高二数学寒假作业(1)

合集下载

高二数学快乐寒假作业1

高二数学快乐寒假作业1

2016~2017学年度高二上学期数学快乐寒假作业(1)立体几何相关内容第1题动手动脑能力训练在数学《必修2》课本“立体几何多面体”一节的课堂教学中,老师给出了一道例题:“已知一个正四面体和一个正八面体的棱长都相等,把它们拼接起采,使一个表面重合,所得的新多面体有多少个面?”通过空间想象,你认为有多少个面?写下你的答案。

相信大家都有了自己的看法:正四面体和正八面体共12个面,两者各有一个面重叠,因此减少两个面,所以重合之后的新多面体有10个面.下面我们来读一个故事多年前美国的一次数学竞赛中有这样一道题:一个正三棱锥和一个正四棱锥,所有棱长都相等,问重合一个面后还有几个面?大学教授给这道竞赛题的参考答案是7个面,他们认为正三棱锥和正四棱锥共9个面,两者各有一个面重叠,减少两个面,所以重合之后还有7个面。

但佛罗里达州的一名参赛学生丹尼尔的答案是5个面,与参考答案不合而被判错误,对此丹尼尔一直有所疑惑,于是他动手拼接了符合题意的正三棱锥和正四棱锥实物模型,结果正如他所判断的只有5个面;他将自己的结论和实物模型提交给竞赛组委会,教授们接受了他的想法并改正了这道题的答案。

请大家也自己动手制作一个正三棱锥和正四棱锥实物模型,去探索一下这个问题,并开学带着你的实物模型和想法来告诉我吧。

练习.(1)三棱柱、六棱柱分别可以看成是由什么多边形平移形成的几何体?(2)棱柱的侧面是___________形,棱锥的侧面是__________形,棱台的侧面是________形.(3)四棱柱的底面和侧面共有_______个,四棱柱有______条侧棱.(4)下列说法正确的有_____________①用平行于底面的平面截棱柱所得的多边形与棱柱的两底面全等;②棱柱的两底面平行其余各面都是平行四边形;③有两个面平行其余各面都是平行四边形的几何体是棱柱;④棱锥只有一个面可能是多边形其余各面都是三角形;⑤有一个面是多边形其余各面是三角形,这个多面体是棱锥.第2题实验探究训练实验1:把直尺和桌面分别看作一条直线和一个平面.(1)若直尺的两个端点在桌面内,问直尺所在直线上各点与桌面所在的平面有何关系?(2)若直尺有一个端点不在桌面内,直尺所在的直线与桌面所在的平面的关系如何?通过这两个实验,你是否想起来是我们学过的哪个公理呢?实验2:(1)把一个三角板的一个角立在桌面上,观察三角板所在的平面与桌面所在的平面有几个公共点.(2)把教室门及其所在的墙面看成两个平面,当门打开时,它们的公共点分布情况如何?通过这两个实验,你是否想起来是我们学过的哪个公理呢?(2)已知:△ABC在平面α外,AB∩α=P,AC∩α=R,BC∩α=Q,求证:P,Q,R三点共线.第3题实验探究训练观察:观察你的房间,概括空间直线和平面的三种位置关系.这些关系是你学到的哪些理论呢?练习.(1)填表(2)如果两直线a∥b,且a∥平面α,则b与α的位置关系是.(3)过平面外一点,与这个平面平行的直线有条.(4)P是两条异面直线a、b外一点,过点P可作个平面与a、b都平行.实验:如何将一张长方形贺卡直立于桌面?由此,你还记得判断一条直线与一个平面垂直的方法吗?写下相关定理.练习.(1)下列说法中正确的有 .①如果一条直线垂直于一个平面内的无数条直线,那么,这条直线就与这个平面垂直.②过一点有且只有一条直线和已知直线垂直.③若A,B两点到平面α的距离相等,则直线AB∥α.④已知直线a在平面α内,若l⊥α,则l⊥α.⑤已知直线l和平面α,若l⊥α,则l和α相交.(2)若AB的中点M到平面α的距离为4cm,点A到平面α的距离为6cm,则点B到平面α的距离为_______cm.。

高二数学寒假作业 精简版

高二数学寒假作业  精简版

高二数学寒假作业(一)立体几何(A)一、填空题:本大题共10小题,每小题5分,共50分.1.长方体的对角线长为14,所有棱长和为24,则其表面积是____________2.如图三棱锥A—BCD,E,F,G,H是边AB,BC,CD,DA的中点,AC=BD,那么四边形EFGH为_______________3.已知P为△ABC所在平面外一点,且在平面ABC上的射影为O,若PA=PB=PC,∠ACB=90°,则O在________________4.用一长12、宽8的矩形铁皮围成圆柱侧面,则圆柱的体积为__________5.球的外切圆柱的全面积与球面面积之比为__________6.PA垂直于⊿ABC所在的平面,若AB=AC=13,BC=10,PA=12,则P到BC的距离为 .7.一几何体按比例绘制的三视图如图所示(单位:m),则对应几何体的体积为____________,表面积为______________8.有一根长为5cm,底面半径为1cm的圆柱形铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为_______________________9.a,b,c分别表示三条直线,α表示平面,给出下列四个命题:①若a∥α,b∥α,则a∥b;②若b α,a∥b,则a∥α;③若a⊥c,b⊥c,则a∥b;④若a⊥α,b⊥α,则a∥b.其中不正确命题的有(填序号)10.如图,表示一个正方体表面的一种展开图,图中的四条线段AB、CD、EF和GH在原正方体中有异面直线__________对二、解答题:(共4题,11题10分,12题12分13、14题14分,共50分)11.如图所示,ABCD —A 1B 1C 1D 1是正方体,在图(1)中E 、F 分别是D 1C 1、B 1B 的中点,画出图(1)、(2)中有阴影的平面与平面ABCD 的交线,并给出证明.12.已知Rt △ABC 中,∠A=90º,C ∈α,AB ∥平面α,AB=8,AC 、BC 与平面α所成角分别60º、30º,求AB 到平面α的距离.13.在四棱锥P-ABCD 中,侧棱PA ⊥底面ABCD,底面ABCD 是矩形,问底面的边BC 上是否存在点E,(1)使得∠PED=900;(2)使∠PED 为锐角.证明你的结论.14.如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,平面PAD ⊥平面ABCD ,PA=PD ,且PA ⊥PD .(1)求证:PA ⊥平面PDC :(2)已知E 为棱AB 的中点,问在棱PD 上是否存在一点Q ,使EQ∥平面PBC?若存在,写出点Q 的位置;若不存在,说明理由.α CA B B Q C P A高二数学寒假作业(三)直线与圆(A )一、填空题:本大题共10小题,每小题5分,共50分.1. 直线x=1的倾斜角等于2.过点P(-1,3)且垂直于直线x-2y+3=0 的直线方程为3.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m 的值为4.已知ab <0,bc <0,则直线ax+by=c 的图像一定不过第 象限5.点P(1,-1)到直线x-y+1=0的距离是________________6.与直线y=2x+3关于y 轴对称的直线方程为7.方程x 2+y 2-4x-2y=0表示圆的圆心坐标为 ,半径为8.圆2x 2+2y 2=1与直线xsin θ+y-1=0(θ∈R,θ≠2+k π,k ∈z)的位置关系为 9.已知直线ax+by+c=0的倾斜角为α,且sin α+cos α=0,则实数a,b 满足关系10.若直线ax+by-3=0与圆x 2+y 2+4x-1=0切于点P(-1,2),则实数ab 的值等于_ _二、解答题:(共4题,11题10分,12题12分13、14题14分,共50分)11. 若方程(2m 2+m-3)x+(m 2-m)y-4m+1=0表示一条直线,求实数m 的取值范围.12.求经过点A(1,2)并且在两个坐标轴上的截距的绝对值相等的直线方程.13. 已知圆C与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,求圆C的方程.14. 求经过直线2x+y+4=0和圆x2+y2+2x-4y+1=0的两个交点,且面积最小的圆的方程.高二数学寒假作业(五)圆锥曲线一、填空题:本大题共10小题,每小题5分,共50分.1.椭圆191622=+y x 的焦点坐标是 2. 双曲线19422=-y x 的渐近线方程是 3. 抛物线28y x =-的焦点坐标是 4. 若椭圆1522=+m y x 的离心率510=e ,则m 的值是_ . 5. 与双曲线116922=-y x 有共同的渐近线,且经过点A(-3,23)的双曲线的方程是 6.离心率等于25,且与13422=+y x 有公共焦点的双曲线方程是 7. 抛物线y=4x 2的准线方程为 8.双曲线12222=-by a x 的两焦点到一条准线的距离之比为3:2,则双曲线的离心率是 9.双曲线1366422=-y x 上一点P 到左焦点的距离为20,则点P 到右准线的距离为 10. 设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为二、解答题:(共4题,11题10分,12题12分13、14题14分,共50分)11.已知双曲线2222:1(0,0)x y C a b a b -=>>,右准线方程为x =C 的方程.12.已知椭圆C 的中心在原点,焦点在x 轴上,以两个焦点和短轴的两个端点为顶点的四边形是一个面积为8的正方形.求椭圆C 的方程13.如图,过抛物线y 2=2PX(P>0)的焦点F 的直线与抛物线相交于M 、N 两点,自M 、N 向准线L 作垂线,垂足分别为M 1、N 1 求证:FM 1⊥FN 114.过抛物线22(0)y px p =>的焦点F 作倾斜角为45的直线交抛物线于A 、B 两点,若线段AB 的长为8,求抛物线的方程p=2高二数学寒假作业(六)简易逻辑一、填空题:本大题共10小题,每小题5分,共50分.1.如果命题“p 或q ”与命题“非p ”都是真命题,那么命题q 一定是 (填真命题、假命题)2.下列说法①x ≥3是x>5的充分不必要条件②x ≠±1是x ≠1的充要条件③若﹁p ⇒﹁q ,则p 是q 的充分条件④一个四边形是矩形的充分条件是它是平行四边形,其中正确的个数是3.方程mx 2+2x+1=0至少有一个负根,则m 的取值范围是4. “x 2+2x-8=0”是“x-2=x -2”的 (填充分、必要性 )5. “022≠+b a ”的四种解释:①a, b 全不为0②a, b 不全为0③a, b 至少有一个为0④a, b 至少有一个不为0中正确的是6. 已知P :∣2x-3∣>1;q:0612>-+x x ;则﹁p 是﹁q 的 条件(填充分、必要性)7.给出下面四个命题①“正三角形边长与高的比是2︰3”的逆否命题;②“若x,y 不全为0,则022≠+y x ”的否命题;③“p 或q 是假命题”是“非p 为真命题”的充分条件;④若C A B A =,则C B =。

高二数学上学期寒假作业1

高二数学上学期寒假作业1
20.(本小题满分14分)
已知F1、F2分别为椭圆C1: 的上、下焦点,其中F1也是抛物线C2: 的焦点,点M是C1与C2在第二象限的交点,且 .
(1)求椭圆C1的方程;
(2)已知A(b,0),B(0,a),直线
y=kx(k>0)与椭圆C1相交于E、F两点.
求四边形AEBF面积的最大值.
高二数学寒假作业参考答案(1)
故所求圆的方程为 或 .(14分)
20.(本小题满分14分)
解:(1)设 .
由C2: ,得F1(0,1).(1分)
因为M在抛物线C2上,故 .①(2分)
又 ,则 .②(3分)
解①②得 (4分)
因为点M在椭圆上,故 ,即 ③
又c=1,则 ④
解③④得 故椭圆C1的方程为 .
(2)不妨设 , ,且 .
将 代入 中,可得 ,即 ,所以 .由(1)可得 .
故四边形AEBF的面积所以 因为 ,所以 .所以 ,当且仅当 时,等号成立.故四边形AEBF面积的最大值为 .(14分)
2.下列是全称命题且是真命题的是
A. B.
C. D.
3.双曲线 的渐近线方程是
A. B. C. D.
4.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为
A.1 B.2 C.3D.4
5.已知向量 , ,且 与 互相垂直,则k的值是
A.1 B. C. D.
6.若焦点在x轴上的椭圆 的离心率为 ,则实数k等于
(3)经过点C(3,0),且与直线2x+y-5=0垂直.
16.(本小题满分12分)
如图,一个高为H的三棱柱形容器中盛有水.若侧面AA1B1B水平放置时,液面恰好过AC、BC、A1C1、B1C1的中点E、F、E1、F1.当底面ABC水平放置时,液面高为多少?

高二数学寒假作业(含答案)

高二数学寒假作业(含答案)

数学寒假作业(一)测试范围:解三角形使用日期:腊月十九 测试时间:120分钟一、选择题(本大题共12个小题,每个小题5分,共60分,每小题给出的四个备选答案中,有且仅有一个是符合题目要求的)1.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若c =2,b =6,B =120°,则a 等于( )A. 6 B .2 C. 3 D. 22.在△ABC 中,若AB =3-1,BC =3+1,AC =6,则B 等于( ) A .30° B .45° C .60° D .120°3.在△ABC 中,A =45°,AC =4,AB =2,那么cos B =( ) A.31010 B .-31010 C.55D .-554.等腰△ABC 底角B 的正弦与余弦的和为62,则它的顶角是( ) A .30°或150° B .15°或75° C .30° D .15°5.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α、β的关系为( ) A .α>β B .α=β C .α+β=90°D .α+β=180°6.(2012·天津理,6)在△ABC 中,内角A 、B 、C 所对的边分别是a 、b 、c ,已知8b =5c ,C =2B ,则cos C =( )A.725 B .-725 C .±725D.24257.△ABC 的三边分别为2m +3,m 2+2m ,m 2+3m +3(m >0),则最大内角度数为( ) A .150° B .120° C .90°D .135°8.在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为( ) A .A >B B .A <B C .A ≥B D .A ,B 的大小关系不能确定9.△ABC 的三个内角A 、B 、C 所对的边分别为a 、b 、c ,若a sin A sin B +b cos 2A =2a ,则ba =( )A .2 3B .2 2 C. 3D. 210.在△ABC 中,a 2+b 2-ab =c 2=23S △ABC ,则△ABC 一定是( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形11.在△ABC 中,若|AB →|=2,|AC →|=5,AB →·AC →=-5,则S △ABC =( )A.532B. 3C.52 D .512.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形二、填空题(本大题共4个小题,每个小题4分,共16分.将正确答案填在题中横线上) 13.三角形一边长为14,它对的角为60°,另两边之比为85,则此三角形面积为________.14.在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________.15.如图,已知梯形ABCD 中,CD =2,AC =19,∠BAD =60°,则梯形的高为__________.16.在△ABC 中,cos 2A 2=b +c2c ,则△ABC 的形状为________.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)在△ABC 中,a ,b ,c 分别是角A 、B 、C 的对边,若tan A =3,cos C =55.(1)求角B 的大小;(2)若c =4,求△ABC 面积.18.(本题满分12分)在△ABC 中,已知a =6,A =60°,b -c =3-1,求b 、c 和B 、C .19.(本题满分12分)如图,某海轮以30n mile/h 的速度航行,在点A 测得海面上油井P 在南偏东60°,向北航行40min 后到达点B ,测得油井P 在南偏东30°,海轮改为北偏东60°的航向再航行80min 到达C 点,求P 、C 间的距离.20.(本题满分12分)在△ABC 中,a 、b 、c 分别为内角A 、B 、C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.21.(本题满分12分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,已知cos2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C ,求b 及c 的长.22.(本题满分14分)在△ABC中,角A、B、C的对边分别为a、b、c,已知3cos(B-C)-1=6cos B cos C.(1)求cos A的值;(2)若a=3,△ABC的面积为2,求b、c.家长签字:日期:数学寒假作业(一)答案1、[答案] D2、[答案] C[解析] cos B =AB 2+BC 2-AC 22AB ·BC =12,∴B =60°.3、[答案] D4、[答案] A5、[答案] B[解析] 仰角和俯角都是水平线与视线的夹角,故α=β.6、[答案] A7、[答案] B8、解析:由正弦定理a sin A =bsin B ,∴a >b .∴A >B .答案:A 9、[答案] D[解析] ∵a sin A sin B +b cos 2A =2a ,∴由正弦定理,得sin 2A sin B +sin B cos 2A =2sin A ,∴sin B (sin 2A +cos 2A )=2sin A ,∴sinB =2sin A ,∴sin B sin A = 2.由正弦定理,得ba =sin Bsin A = 2.10、[答案] B[解析] 由a 2+b 2-ab =c 2得:cos C =a 2+b 2-c 22ab =12,∴∠C =60°,又23S △ABC =a 2+b 2-ab ,∴23×12ab ·sin60°=a 2+b 2-ab ,得2a 2+2b 2-5ab =0,即a =2b 或b =2a . 当a =2b 时,代入a 2+b 2-ab =c 2得a 2=b 2+c 2;当b =2a 时,代入a 2+b 2-ab =c 2得b 2=a 2+c 2.故△ABC 为直角三角形.11、[答案] A[解析] AB →·AC →=|AB →|·|AC →|cos A =10cos A =-5,∴cos A =-12,∴sin A =32,∴S △ABC =12|AB →|·|AC →|·sin A =532.12、[答案] D[解析] 由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形,由⎩⎪⎨⎪⎧ sin A 2=cos A 1=sin π2-A 1sin B 2=cos B 1=sin π2-B 1sin C 2=cos C 1=sinπ2-C 1,得⎩⎪⎨⎪⎧A 2=π2-A 1B 2=π2-B1C 2=π2-C1,那么,A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾,故假设不成立, 即△A 2B 2C 2是钝角三角形,故选D.13、[答案] 403[解析] 设另两边长为8x 和5x ,则cos60°=64x 2+25x 2-14280x 2得x =2,另两边长为16和10,此三角形面积为S =12×16×10·sin60°=40 3. 14、[答案]102[解析] ∵tan A =13,∴sin A =1010,由正弦定理,得AB =BC ·sin C sin A =102. 15、[答案] 332[解析] 解法一:∵∠BAD =60°,∴∠ADC =180°-∠BAD =120°.∵CD =2,AC =19,∴19sin120°=2sin ∠CAD ,∴sin ∠CAD =5719. ∴sin ∠ACD =sin(60°-∠CAD )=35738.∴AD =AC ·sin ∠ACD sin D=19×35738sin120°=3.∴h =AD ·sin60°=332. 解法二:在△ACD 中,AC 2=AD 2+CD 2-2AD ·CD cos120°,∴AD 2+2AD -15=0.∴AD =3 (AD =-5舍去).∴h =AD sin60°=332.16、[答案] 直角三角形[解析] ∵cos 2A 2=1+cos A 2=b +c 2c =12+b2c ,∴cos A =b c .由余弦定理,得cos A =b 2+c 2-a 22bc ,∴b 2+c 2-a 22bc =bc ,∴a 2+b 2=c 2.∴△ABC 为直角三角形.17、[解析] (1)∵cos C =55,∴sin C =255,∴tan C =2.∵tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C =-3+21-3×2=1,又0<B <π,∴B =π4.(2)由正弦定理,得b sin B =c sin C ,∴b =c ×sin B sin C =4×22255=10.∵B =π4,∴A =3π4-C .∴sin A =sin(3π4-C )=sin 3π4cos C -cos 3π4sin C =22×55-(-22)×255=31010.∴S △ABC =12bc sin A =12×10×4×31010=6.18、[解析] 由余弦定理,得6=b 2+c 2-2bc cos60°,∴b 2+c 2-bc =6 ①由b -c =3-1平方得:b 2+c 2-2bc =4-2 3 ② ①、②两式相减得bc =2+2 3.由⎩⎨⎧b -c =3-1bc =2+23,解得⎩⎨⎧b =3+1c =2,由正弦定理,得sin B =b sin Aa =3+1sin60°6=6+24.∵6<3+1,∴B =75°或105°.∵a 2+c 2>b 2,∴B 为锐角, ∴B =75°,从而可知C =45°.[点评] 求角B 时,若先求得sin C =c sin A a =22,∵a >c ,∴C =45°,从而得B =75°. 若用余弦定理cos B =a 2+c 2-b 22ac =6-24,∴B =75°. 19、[解析] AB =30×4060=20,BC =30×8060=40.在△ABP 中,∠A =120°,∠ABP =30°,∠APB =30°, ∴BP =ABsin ∠APB ·sin ∠BAP =20sin30°sin120°=20 3. 在Rt △BCP 中,PC =BC 2+BP 2=402+2032=207.∴P 、C 间的距离为207nmile.20、[解析] (1)由已知,根据正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理,得a 2=b 2+c 2-2bc cos A ,故cos A =-12,A =120°.(2)由a 2=b 2+c 2+bc ,得sin 2A =sin 2B +sin 2C +sin B sin C .又sin B +sin C =1,故sin B =sin C =12.因为0°<B <90°,0°<C <90°,故B =C . 所以△ABC 是等腰的钝角三角形.21、[解析] (1)∵cos2C =1-2sin 2C =-14,0<C <π,∴sin C =104.(2)当a =2,2sin A =sin C 时,由正弦定理a sin A =csin C ,得c =4. 由cos2C =2cos 2C -1=-14及0<C <π,得cos C =±64.由余弦定理,得c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0(b >0),解得b =6或26,∴⎩⎨⎧b =6c =4,或⎩⎨⎧b =26c =4.22、[解析] (1)由3cos(B -C )-1=6cos B cos C ,得3(cos B cos C -sin B sin C )=-1,即cos(B +C )=-13,∴cos A =-cos(B +C )=13.(2)∵0<A <π,cos A =13,∴sin A =223.由S △ABC =22,得12bc sin A =22, ∴bc =6.由余弦定理,得a 2=b 2+c 2-2bc cos A ,∴9=(b +c )2-2bc (1+cos A )=(b +c )2-16, ∴b +c =5. 由⎩⎪⎨⎪⎧ b +c =5bc =6,得⎩⎪⎨⎪⎧ b =2c =3或⎩⎪⎨⎪⎧b =3c =2.数学寒假作业(二)测试范围:数列使用日期:腊月二十一 测试时间:120分钟一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a n =cos n π,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列 2.在数列2,9,23,44,72,…中,第6项是( ) A .82 B .107 C .100 D .833.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( ) A .12 B .18 C .24 D .424.数列{a n }中,a 1=1,对所有n ≥2,都有a 1a 2a 3…a n =n 2,则a 3+a 5=( ) A.6116 B.259 C.2516 D.31155.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) A .4 B .5 C .6 D .76.在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n),则a n =( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n7.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99.以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .188.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .99.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .1610.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n =( )A .2n +1-1 B .2n -1 C .2n -1D .2n+111.含2n +1个项的等差数列,其奇数项的和与偶数项的和之比为( ) A.2n +1n B.n +1n C.n -1n D.n +12n12.如果数列{a n }满足a 1=2,a 2=1,且a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1,那么此数列的第10项为( )A.1210 B.129 C.110 D.15二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中的横线上) 13.等比数列{a n }中,a 3=12, a 5=48,那么a 7=________.14.已知数列{a n }的前n 项和为S n =n 2+1,则数列{a n }的通项公式为a n =________. 15.已知等差数列{a n },{b n }的前n 项和分别为A n ,B n ,且满足A n B n =2n n +3,则a 1+a 2+a 12b 2+b 4+b 9=________.16.在数列{a n }中,a 1=1,(n +1)a n =(n -1)a n -1(n ≥2),S n 是其前n 项的和,则S n 等于________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(10分)公差d ≠0的等差数列{a n }的前n 项和为S n ,若a 4是a 3与a 7的等比中项,且S 8=32,求S 10的大小.18.(12分)等差数列{a n}中,a4=10,且a3,a6,a10成等比数列,求数列{a n}前20项的和S20.19.(12分)已知数列{a n}的首项a1=3,通项a n=2n p+nq(n∈N*,p,q为常数),且a1,a4,a5成等差数列,求:(1)p,q的值;(2)数列{a n}的前n项和S n的公式.20.(12分)设{a n}为等比数列,{b n}为等差数列,且b1=0,c n=a n+b n,若{c n}是1,1,2,…,求数列{c n}的前10项的和.21.(12分)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列;(2)求{a n }的通项公式.22.(12分)设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,a ∈N *.(1)求数列{a n }的通项;(2)设b n =n a n,求数列{b n }的前n 项和S n .家长签字:日期:数学寒假作业(二)答案1、答案 D2、答案 B3、答案 C解析 思路一:设公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+d =2,4a 1+6d =10,解得a 1=14,d =32.则S 6=6a 1+15d =24.思路二:S 2,S 4-S 2,S 6-S 4也成等差数列,则2(S 4-S 2)=S 6-S 4+S 2,所以S 6=3S 4-3S 2=24.4、答案 A5、答案 C解析 由等差数列的性质可知a 2、a 5、a 8也成等差数列,故a 5= a 2+a 82=6,故选C.6、答案 A解析 依题意得a n +1-a n =lnn +1n ,则有a 2-a 1=ln 21,a 3-a 2=ln 32,a 4-a 3=ln 43,…,a n -a n -1=ln n n -1,叠加得a n -a 1=ln(21·32·43·…·nn -1)=ln n ,故a n =2+ln n ,选A.7、答案 B解析 ∵a 1+a 3+a 5=105,a 2+a 4+a 6=99, ∴3a 3=105,3a 4=99,即a 3=35,a 4=33. ∴a 1=39,d =-2,得a n =41-2n .令a n =0且a n +1<0,n ∈N *,则有n =20.故选B. 8、答案 A解析 设等差数列{a n }的公差为d ,∵a 4+a 6=-6,∴a 5=-3,∴d =a 5-a 15-1=2,∴a 6=-1<0,a 7=1>0,故当等差数列{a n }的前n 项和S n 取得最小值时,n 等于6.9、答案 C解析 由4a 1+a 3=4a 2⇒4+q 2=4q ⇒q =2,则S 4=a 1+a 2+a 3+a 4=1+2+4+8=15.故选C.10、答案 B 11、答案 B 12、答案 D 解析 ∵a n ·a n -1a n -1-a n =a n ·a n +1a n -a n +1,∴{a n ·a n -1a n -1-a n }为常数列.∴a n ·a n -1a n -1-a n =a 2·a 1a 1-a 2=2,∴a n ·a n -1=2a n -1-2a n .∴1a n -1a n -1=12,∴{1a n }为等差数列,1a 1=12,d =12.∴1a n =12+(n -1)·12=n 2.∴a n =2n,∴a 10=15.13、解析:由题意可知a 3,a 5,a 7成等比数列,∴a 25=a 3·a 7,∴a 7=48212=192.14、解析:当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1. 又当n =1时,a 1=S 1=2不满足a n =2n -1,∴a n =⎩⎪⎨⎪⎧2 n =1,2n -1n ≥2.15、解析:a 1+a 2+a 12b 2+b 4+b 9=3a 1+12d 13b 1+12d 2=a 5b 5=a 1+a 92b 1+b 92=9×a 1+a 929×b 1+b 92=A 9B 9=2×99+3=32. 16、解析:∵(n +1)a n =(n -1)a n -1, ∴a n a n -1=n -1n +1,∴a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1=n -1n +1·n -2n ·n -3n -1·…·24·13·1=2n n +1=2(1n -1n +1).∴S n =2(1-1n +1)=2n n +1.17、解:根据题意得⎩⎪⎨⎪⎧a 1+3d 2=a 1+2d a 1+6d ,8a 1+28d =32,解得⎩⎪⎨⎪⎧a 1=-3,d =2.所以S 10=S 8+a 9+a 10=32+2a 1+17d =60.18、解析 设数列{a n }的公差为d ,则a 3=a 4-d =10-d ,a 6=a 4+2d =10+2d .a 10=a 4+6d =10+6d .由a 3,a 6,a 10成等比数列,得a 3a 10=a 26. 即(10-d )(10+6d )=(10+2d )2, 整理得10d 2-10d =0,解得d =0或d =1. 当d =0时,S 20=20a 4=200;当d =1时,a 1=a 4-3d =10-3×1=7. 于是S 20=20a 1+20×192d =20×7+190=330.19、解:(1)由a 1=3,得2p +q =3,又a 4=24p +4q ,a 5=25p +5q ,且a 1+a 5=2a 4,得3+25p +5q =25p +8q ,解得p =1,q =1. (2)由(1)得a n =2n+n ,S n =(2+22+…+2n )+(1+2+…+n )=2n +1-2+n n +12.20、解析 ∵c 1=a 1+b 1,即1=a 1+0,∴a 1=1.又⎩⎪⎨⎪⎧a 2+b 2=c 2,a 3+b 3=c 3,即⎩⎪⎨⎪⎧q +d =1, ①q 2+2d =2. ②②-2×①,得q 2-2q =0. 又∵q ≠0,∴q =2,d =-1.c 1+c 2+c 3+…+c 10=(a 1+a 2+a 3+…+a 10)+(b 1+b 2+b 3+…+b 10) =a 11-q 101-q +10b 1+10×92d =210-1+45·(-1)=978.21.(12分)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式.21、解析 (1)b 1=a 2-a 1=1,当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n =-12(a n -a n -1)=-12b n -1, ∴{b n }是以1为首项,-12为公比的等比数列.(2)由(1)知b n =a n +1-a n =(-12)n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1+1+(-12)+…+(-12)n -2=1+1--12n -11--12=1+23=53-23(-12)n -1,当n =1时,53-23(-12)1-1=1=a 1.∴a n =53-23(-12)n -1(n ∈N *).22、解:(1)a 1+3a 2+32a 3+…+3n -1a n =n3,a 1+3a 2+32a 3+…+3n -2a n -1=n -13(n ≥2),3n -1a n =n 3-n -13=13(n ≥2),a n =13n (n ≥2).验证n =1时也满足上式,∴a n =13n (n ∈N *).(2)b n =n ·3n,S n =1·3+2·32+3·33+…+n ·3n3S n =1·32+2·33+…+(n -1)·3n +n ·3n +1上述两式相减得: -2S n =3+32+33+3n -n ·3n +1=3-3n +11-3-n ·3n +1.即S n =n2·3n +1-14·3n +1+34.数学寒假作业(三)测试范围:不等式使用日期:腊月二十三 测试时间:100分钟 一、选择题(共10小题,每小题5分,共50分) 1.不等式(x +3)2<1的解集是( )A .{x |x >-2}B .{x |x <-4}C .{x |-4<x <-2}D .{x |-4≤x ≤-2} 2.设M =2a (a -2),N =(a +1)(a -3),则有( ) A .M >N B .M ≥N C .M <N D .M ≤N3.下列命题中正确的是( )A .a >b ⇒ac 2>bc 2B .a >b ⇒a 2>b 2C .a >b ⇒a 3>b 3D .a 2>b 2⇒a >b4.(2012·安徽高考)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0 C.32 D .35.设x ,y 为正数,则(x +y )⎝ ⎛⎭⎪⎫1x +4y 的最小值为( )A .6B .9C .12D .156.不等式组⎩⎪⎨⎪⎧-2x -3>10,x 2+7x +12≤0的解集为( )A .[-4,-3]B .[-4,-2]C .[-3,-2]D .∅7.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是( )A .ab >acB .c (b -a )>0C .cb 2<ab 2D .a (a -b )>08. 在如图所示的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的一个可能值是( )A .-3B .3C .-1D .19. 若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32D .210.已知x >0,y >0.若2y x +8xy >m 2+2m 恒成立,则实数m 的取值范围是( ) A .m ≥4或m ≤-2 B .m ≥2或m ≤-4 C .-2<m <4 D .-4<m <2 二、填空题(共4小题,每小题5分,共20分) 11.函数y =2-x -4x (x >0)的值域为________. 12.不等式2x 2+2x -4≤12的解集为________.13.已知不等式x 2-ax -b <0的解集为(2,3),则不等式bx 2-ax -1>0的解集为________.14.设D 是不等式组⎩⎪⎨⎪⎧x +2y ≤10,2x +y ≥3,0≤x ≤4,y ≥1,表示的平面区域,则D 中的点P (x ,y )到直线x +y =10的距离的最大值是________.三、解答题(共4小题,共50分) 15.(12分)解下列关于x 的不等式 (1)1<x 2-3x +1<9-x(2)ax2-x-a2x+a<0(a<-1)16.(12分)已知关于x的不等式kx2-2x+6k<0(k≠0).(1)若不等式的解集是{x|x<-3或x>-2},求k的值;(2)若不等式的解集是R,求k的取值范围.17.(12分)一个农民有田2亩,根据他的经验,若种水稻,则每亩每期产量为400千克;若种花生,则每亩每期产量为100千克,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每千克可卖5元,稻米每千克只卖3元,现在他只能凑足400元,问这位农民对两种作物各种多少亩,才能得到最大利润?18.(14分)已知函数f(x)=x2-2x-8,g(x)=2x2-4x-16,(1)求不等式g(x)<0的解集;(2)若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.家长签字:日期:数学寒假作业(三)答案1.选C 原不等式可化为x 2+6x +8<0,解得-4<x <-2.2.选A 因为M -N =2a 2-4a -(a 2-2a -3)=a 2-2a +3=(a -1)2+2>0,所以M >N . 3.选C 选项A 中,当c =0时,ac 2=bc 2,所以A 不正确;选项B 中,当a =0,b =-1时a >b ,但a 2<b 2,所以B 不正确;选项D 中,当a =-2,b =-1时,a 2>b 2,但a <b ,所以D 不正确.很明显C 正确.4.选A 可行域为如图所示的阴影部分,可知z =x -y 在点A (0,3)处取得最小值,∴z 最小值=-3.5.选B x ,y 为正数,(x +y )·⎝ ⎛⎭⎪⎫1x +4y =1+4+y x +4x y ≥9,当且仅当y =2x等号成立.6.选 A ⎩⎪⎨⎪⎧-2x -3>10x 2+7x +12≤0⇒⎩⎪⎨⎪⎧x -3<-5x +3x +4≤0⇒⎩⎪⎨⎪⎧x <-2-4≤x ≤-3⇒-4≤x ≤-3.7.选C 由已知可得,c <0,a >0,b 不一定,若b =0时,C 不一定成立,故选C. 8.选A 若最优解有无数个,则y =-1a x +z a 与其中一条边平行,而三边的斜率分别为13、-1、0,与-1a 对照可知a =-3或1,又因z =x +ay 取得最小值,则a =-3.9.选B 如图所示:约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,表示的可行域如阴影部分所示.当直线x =m 从如图所示的实线位置运动到过A 点的位置时,m 取最大值.解方程组⎩⎪⎨⎪⎧x +y -3=0,y =2x ,得A 点坐标为(1,2),∴m 的最大值是1,故选B.10.选D ∵x >0,y >0.∴2y x +8x y ≥8(当且仅当2y x =8xy 时取“=”). 若2y x +8xy >m 2+2m 恒成立, 则m 2+2m <8,解之得-4<m <2.11.解析:当x >0时,y =2-⎝ ⎛⎭⎪⎫x +4x ≤2-2x ×4x =-2.当且仅当x =4x ,x =2时取等号.答案:(-∞,-2]12.解析:由已知得2x 2+2x -4≤2-1,所以x 2+2x -4≤-1,即x 2+2x -3≤0,解得-3≤x ≤1.答案:{x |-3≤x ≤1}13.解析:方程x 2-ax -b =0的根为2,3.根据韦达定理得:a =5,b =-6,所以不等式为6x 2+5x +1<0,解得解集为⎝ ⎛⎭⎪⎫-12,-13.答案:⎝ ⎛⎭⎪⎫-12,-1314.解析:画出可行域,由图知最优解为A (1,1),故A 到x +y =10的距离为d =4 2.答案:4 215.解:(1)∵1<x 2-3x +1<9-x , ∴x 2-3x +1>1且x 2-3x +1<9-x . ∴x >3或x <0且-2<x <4. ∴-2<x <0或3<x <4.∴原不等式1<x 2-3x +1<9-x 的解集为{x |-2<x <0或3<x <4}. (2)由ax 2-x -a 2x +a <0 ∴(x -a )(ax -1)<0因a <-1∴(x -a )⎝ ⎛⎭⎪⎫x -1a >0,当a <-1时,1a >a ,所以x <a , 或x >1a .∴不等式的解集为{x |x <a ,或x >1a }.16.解:(1)因为不等式的解集为{x |x <-3或x >-2},所以-3,-2是方程kx 2-2x +6k =0的两根且k <0 .由根与系数的关系得⎩⎪⎨⎪⎧-3×-2=6,-3+-2=2k ,解得k =-25.(2)因为不等式的解集为R ,所以⎩⎪⎨⎪⎧k <0,Δ=4-4k ·6k <0,即⎩⎪⎨⎪⎧k <0,k >66或k <-66.所以k <-66.即k 的取值范围是⎝ ⎛⎭⎪⎫-∞,-66.17.解:设水稻种x 亩,花生种y 亩,则由题意得⎩⎪⎨⎪⎧x +y ≤2,240x +80y ≤400,x ≥0,y ≥0.即⎩⎪⎨⎪⎧x +y ≤2,3x +y ≤5,x ≥0,y ≥0,画出可行域如图阴影部分所示而利润P =(3×400-240)x +(5×100-80)y =960x +420y (目标函数),可联立⎩⎪⎨⎪⎧x +y =2,3x +y =5,得交点B (1.5,0.5).故当x =1.5,y =0.5时,P 最大值=960×1.5+420×0.5=1 650,即水稻种1.5亩,花生种0.5亩时所得到的利润最大. 18.解:(1)g (x )=2x 2-4x -16<0, ∴(2x +4)(x -4)<0,∴-2<x <4, ∴不等式g (x )<0的解集为{x |-2<x <4}. (2)∵f (x )=x 2-2x -8.当x >2时,f (x )≥(m +2)x -m -15恒成立, ∴x 2-2x -8≥(m +2)x -m -15, 即x 2-4x +7≥m (x -1).∴对一切x >2,均有不等式x 2-4x +7x -1≥m 成立. 而x 2-4x +7x -1=(x -1)+4x -1-2≥2x -1×4x -1-2=2(当且仅当x =3时等号成立),∴实数m 的取值范围是(-∞,2].数学寒假作业(四)测试范围:简易逻辑使用日期:腊月二十五 测试时间:120分钟一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .sin 45°=1C .x 2+2x -1>0 D .梯形是不是平面图形呢?2.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①a >b >0是a 2>b 2的充要条件;②a >b >0是1a <1b 的充要条件;③a>b >0是a 3>b 3的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a >b ”与“a +c >b +c ”不等价C .“a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0, 则a 2+b 2≠0”D .一个命题的否命题为真,则它的逆命题一定为真5.(2013·广州一模)“m <2”是“一元二次不等式x 2+mx +1>0的解集为R ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件6.已知条件p :|x +1|>2,条件q :5x -6>x 2,则非p 是非q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 7.有下列四个命题:①“若x +y =0, 则x ,y 互为相反数”的逆否命题; ②“全等三角形的面积相等”的否命题;③“若q ≤1,则x 2+2x +q =0有实根”的逆否命题; ④“不等边三角形的三个内角相等”逆命题. 其中真命题为( )A .①②B .②③C .①③D .③④8.已知命题p :若x ∈N *,则x ∈z .命题q :∃x 0∈R ,⎝ ⎛⎭⎪⎫12x 0-1=0.则下列命题为真命题的是( )A .非pB .p ∧qC .非p ∨qD .非p ∨非q 9.(2014·江西卷)下列叙述中正确的是( )A .若a ,b ,c ∈R ,则“ax 2+bx +c ≥0”的充分条件是“b 2-4ac ≤0” B .若a ,b ,c ∈R ,则“ab 2>cb 2”的充要条件是“a >c ”C .命题“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2≥0”D .l 是一条直线,a ,β是两个不同的平面,若l ⊥α,l ⊥β,则α∥β10.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤111.下列命题中的假命题是( )A .∀x >0且x ≠1,都有x +1x >2B .∀a ∈R ,直线ax +y =a 恒过定点(1,0)C .∀φ∈R ,函数y =sin(x +φ)都不是偶函数D .∀m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减 12.已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0.若命题“p ∧q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上) 13.命题:“若a ·b 不为零,则a ,b 都不为零”的逆否命题是________________________________________________________________________.14.用“充分、必要、充要”填空:①p∨q为真命题是p∧q为真命题的__________条件;②非p为假命题是p∨q为真命题的__________条件;③A:|x-2|<3,B:x2-4x-15<0,则A是B的________条件.15.命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是__________.16.若“x2>1”是“x<a”的必要不充分条件,则a的最大值为______.三、解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)对于下述命题p,写出“非p”形式的命题,并判断“p”与“非p”的真假:(1)p:91∈(A∩B)(其中全集U=N*,A={x|x是质数},B={x|x是正奇数});(2)p:有一个素数是偶数;(3)p:任意正整数都是质数或合数;(4)p:三角形有且仅有一个外接圆.18.(12分)写出命题“已知a,b∈R,若关于x的不等式x2+ax+b≤0有非空解集,则a2≥4b”的逆命题,并判断其真假.19.(12分)已知方程x2+(2k-1)x+k2=0,求使方程有两个大于1的实数根的充要条件.20.(12分)已知a >0,a ≠1,设p :函数y =log a (x +3)在(0,+∞)上单调递减,q :函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点.如果p ∨q 真,p ∧q 假,求实数a 的取值范围.21.(12分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0. (1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)非p 是非q 的充分不必要条件,求实数a 的取值范围.家长签字:日期:数学寒假作业(四)答案1、B 解析:可以判断真假的陈述句.2、D 解析:原命题是真命题,所以其逆否命题也为真命题.3、A 解析:①a >b >0⇒a 2>b 2,仅仅是充分条件;②a >b >0⇒1a <1b ,仅仅是充分条件;③a >b >0⇒a 3>b 3,仅仅是充分条件.4、D 解析:否命题和逆命题是互为逆否命题,有着一致的真假性.5、B 解析:一元二次不等式x 2+mx +1>0的解为m ∈(-2,2),则m <2只是其必要不充分条件.6、A 解析:非p :|x +1|≤2,-3≤x ≤1,非q :5x -6≤x 2,x 2-5x +6≥0,x ≥3或x ≤2,非p ⇒非q ,充分不必要条件. 7、C 解析:若x +y =0,则x ,y 互为相反数,为真命题,则逆否命题也为真;“全等三角形的面积相等”的否命题为“不全等三角形的面积不相等” 为假命题;若q ≤1⇒4-4q ≥0,即Δ=4-4q ≥0,则x 2+2x +q =0有实根,为真命题.“不等边三角形的三个内角相等”逆命题为“三个内角相等的三角形是不等边三角形”,为假命题.8、D 解析: 显然命题p 为真;因为对∀x ∈R ,都有⎝ ⎛⎭⎪⎫12x -1>0,所以命题q 为假,所以非q 为真,由“或”“且”“非”命题的真值表知D 正确.9、D 解析:由于“若b 2-4ac ≤0,则ax 2+bx +c ≥0”是假命题,所以“ax 2+bx +c ≥0”的充分条件不是“b 2-4ac ≤0”,A 错;∵ab 2>cb 2,且b 2>0,∴a >c .而a >c 时,若b 2=0,则ab 2>cb 2不成立,由此知“ab 2>cb 2”是“a >c ”的充分不必要条件,B 错;“对任意x ∈R ,有x 2≥0”的否定是“存在x ∈R ,有x 2<0”,C 错;由l ⊥α,l ⊥β,则a ∥β,可得α∥β,理由是:垂直于同一条直线的两个平面平行,D 正确.10、A 解析:∀x ∈[1,2],x 2-a ≥0,即a ≤x 2, 当x ∈[1,2]时恒成立,∴a ≤1.∃x 0∈R ,x 20+2ax 0+2-a =0, 即方程x 2+2ax +2-a =0有实根,∴Δ=4a 2-4(2-a )≥0,∴a ≤-2,或a ≥1.又p ∧q 为真,故p ,q 都为真,∴⎩⎪⎨⎪⎧a ≤1,a ≤-2或a ≥1.∴a ≤-2或a =1.11、C 解析:当x >0时,x +1x ≥2x ·1x =2,∵x ≠1,∴x +1x >2,故A 为真命题;将(1,0)代入直线ax +y =a 成立,B 为真命题;当φ=π2时,函数y =sin ⎝ ⎛⎭⎪⎫x +π2是偶函数,C 为假命题;当m =2时,f (x )=x -1是幂函数,且在(0,+∞)上单调递减,∴D 为真命题,故选C.12、A 解析:∀x ∈[1,2],x 2-a ≥0,即a ≤x 2, 当x ∈[1,2]时恒成立,∴a ≤1. ∃x 0∈R ,x 20+2ax 0+2-a =0,即方程x 2+2ax +2-a =0有实根,∴Δ=4a 2-4(2-a )≥0,∴a ≤-2,或a ≥1.又p ∧q 为真,故p ,q 都为真,∴⎩⎪⎨⎪⎧a ≤1,a ≤-2,a ≥1. ∴a ≤-2,或a =1.13、答案:若a ,b 至少有一个为零,则a ·b 为零 14、答案:①必要 ②充分 ③充分15、解析:ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0, 得-3≤a <0.∴-3≤a ≤0.答案:[-3,0]16、解析:由x 2>1得x <-1或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-117、解析:(1)非p :91∉A ,或91∉B ;p 真,非p 假. (2)非p :每一个素数都不是偶数;p 真,非p 假.(3)非p :存在一个正整数不是质数且不是合数;p 假,非p 真.(4)非p :存在一个三角形有两个及其以上的外接圆或没有外接圆;p 真,非p 假.18、解析:逆命题为:“已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集”.由a 2≥4b 知,Δ=a 2-4b ≥0.这说明抛物线y =x 2+ax +b 与x 轴有交点,那么x 2+ax +b ≤0必有非空解集.故逆命题是真命题.19、解析:令f (x )=x 2+(2k -1)x +k 2,方程有两个大于1的实数根⇔⎩⎪⎨⎪⎧Δ=(2k -1)2-4k 2≥0,-2k -12>1,f (1)>0,即k <-2,所以其充要条件为k <-2.20、解析:对于命题p :当0<a <1时,函数y =log a (x +3)在(0,+∞)上单调递减. 当a >1时,函数y =log a (x +3)在(0,+∞)上单调递增,所以如果p 为真命题,那么0<a <1.如果p 为假命题,那么a >1.对于命题q :如果函数y =x 2+(2a -3)x +1的图象与x 轴交于不同的两点,那么Δ=(2a -3)2-4>0,即4a 2-12a +5>0⇔a <12,或a >52.又∵a >0,所以如果q 为真命题,那么0<a <12或a >52.∴a 的取值范围是⎣⎢⎡⎭⎪⎫12,1∪⎝ ⎛⎭⎪⎫52,+∞. 21、解析:(1)由x 2-4ax +3a 2<0,的(x -3a )(x -a )<0. 又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0, 解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2, 即2<x ≤3.所以q 为真时,2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3⇔2<x <3, 所以实数x 的取值范围是(2,3).(2)∵非p 是非q 的充分不必要条件,∴q 是p 的充分不必要条件,则有(2,3](a ,3a ).于是满足⎩⎨⎧a ≤2,3a >3,解得1<a ≤2,故所求a 的取值范围是(1,2].数学寒假作业(五)测试范围:圆锥曲线使用日期:腊月二十七 测试时间:120分钟一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的)1.椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2→| =( )A.32B. 3C.72 D .42.抛物线的顶点和椭圆x 225+y 29=1的中心重合,抛物线的焦点和椭圆x 225+y 29=1的右焦点重合,则抛物线的方程为( )A .y 2=16xB .y 2=8xC .y 2=12xD .y 2=6x3.双曲线x 2-y 2m =1的离心率大于2的充分必要条件是( )A .m >12 B .m ≥1 C .m >1 D .m >24.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A.x 236-y 2108=1B.x 29-y 227=1C.x 2108-y 236=1D.x 227-y 29=15.(2013·惠州一调)已知实数4,m ,9构成一个等比数列,则圆锥曲线x 2m +y 2=1的离心率为( )A.306B.7C.306或7D.56或76.在y =2x 2上有一点P ,它到A (1,3)的距离与它到焦点的距离之和最小,则点P 的坐标是( )A .(-2,1)B .(1,2)C .(2,1)D .(-1,2)7.已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25=y 24=18.(2013·新课标全国卷Ⅰ)O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .49.动圆的圆心在抛物线y 2=8x 上,且动圆恒与直线x +2=0相切,则动圆必过点( )A .(4,0)B .(2,0)C .(0,2)D .(0,-2)10.已知F 是抛物线y =14x 2的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是( )A .x 2=y -12 B .x 2=2y -116 C .x 2=2y -1 D .x 2=2y -211.椭圆x 225+y 29=1上一点P 到两焦点的距离之积为m ,则m 取最大值时,P 点坐标是( )A .(5,0)或(-5,0) B.⎝ ⎛⎭⎪⎫52,332或⎝ ⎛⎭⎪⎫52,-332C .(0,3)或(0,-3) D.⎝ ⎛⎭⎪⎫532,32或⎝ ⎛⎭⎪⎫-532,3212.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >b >0)的左、右焦点,P 为双曲线左支上一点,若|PF 2|2|PF 1|的最小值为8a ,则该双曲线的离心率的取值范围是( )A .(1,3)B .(1,2)C .(1,3]D .(1,2]二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上) 13.抛物线y 2=8x 上一个点P (P 在x 轴上方)到焦点的距离是8,此时P 点的坐标是________.14.与椭圆x 24+y 23=1具有相同的离心率且过点(2,-3)的椭圆的标准方程是____________.15.若直线y =32x 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的交点在实轴上的射影恰好为双曲线的焦点,则双曲线的离心率是________.16.抛物线y 2=x 上存在两点关于直线y =m (x -3)对称,则m 的范围是_________________.三、解答题(本大题共6小题,共70分. 解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)求适合下列条件的双曲线的标准方程: (1)焦点在 x 轴上,虚轴长为12,离心率为 54; (2)顶点间的距离为6,渐近线方程为y =±32x .18.(12分) 已知椭圆C 的焦点F 1(-22,0)和F 2(22,0),长轴长为6,设直线y =x +2交椭圆C 于A 、B 两点,求线段AB 的中点坐标.19.(12分)中心在原点,焦点在x 轴上的一个椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=213,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3∶7.求这两条曲线的方程.20. (12分)已知动点P 与平面上两定点A (-2,0)、B (2,0)连线的斜率的积为定值-12.(1)试求动点P 的轨迹方程C ;(2)设直线l :y =kx +1与曲线C 交于M 、N 两点,当|MN |=423时,求直线l 的方程.21.(12分)设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0),抛物线C 2:x 2+by =b 2.(1)若C 2经过C 1的两个焦点,求C 1的离心率;(2)设A (0,b ),Q ⎝ ⎛⎭⎪⎫33,54b ,又M ,N 为C 1与C 2不在y 轴上的两个交点,若△AMN 的垂心为B ⎝ ⎛⎭⎪⎫0,34b ,且△QMN 的重心在C 2上,求椭圆C 1和抛物线C 2的方程.22.(12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =63.过点A (0,-b )和B (a ,0)的直线与原点的距离为32. (1)求椭圆的方程;(2)已知定点E (-1,0),若直线y =kx +2(k ≠0)与椭圆交于C ,D 两点,问:是否存在k 的值,使以CD 为直径的圆过E 点,请说明理由.家长签字:日期:数学寒假作业(五)答案1、C2、A3、C 解析:由e 2=⎝ ⎛⎭⎪⎫c a 2=1+m 1=1+m >2,m >1.4、B5、C6、B7、C 解析:依题意可设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则A ⎝ ⎛⎭⎪⎫1,b 2a ,B ⎝ ⎛⎭⎪⎫1,-b 2a ,又|AB |=b 2a -⎝ ⎛⎭⎪⎫-b 2a =2b 2a =3,∴2b 2=3a .又a 2-b 2=c 2=1,∴a =2,b = 3.故C 的方程为x 24+y 23=1.8、C 解析:设P (a ,b )为抛物线上在第一象限内的点,则a +2=42,得a =32,因为点P (a ,b )在抛物线上,所以b =26,所以S △POF =12×2×26=23,故选C.9、B 解析:直线x +2=0是抛物线的准线,又动圆圆心在抛物线上,由抛物线的定义知,动圆必过抛物线的焦点(2,0).10、C 解析:由y =14x 2⇒x 2=4y ,焦点F (0,1),设PF 中点Q (x ,y )、P (x 0,y 0), 则⎩⎪⎨⎪⎧2x =0+x 0,2y =1+y 0,4y 0=x 20,∴x 2=2y -1. 11、C 解析:|PF 1|+|PF 2|=2a =10,∴|PF 1|·|PF 2|≤⎝ ⎛⎭⎪⎫|PF 1||PF 2|22=25. 当且仅当|PF 1|=|PF 2|=5时,取得最大值,此时P 点是短轴端点,故选C.12、C 解析:|PF 2|2|PF 1|=(|PF 1|2a )2|PF 1|=|PF 1|+4a 2|PF 1|+4a ≥8a ,当|PF 1|=4a 2|PF 1|,即|PF 1|=2a 时取等号. 又|PF 1|≥c -a ,∴2a ≥c -a .∴c ≤3a ,即e ≤3.∴双曲线的离心率的取值范围是(1,3]. 13、答案:()6,4314、答案:x 28+y 26=1或3y 225+4x 225=1 15、答案:216、解析:设抛物线上两点A (x 1,y 1),B (x 2,y 2)关于直线y =m (x -3)对称,A ,B 中点M (x ,y ),则当m =0时,有直线y =0,显然存在点关于它对称.当m ≠0时,⎩⎪⎨⎪⎧y 21=x 1,y 22=x 2⇒y 1-y 2x 1-x 2=1y 1+y 2=12y =-1m ,所以y =-m 2,所以M 的坐标为(52,-m 2),∵M 在抛物线内,则有52>(m2)2,得-10<m <10且m ≠0,综上所述,m ∈(-10,10).答案:(-10,10)17、解析:(1)焦点在x 轴上,设所求双曲线的方程为x 2a 2-y 2b 2=1.由题意,得⎩⎪⎨⎪⎧2b =12,c a =54,b 2=c 2-a 2.解得a =8,b =6,c =10.所以焦点在x 轴上的双曲线的方程为x 264-y 236=1.(2)当焦点在x 轴上时,设所求双曲线的方程为x 2a 2-y 2b 2=1由题意,得⎩⎪⎨⎪⎧2a =6,b a =32.解得a =3,b =92.所以焦点在x 轴上的双曲线的方程为 x 29-y 2814=1.同理可求当焦点在y 轴上双曲线的方程为y 29-x 24=1. 故所求双曲线的方程为x 29-y 2814=1或y 29-x 24=1.18、解析:由已知条件得椭圆的焦点在x 轴上,其中c =22,a =3,从而b =1,所以其标准方程是 x 29+y 2=1.联立方程组⎩⎪⎨⎪⎧x 29+y 2=1,y =x +2,消去y 得,10x 2+36x +27=0.设A (x 1,y 1),B (x 2,y 2),AB 线段的中点为M (x 0,y 0),那么:x 1+x 2=-185,x 0=x 1+x 22=-95.所以y 0=x 0+2=15.也就是说线段AB 的中点坐标为⎝ ⎛⎭⎪⎫-95,15.19、解析:设椭圆的方程为x 2a 21+y 2b 21=1,双曲线的方程为 x 2a 22-y 2b 22=1,半焦距c =13,由已知得:a 1-a 2=4,c a 1∶c a 2=3∶7,解得:a 1=7,a 2=3.所以:b 21=36,b 22=4,故所求两条曲线的方程分别为:x 249+y 236=1 ,x 29-y 24=1.20、解析:(1)设点P (x ,y ),则依题意有y x +2·yx -2=-12,整理得x 22+y 2=1.由于x ≠±2,所以求得的曲线C 的方程为x 22+y 2=1(x ≠±2).(2)联立方程组⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +1,消去y 得:(1+2k 2)x 2+4kx =0.解得x 1=0, x 2=-4k1+2k 2(x 1,x 2分别为M ,N 的横坐标).由|MN |=1+k 2|x 1-x 2|=1+k 2⎪⎪⎪⎪⎪⎪4k 1+2k 2=432,解得:k =±1.所以直线l 的方程x -y +1=0或x +y -1=0.。

高二数学寒假作业答案

高二数学寒假作业答案

寒假作业(一)参考答案CBCB BABC ; 1(0,)2; (-1,+∞); 49; [3,+∞); 0;;15. 解 (1)∵f (x )为奇函数,∴f (-x )=-f (x )即-ax 3-bx +c =-ax 3-bx -c ,∴c =0,∵f ′(x )=3ax 2+b 的最小值为-12,∴b =-12, 又直线x -6y -7=0的斜率为16,因此,f ′(1)=3a +b =-6, ∴a =2,b =-12,c =0. (2)单调递增区间是(-∞,-2)和(2,+∞). f (x )在[-1,3]上的最大值是18,最小值是-8 2.16. 解:(1)由()1c ,为公共切点可得:2()1(0)f x ax a =+>,则()2f x ax '=,12k a =,3()g x x bx =+,则2()=3g x x b '+,23k b =+,∴23a b =+①又(1)1f a =+,(1)1g b =+,∴11a b +=+,即a b =,代入①式可得:33a b =⎧⎨=⎩.(2)24a b =,∴设3221()()()14h x f x g x x ax a x =+=+++则221()324h x x ax a '=++,令()0h x '=,解得:12a x =-,26ax =-;0a >,∴26a a-<-,综上所述:当(]02a ∈,时,最大值为2(1)4a h a =-;当()2,a ∈+∞时,最大值为12a h ⎛⎫-= ⎪⎝⎭.17. 解:(1)()x x x f ,1ln +='>0.而()x f '>0⇔lnx+1>0⇔x >()x f e ',1<0⇔1ln +x <0⇔0<x <,1e所以()x f 在⎪⎭⎫⎝⎛e 1,0上单调递减,在⎪⎭⎫ ⎝⎛+∞,1e 上单调递增 所以ex 1=是函数()x f 的极小值点,极大值点不存在.(2)设切点坐标为()00,y x ,则,ln 000x x y =切线的斜率为,1ln 0+x 所以切线l 的方程为()().1ln ln 0000x x x x x y -+=-又切线l 过点()1,0-,所以有()().01ln ln 10000x x x x -+=-- 解得.0,100==y x 所以直线l 的方程为.1-=x y (3)()()1ln --=x a x x x g ,则().1ln a x x g -+='()x g '<0a x -+⇔1ln <0⇔0<x <()x g e a '-,1>0x ⇔>,1-a e 所以()x g 在()1,0-a e 上单调递减,在()+∞-,1a e 上单调递增.①当,11≤-a e 即1≤a 时,()x g 在[]e ,1上单调递增,所以()x g 在[]e ,1上的最小值为().01=g当2≥a 时,()x g 的最小值为.ae e a -+18. (Ⅰ)由题意:)()(x g x f ≥⇔≥-ax x 2x ln ,)0(>x分离参数a 可得:)0(ln >-≤x xx x a ………………(1分)设x x x x ln )(-=φ,则22/1ln )(x x x x -+=φ………………(2分)由于函数2x y =,x y ln =在区间),0(+∞上都是增函数,所以函数1ln 2-+=x x y 在区间),0(+∞上也是增函数,显然1=x 时,该函数值为0 所以当)1,0(∈x 时,0)(/<x ϕ,当),1(+∞∈x 时,0)(/>x ϕ所以函数)(x φ在)1,0(∈x 上是减函数,在),1(+∞∈x 上是增函数所以1)1()(min ==φφx ,所以1)(min =≤x a φ即]1,(-∞∈a ………………(4分)(Ⅱ)由题意知道:x ax x x h ln )(2+-=,且)0(,12)(2|>+-=x x ax x x h所以方程)0(0122>=+-x ax x 有两个不相等的实数根21,x x ,且)21,0(1∈x , 又因为,2121=x x 所以),1(2112+∞∈=x x ,且)2,1(,122=+=i x ax i i…………(6分) 而)ln ()()(112121x ax x x h x h +-=-)ln (2222x ax x +--]ln )12([12121x x x ++-=]ln )12([22222x x x ++--212122lnx x x x +-=22222221ln )21(x x x x +-=2222222ln 41x x x --=,)1(2>x设)1(,2ln 41)(222≥--=x x x x x u ,则02)12()(322/≥-=x x x u所以2ln 43)1()(-=>u x u ,即2ln 43)()(21->-x h x h ………………(8分)(Ⅲ))21()()(ax g x f x r ++=21ln2++-=ax ax x 所以12)(|++-=ax a a x x r 12222++-=ax x x a ax 1)22(22+--=ax a a x ax ………………(9分)因为(1,2)a ∈,所以21212212222=-≤-=-a a aa 所以当),21(+∞∈x 时,)(x r 是增函数,所以当01[,1]2x ∈时, 21ln1)1()(max 0++-==a a r x r ,(1,2)a ∈………………(10分)所以,要满足题意就需要满足下面的条件:)1(21ln12a k a a ->++-,令)1(21ln 1)(2a k a a a --++-=ϕ,(1,2)a ∈即对任意(1,2)a ∈,)1(21ln1)(2a k a a a --++-=ϕ0>恒成立因为)122(11222111)(2/-++=+-+=+++-=k ka a aa a ka ka ka a a ϕ ………(11分)分类讨论如下:(1)若0=k ,则1)(/+-=a aa ϕ,所以)(a ϕ在)2,1(∈a 递减, 此时0)1()(=<ϕϕa 不符合题意(2)若0<k ,则)121(12)(/+-+=k a a ka a ϕ,所以)(a ϕ在)2,1(∈a 递减,此时0)1()(=<ϕϕa 不符合题意 (3)若0>k ,则)121(12)(/+-+=k a a ka a ϕ,那么当1121>-k 时,假设t 为2与121-k 中较小的一个数,即}121,2min{-=k t ,则)(a ϕ在区间})121,2min{,1(-k 上递减,此时0)1()(=<ϕϕa 不符合题意。

高二数学寒假作业

高二数学寒假作业

开始结束 1x =x 是奇数? 2=+x x8?>x输出x 1x x =+是 是 否否第6题开始 结束 1,1s k ==1k k =+2s s k =+输出s 是否 第2题第5题11—12学年任丘一中10级数学科寒假作业(1)出题人:张红永 完成日期: 家长签字:1. 下面的程序运行后的输出结果为 【 】 (A)17 (B)19 (C)21 (D)232.某程序框图如下图所示,若输出的s =57,则判断框内为 【 】A.4?k > B.5?k > C.6?k > D.7?k >3.840和1764的最大公约数是4.执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为5. 阅读下边的程序框图,运行相应的程序,则输出s 的值为6.如图所示,程序框图(算法流程图)的输出值x =________i=1;WHILE i<8 i = i +2;s = 2 * i +3;i = i –1;WENDPRINT s第4题出题人:张红永完成日期家长签字1.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。

则完成(1)、(2)这两项调查宜采用的抽样方法依次是【】A、分层抽样法,简单随机抽样法B、分层抽样法,系统抽样法C、系统抽样法,分层抽样法D、简单随机抽样法,分层抽样法2.某校1000名学生中,O型血有400人,A型血有250人,B型血有250人,AB型血有100人,为了研究血型与健康的关系,要从中抽取一个容量为40的样本,按照分层抽样的方法抽取样本,则O型血、A型血、B型血、AB型血的人要分别抽的人数为【】A.16、10、10、4B.14、10、10、6C.13、12、12、3D.15、8、8、9 3.在某餐厅内抽取100人,其中有30人在15岁以下,35人在16至25岁,25人在26至45岁,10人在46岁以上,则数 0.35是16到25岁人员占总体分布的【】A.概率B.频率C.累计频率D.频数4.下图是容量为200的样本的频率分布直方图,那么样本数据落在[)10,14内的频率,频数分别为【】A.0.32; 64 B.0.32; 62C.0.36; 64 D.0.36; 725.某中学高二年级从甲、乙两个班中各随机的抽取10名学生,依据他们的数学成绩画出如图所示的茎叶图则甲班10名学生数学成绩的中位数是,乙班10名学生数学成绩的平均数是出题人:刘丽娜 完成日期 家长签字1.以下说法正确的是( )A.命题”负数的平方是正数”不是全称命题B.命题”x ∀∈N 32x x ,>“的否定是”0x ∃∈N 3200x x ,>“ C.”a=1”是”函数f(x)=cos 2ax -sin 2ax 的最小正周期为π“的必要不充分条件 D.”b=0”是”函数2()f x ax bx c =++是偶函数”的充要条件2.设x y ,∈R ,则”2x ≥且2y ≥“是“2x +2y ≥4”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 3.全称命题“x ∀∈R 254x x ,+=”的否定是( )A.0x ∃∈R 20054x x ,+=B.x ∀∈R 254x x ,+≠C.0x ∃∈R 20054x x ,+≠D.以上都不正确 4.已知命题p:若220x y +=,则x,y 全为0;命题q:若a>b,则11a b<.给出下列四个复合命题:①p ∧q,②p ∨q,③p q ⌝,⌝,④其中真命题的个数为( ) A.1 B.2 C.3 D.45.命题p:在△ABC 中,C>B 是sinC>sinB 的充分不必要条件:命题q:a>b 是22ac bc >的充分不必要条件.则 ( ) A.p 假q B.p 真q 假 C.p ∨q 为假 D.p ∧q 为真 6.下列说法错误的是( )A.命题”p 且q”的否定是””p q ⌝⌝或B.|a|<1且|b|<2是|a+b|<3的充要条件C.集合A={a,b,c},集合B={0,1},则集合A 到集合B 的不同映射有8个D.命题p:若M N M ⋃=,则NM ,命题q:5∉{2,3},则命题”p 且q”为真7.已知命题p:关于x 的一元二次方程220x x m ++=有两个不相等的实数根,命题q:()(52)xf x m =-是增函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.出题人:薛凤杰 完成日期 家长签字1.下列说法不正确的是( )A 、不可能事件的概率是0,必然事件的概率是1B 、某人射击10次,击中靶心8次,则他击中靶心的概率是0.8C 、“直线y =k(x+1)过点(-1,0)”是必然事件D 、先后抛掷两枚大小一样的硬币,两枚都出现反面的概率是31 2. 一批产品中,有10件正品和5件次品,对产品逐个进行检测,如果已检测到前3次均为正品,则第4次检测的产品仍为正品的概率是( )A.127B.154 C. 116 D. 31 3.从长度为1,3,5,7,9五条线段中任取三条能构成三角形的概率是( ) A 、21B 、103C 、51D 、52 4.在线段[0,3]上任取一点,则此点坐标大于1的概率是( ) A 、34 B 、23 C 、12 D 、135.在1万平方公里的海域中有40平方公里的大陆架贮藏着石油,假若在海域中任意一点钻探,那么钻到油层面的概率是( ) A 、140 B 、125 C 、1250 D 、1500 6.掷一枚骰子,则掷得奇数点的概率是( ) A.61 B. 21 C. `31 D. 41 7.公共汽车站每隔5分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,则乘客候车不超过3分钟的概率是___________________。

【高中数学】2021年高二数学寒假作业含答案上册

【高中数学】2021年高二数学寒假作业含答案上册

【高中数学】2021年高二数学寒假作业含答案上册2021年高二数学寒假作业含答案上册第I卷(选择题)一、选择题1.点与圆上任一点连线的中点轨迹方程是( )A. B.C. D.2.过原点且倾斜角为的直线被圆学所截得的弦长为A. B.2 C. D. 23.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为( )A.1B.C.2D. 34.任意的实数k,直线与圆的位置关系一定是 ( )A、相离B、相切C、相交但直线不过圆心D、相交且直线过圆心5.在高二的半期考中,某班级对该班的数学成绩进行统计,并将所得结果绘制成频率分布直方图如图所示,若以120分以上为“优秀”,那么该班同学数学成绩优秀的频率为( )A. B. C. D.6.某公司现有职员人,中级管理人员人,高级管理人员人,要从其中抽取个人进行身体健康检查,如果采用分层抽样的方法,其中高级管理人员仅抽到1人,那么的值为( )A.1B.3C.16D.207.有60件产品,编号为01至60,现从中抽取5件检验,用系统抽样的方法所确定的抽样编号是( )A. 5, 17, 29, 41, 53B. 5, 12, 31, 39, 57C. 5, 15, 25, 35, 45D. 5, 10, 15, 20, 258.如果数据的平均数是,方差是,则的平均数和方差分别是( )A. 和B.2 +3 和C. 2 +3 和 4D. 2 +3 和 4 +12 +99.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( )A.B. C. D.无法确定10.如图的矩形,长为,宽为,在矩形内随机地撒颗黄豆,数得落在阴影部分的黄豆数为颗,由此我们可以估计出阴影部分的面积约( )A. B. C. D.11.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于 ( )A. B. C. D.12.下列说法正确的是: ( )①从匀速传递的产品生产流水线上,质检员每10分钟从某处抽取一件产品进行某项指标检测,这样的抽样是分层抽样②某地气象局预报:5月9日本地降水概率为90%,结果这天没下雨,这表明天气预报并不科学③吸烟与健康具有相关关系④在回归直线方程中,当解释变量 x 每增加一个单位时,预报变量增加0.1个单位 ( )A.①②B.③④C.①③D. ②④第II卷(非选择题)二、填空题(2021年高二数学寒假作业含答案上册)13.圆与公共弦的长为 .14. 已知直线经过点P(-4,-3),且被圆截得的弦长为8,则直线的方程是_________.15..已知x与y之间的一组数据:x 0 1 2 3y 1 3 5 7则y与x的线性回归方程y=bx+a必过点 (填写序号)①(2,2) ②(1.5,0) ③(1.5,4) ④ (1, 2)16.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为______.三、解答题(2021年高二数学寒假作业含答案上册)(绿色圃中小学教育网原文地址 17.(本小题满分10分)已知,圆C:,直线: .(1) 当a为何值时,直线与圆C相切;(2) 当直线与圆C相交于A、B两点,且时,求直线的方程.18.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(Ⅰ)第二小组的频率是多少?样本容量是多少?(Ⅱ)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(Ⅲ)在这次测试中,学生跳绳次数的中位数、众数各是是多少?(精确到0.1)19.(本小题满分12分)一个口袋内装有大小相同的5 个球,其中3个白球分别记为A1、A2、A3;2个黑球分别记为B1、B2,从中一次摸出2个球.(Ⅰ)写出所有的基本事件;(Ⅱ)求摸出2球均为白球的概率20.(本小题满分12分)某校高三年级要从名男生和名女生中任选名代表参加学校的演讲比赛。

寒假专题综合一

寒假专题综合一

高二数学寒假作业综合训练题(一)时间:120分钟一、选择题 ( 本大题共12小题,每小题5分共60分)1. 在⊿ABC 中,若222sin sin sin A B C =+,则△ABC 为A. 锐角三角形B. 直角三角形C. 钝角三角形D.不能确定 2. 不等式x -2y +6>0表示的平面区域在直线x -2y +6=0的 A.右下方 B.右上方 C.左下方 D.左上方3. 由公差0≠d 的等差数列 ,,,,21n a a a 组成一个数列13a a +,24a a +,35a a +,…, 下列说法正确的是A .该新数列不是等差数列B .是公差为d 的等差数列C .是公差为d 2的等差数列D .是公差为d 3的等差数列 4. 方程22520x x -+=的两个根可分别作为A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率5. 在△ABC 中,若22()3b c a bc +-=,则角A = A.150° B.120° C.60° D.30O6. 已知等比数列}{n a 的各项均为正数,公比1≠q ,设293a a P +=,75a a Q ∙=,则P 与Q 的大小关系是A.Q P >B. Q P <C. Q P =D.无法确定7. 设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为 ( ) A .0 B .1 C .2 D .3 8. 以双曲线116922=-yx的右焦点为圆心,且与其渐近线相切的圆的方程是( )A . B. C .D.9.命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“非p”形式的命题是( )A 、存在实数m ,使得方程x 2+mx +1=0无实根 B 、存在实数m ,使得方程x 2+mx +1=0有实根 C 、对任意的实数m ,使得方程x 2+mx +1=0有实根 D 、至多有一个实数m ,使得方程x 2+mx +1=0有实根10、等比数列{}na中,73=a,前三项之和213=S,则公比q的值为A.. 1B.21- C. 1或21- D. -1或2111、设集合A={x|11+-xx<0},B={x || x-1|<a},若“a=1”是“A∩B≠φ”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件12、在同一坐标系中,方程)0(0122222>>=+=+babyaxbyax与的曲线大致是二、填空题(本大题共4小题每小题4分共16分)13. 数列{}na中,1111,1nna aa+==+,则=4a .14. 已知,,A B C三点不共线,O为平面ABC外一点,若由向量1253OP OA OB OCλ=++确定的点P与A B C,,共面,那么λ=.15. 抛物线24y x=上的一点M到焦点的距离为1,则点M的纵坐标是___________.16. 下列命题中,真命题是______________________.①40能被3或5整除;②不存在实数x,使012<++xx;②对任意实数x ,均有x+1>x; ④方程0322=+-xx有两个不等的实根;⑤不等式0112<++-xxx的解集为φ.三、解答题(本大题共6小题合计74分,解答应写出文字说明,证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学寒假作业(1)一、填空题:本小题共14小题,每小题5分,共70分,请将答案填在答题卷中的横线上,否则0分。

1.命题“22x y >,则x y >”的逆否命题是 。

2.等差数列{n a }中,32a =,则该数列的前5项的和为 。

3.“0a b >>”是“222a b ab +<”的 条件4.已知等差数列{n a }的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于 。

5.已知a ,b ,c ,d ,均为实数,有下列命题: ①若0,0,ab bc ad >->则0c d a b ->; ②若0,0,c dab a b>->则0bc ad ->; ③若0,0c dbc ad a b->->则0ab >; 其中正确的命题的个数是 。

6.若函数2()2f x x ax b =++在区间(0,1)、(1,2)内各有一个零点,求21b a --的取值范围 。

7.在△ABC 中,若22tan tan A b B a=,则△ABC 的形状是 三角形。

8.数列11111,3,5,7, (24816),前n 项和为 。

9.【理】在直三棱柱111ABC A B C -中,若CC ===1,,,则1,,A B a b c用来表示是 。

【文】在ABC △中,若43tan =A ,︒=120C ,32=BC ,则AB = 。

10.若二次不等式20ax bx c ++>的解集是11{|}54x x <<,那么不等式2220cx bx a --<的解集是 。

11.在△ABC 中,已知且12ABCS = ,则AB BC BC CA CA AB ++ 的值 是 。

12.将n 个连续自然数按规律排成下表:0 3 → 4 7 → 8 11 → … ↓ ↑ ↓ ↑ ↓ ↑ … 1 → 2 5 → 6 9 → 10 …根据规律,从2007到2009的箭头方向依次为 。

13.已知函数log (2)1(0,1)a y x a a =-+>≠的图像恒过定点A ,若点A 在直线mx+ny+1=0上,其中mn>0,则31m n+的最大值为__________________。

122y x两个根分别为x 1,x 2,则点P (x 1,x 2)在与圆222=+y x 的位置关系是 。

【文】数列{}n a 中,16a =,且111n n n a a a n n---=++(*n ∈N ,2n ≥),则这个数列的通项公式 n a = .二、解答题:本大题共6小题,共90分,解答应写出相应的文字说明,证明过程或演算步骤。

15.(本小题满分14分)【理】在正方体ABCD —A 1B 1C 1D 1中,F 是BC 的中点,点E 在D 1C 1上,且D 1E=14D 1C 1,试求直线EF 与 平面D 1AC 所成角的正弦值。

【文】在锐角三角形中,边a ,b是方程220x -+=的两根,角A ,B满足:2sin()0A B +=,求角C 的度数,边c 的长度及△ABC 的面积。

16.(本小题满分14分)设p :方程210x mx ++=有两个不等的负根,q :方程244(2)10x m x +-+=无实根,若p 或q 为真,p且q 为假,求m 的取值范围。

BCDFA 1B 1C 1ED 1【理】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为A ,过点A 且与AF 垂直的光线经椭圆的右准线反射,反射光线与直线AF 平行.(1)求椭圆的离心率;(2)设入射光线与右准线的交点为B ,过A ,B ,F 三点的圆恰好与直线3x 一y+3=0相切,求椭圆的方程.【文】在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若ABC △a b ,;数列{}n a 满足144(2)n n a n a -=-≥,且数列{}n b 满足12n n b a =-。

(1)试判断数列{}n b 是不是等差数列; (2)求数列{}n a 的通项公式。

19.(本小题满分16分)某公司计划2010年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,假设甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元。

问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大?最大的收益是多少万元? 20.(本小题满分16分) 设数列{}n a 的前n 项和为n S ,且24(1),0n n nS a a =+>;数列{}n b 为等比数列,且11a b =,2211()b a a b -=。

(1)求数列{}n a 和{}n b 的通项公式; (2)设nn na cb =,求数列{}n c 的前n 项和n T 。

2009~2010学年上学期建湖县第二中学高二年级期末考试数学试卷(文、理科)命题人:郑介宏 考试日期:2010-01-29 卷面分值:160分 考试时间:120分钟一、填空题:本小题共14小题,每小题5分,共70分,请将答案填在答题卷中的横线上,否则0分。

1.命题“22x y >,则x y >”的逆否命题是( “若x y ≤,则22x y ≤” ) 2.等差数列{n a }中,32a =,则该数列的前5项的和为 103.“0a b >>”是“222a b ab +<”的 充分而不必要 条件4.已知等差数列{n a }的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于 - 6 。

5.已知a ,b ,c ,d ,均为实数,有下列命题: ①若0,0,ab bc ad >->则0c d a b ->; ②若0,0,c dab a b>->则0bc ad ->; ③若0,0c dbc ad a b->->则0ab >; 其中正确的命题的个数是 3 。

6.若函数2()2f x x ax b =++在区间(0,1)、(1,2)内各有一个零点,求21b a --的取值范围 。

21,114b a -⎛⎫∈ ⎪-⎝⎭7.在△ABC 中,若22tan tan A b B a =,则△ABC 的形状是 等腰或直角 三角形 8.数列11111,3,5,7,...24816,前n 项和为 。

2112n n -+ 9.【理】在直三棱柱111ABC A B C -中,若CC ===1,,,则1,,A B a b c用来表示是 。

【文】在ABC △中,若43tan =A ,︒=120C ,32=BC ,则AB = 。

5 10.若二次不等式20ax bx c ++>的解集是11{|}54x x <<,那么不等式2220cx bx a --<的解集是{|101}x x x <->或 。

11.在△ABC 中,已知sinA:sinB:sinC=1:1:,且12ABCS = ,则AB BC BC CA CA AB ++ 的值是 。

-20 3 → 4 7 → 8 11 → … ↓ ↑ ↓ ↑ ↓ ↑ … 1 → 2 5 → 6 9 → 10 …根据规律,从2007到2009的箭头方向依次为 → ↓ 。

13.已知函数log (2)1(0,1)a y x a a =-+>≠的图像恒过定点A ,若点A 在直线mx+ny+1=0上,其中mn>0,则31m n+的最大值为___________________.16- 14.【理】椭圆21)0,0(12222=>>=+e b a b y a x 的离心率,右焦点F (c,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在与圆222=+y x 的位置关系是 ▲点P (x 1,x 2)在圆222=+y x 内 .【文】数列{}n a 中,16a =,且111n n n a a a n n---=++(*n ∈N ,2n ≥),则这个数列的通项公式n a = (1)(2)n n ++.二、解答题:本大题共6小题,共90分,解答应写出相应的文字说明,证明过程或演算步骤。

15.(本小题满分14分)【理】在正方体ABCD —A 1B 1C 1D 1中,F 是BC 的中点,点E 在D 1C 1上,且D 1E=14D 1C 1,试求直线EF 与平面D 1AC 所成角的正弦值。

【解】设正方体棱长为1,以1,,DD DC DA 为单位正交基底,建立如图所示坐标系xyz D -,则各点的坐标分别为()1,1,11B ,⎪⎭⎫ ⎝⎛1,41,0E , ⎪⎭⎫ ⎝⎛0,1,21F ,……………………4分 所以)1,1,1(1=DB ,)1,43,21(-=, ……………………8分1DB 为平面AC D 1的法向量,8787116941311431211||||,cos 11=++⨯⨯-⨯+⨯=>=<EF DB F E DB .……12分 所以直线EF 与平面AC D 1所成角的正弦值为8787.………………………………14分 【文】在锐角三角形中,边a ,b是方程220x -+=的两根,角A ,B满足:2sin()0A B +=,求角C 的度数,边c 的长度及△ABC 的面积。

解:由2sin()0A B +=,得sin()A B +=。

又∵a ,b是方程220x -+=的两根,∴a+b= ∴22222cos ()31266c a b ab C a b ab =+-=+-=-=∴c =ABC 11sin 222S ab C ==⨯= . 16.(本小题满分14分)设p :方程210x mx ++=有两个不等的负根,q :方程244(2)10x m x +-+=无实根,若p 或q 为真,p 且q 为假,求m 的取值范围。

解:若方程210x mx ++=有两个不等的负根,则21240,2.0,m m x x m ⎧∆=->⇒>⎨+=-<⎩若方程244(2)10x m x +-+=无实根,则216(2)160,m ∆=--<即13m <<。

因为p 或q 为真且p 且q 为假,则p ,q 中一真一假,即p 为真q 为假或p 为假q 为真, 所以22321313m m m m m m m >≤⎧⎧⇒≥≤⎨⎨<<≤≥⎩⎩或或1<或,∴实数m 的取值范围为(1,2][3,)+∞ 。

相关文档
最新文档