台数 m 的函数。

考虑一简单情形:当 m 时,t(m)=;当 < m ≤n 时,t (m )=,此模拟 框图 初始化:令i=1,e i-1=0,w=0 产生间隔时间随机数x i ~参数为0.1的指数分布c i =x i , b i =x i产生服务时间随机数y i ~[4,15]的均匀分布 e i =b i +y i累计等待时间:w=w+b i -c i 准备下一次服务:i=i+1 产生间隔时间随机数x i ~参数为0.1的指数分布 c i =c i-1+ x i 确定开始服务时间:b i =max(c i ,e i-1) b i >480Y N i=i-1,t=w/i 输出结果:完成服务个数:m=i平均等待时间:t 停止时 m个服务员以的速率进行服务,但总的服务速率总是即n>时的系统实际相当于M/G/的排队模型。

首先得求出临界服务台数 ,设水龙头及输出管直径分别为;水的流速为v,从而由的含义知:(1-2)即。

由实际估测,=6.5cm,=1.3cm.于是>20=n,因此现有的水房系统服从M/G/20的排队模型。

; (1-3); (1-4); (1-5)(1-6)L=;(1-7)Wq=L/. (1-8)另外公式中要求ρ<1,否则系统永远不能到稳定状态,排队的人越来越多,即队长将趋于无穷大。

对水房系统,λ=2.17,n=20, 当管道通畅时,=7.58,=3.45,ρ=0.8224<1代入解出:=0.292, L =14.97,=0.134,W=0.134,=0.945可见此时水房内为由15人,而水龙头有20个,面积有10平方米,几乎无人排队,不会产生拥挤现象。

这与我观察的实际情况相符。

根据假设Ⅳ,水垢的积累与时间成线性递增变化,f(x)=kT。

随着水垢的积累,服务时间相应增加。

那么处于水房通畅和爆满这两个极端状态之间的水房运营情况又如何呢?下面的模型当=12.10时, >1,水房爆满,进一步分析以了解拥挤情况,拥挤原因以及缓解的办法。

六、模型的检验与评价港口排队系统:表1 100艘船港口和系统的模拟结果97 79 78 81 85 99一艘船呆在港口的平均时间一艘船呆在港口174 121 111 141 140 159的最长时间23 8 5 9 12 24一艘船的平均等待时间99 46 33 64 68 93一艘船的最长等待时间上图为一艘船呆在港口的平均时间上图为一艘船呆在港口的最长时间一艘船的平均等待时间 卸货设备空闲时间的百分比 0.067 0.079 0.093 0.07 0.069 0.028上图为一艘船的最长等待时间上图为一艘船的最长等待时间以上就是对港口问题的具体分析,其实港口问题还可以从船只的排队角度出发,我们还可以对多个港口通行做相应的模拟试验,让船主尽量减少等待时间且港口卸货设备的利用率达到最高,从而是港口的主人获得更大的利润。

相关文档
最新文档