脱硝工艺介绍
脱硝系统工艺流程

脱硝系统工艺流程脱硝系统是用于去除烟气中的氮氧化物的一种重要设备。
氮氧化物是燃烧过程中产生的一种有害气体,对环境和人体健康有一定的危害。
脱硝系统的工艺流程主要包括吸收法和选择性催化还原法两种。
下面将介绍一下这两种工艺的主要流程。
吸收法脱硝系统的工艺流程如下:1. 烟气进入脱硝系统前,需要经过除尘系统进行除尘处理,确保烟气的净化程度达到要求。
2. 经过除尘处理后的烟气进入脱硝反应器,和脱硝剂进行接触反应。
脱硝剂一般使用氨水或尿素溶液。
3. 在脱硝反应器中,氮氧化物与脱硝剂发生反应,生成气态氮和水蒸气,从而将氮氧化物从烟气中去除。
4. 脱硝反应后的烟气经过凝结器进行冷却和水分的除尘,以保证烟气的温度和湿度符合排放标准。
5. 经过凝结器处理后的烟气经过烟囱排放到大气中,完成脱硝的过程。
选择性催化还原法脱硝系统的工艺流程如下:1. 烟气经过除尘系统进行除尘净化处理,确保烟气中的颗粒物达到要求,净化程度高。
2. 脱硝反应器中装有催化剂,例如V2O5 / TiO2。
烟气通过催化剂床层时,与催化剂上的氨发生反应。
氨通过选择性催化还原(SCR)反应,将氮氧化物还原为氮和水。
3. 经过脱硝反应器反应后的烟气进入除雾器进行除雾处理,去除烟气中的水分和溶解颗粒物。
4. 经过除雾器除雾后的烟气经过干燥器进行干燥处理,以保证烟气中的水分含量接近饱和状态。
5. 去除水分后的烟气再次进入脱硝反应器,与剩余的氨发生选择性催化还原反应,以保证烟气中的氮氧化物浓度达到排放标准。
6. 经过脱硝系统处理后的烟气经过除臭系统进行除臭处理,去除烟气中的恶臭气味。
7. 最后,经过除臭处理的烟气进入烟囱排放到大气中,完成整个脱硝过程。
脱硝系统工艺流程的选择取决于烟气中氮氧化物的特性、排放标准要求以及经济成本等因素。
随着环保压力的不断增大,脱硝系统的工艺流程也在不断的改进升级,以提高脱硝效率和减少能耗。
火电厂脱硝主要工艺介绍

火电厂脱硝主要工艺介绍
烟气脱硝工艺
由于炉内低氮燃烧技术的局限性,使得NOx 的排放不能达到令人满意的程度,为了进一步降低NOx 的
排放,必须对燃烧后的烟气进行脱硝处理。
目前通行的烟气脱硝工艺大致可分为干法、半干法和湿法3 类。
其中干法包括选择性非催化还原法( SNCR) 、选择性催化还原法(SCR) 、电子束联合脱硫脱硝法;半干法有活性炭联合脱硫脱硝法;湿法有臭氧氧化吸收法等。
在众多脱硝方法当中,SCR 脱硝工艺以其脱硝装置结构简单、无副产品、运行方便、可靠性高、脱硝效率高、一次投资相对较低等诸多优点,在日本和欧美得到了广泛的商业应用。
SCR工艺
SCR 装置主要由脱硝反应剂制备系统和反应器本体组成。
通过向反应器内喷入脱硝反应剂N H3 ,将NOx 还原为氮气。
由于此还原反应对温度较为敏感,故需加入催化剂,以满足反应的温度要求,增强反应活性。
采用高含尘工艺时,SCR 反应器布置在省煤器和空气预热器(空预器) 之间。
其优点是烟气温度高,满足了催化剂活性要求;缺点是烟气中的飞灰含量高,对催化剂的防磨损和防堵塞的性能要求较高。
对于低含尘工艺,SCR 布置在烟气脱硫系统( FGD) 之后、烟囱之前。
此时虽然烟气中的飞灰含量大幅减少,但为了满足催化剂活性对反应温度的要求,需要安装蒸汽加热器和烟气换热器( GGH) ,系统复杂,投资增加,故一般选择高含尘工艺。
[。
scr脱硝工艺的详细原理和工艺流程

scr脱硝工艺的详细原理和工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!SCR脱硝工艺的详细原理和工艺流程一、SCR脱硝工艺的原理介绍。
火电厂脱硫脱硝工艺流程

火电厂脱硫脱硝工艺流程火电厂脱硫脱硝工艺流程一、工艺概述1、脱硫火电厂脱硫工艺主要是通过三种常用的技术来实现,分别是:石灰石吸收法、泡沫吸收法和氧化还原法。
1)石灰石吸收法:该方法是利用石灰石对烟气中的硫化物进行吸收,将硫从烟气中吸收,从而实现烟气的脱硫,其原理是将石灰石放入烟气中,当烟气经过石灰石后,硫化物就会与石灰石反应,形成溶解在水中的硫酸盐,最后经过脱除池的处理,将硫酸盐从水中脱除,从而实现对烟气的脱硫。
2)泡沫吸收法:该方法是利用泡沫的吸收作用,将烟气中的硫化物吸收,从而实现烟气的脱硫。
其原理是将特殊的泡沫浆料放入烟气中,当烟气经过泡沫浆料后,硫化物就会被泡沫吸收,最后经过处理,将硫从泡沫浆料中抽除出来,从而实现对烟气的脱硫。
3)氧化还原法:该方法是通过利用氧化剂和还原剂对烟气中的硫化物进行氧化还原,从而将硫从烟气中氧化成二氧化硫,然后通过脱除池脱除,从而实现对烟气的脱硫。
2、脱硝火电厂脱硝工艺主要是利用活性炭吸收法来实现,该方法是将活性炭放入烟气中,当烟气经过活性炭后,氮氧化物就会被活性炭吸收,最后经过处理,将氮氧化物从活性炭中抽除出来,从而实现对烟气的脱硝。
二、工艺流程1、烟气的处理火电厂脱硫脱硝工艺的起始就是烟气的处理,将烟气进行对流、分离、净化处理,以达到烟气含有的硫化物和氮氧化物的含量达到规定的要求。
2、石灰石吸收法将烟气和石灰石混合后进入吸收塔,当烟气经过石灰石后,硫化物就会与石灰石反应,形成溶解在水中的硫酸盐,最后经过脱除池的处理,将硫酸盐从水中脱除,从而实现对烟气的脱硫。
3、泡沫吸收法将特殊的泡沫浆料放入烟气中,当烟气经过泡沫浆料后,硫化物就会被泡沫吸收,最后经过处理,将硫从泡沫浆料中抽除出来,从而实现对烟气的脱硫。
4、氧化还原法将氧化剂和还原剂放入烟气中,当烟气经过氧化剂和还原剂后,硫化物就会被氧化成二氧化硫,然后通过脱除池脱除,从而实现对烟气的脱硫。
5、活性炭吸收法将活性炭放入烟气中,当烟气经过活性炭后,氮氧化物就会被活性炭吸收,最后经过处理,将氮氧化物从活性炭中抽除出来,从而实现对烟气的脱硝。
脱硝工艺

一、脱硝工艺简述1、脱硝工艺介绍氮氧化物(NOx)是在燃烧工艺过程中由于氮的氧化而产生的气体,它不仅刺激人的呼吸系统,损害动植物,破坏臭氧层,而且也是引起温室效应、酸雨和光化学反应的主要物质之一。
世界各地对NOx的排放限制要求都趋于严格,而火电厂、垃圾焚烧厂和水泥厂等作为NOx气体排放的最主要来源,其减排更是受到格外的重视。
目前全世界降低电厂锅炉NOX排放行之有效的主要方法大致可分为以下四种:(1)低氮燃烧技术,即在燃烧过程中控制氮氧化物的生成,主要适用于大型燃煤锅炉等;低NOX燃烧技术只能降低NOX 排放值的30~50%,要进一步降低NOX 的排放, 必须采用烟气脱硝技术。
(2)选择性催化还原技术(SCR,SelectiveCatalyticReduction),主要用于大型燃煤锅炉,是目前我国烟气脱硝技术中应用最多的;(3)选择性非催化还原技术(SNCR,SelectiveNon-CatalyticReduction),主要用于垃圾焚烧厂等中、小型锅炉,技术成熟,但其效率低于SCR法;投资小,建设周期短。
(4)选择性催化还原技术(SCR)+选择性非催化还原技术(SNCR),主要用于大型燃煤锅炉低NOx排放和场地受限情况,也比较适合于旧锅炉改造项目。
信成公司将采用选择性非催化还原法(SNCR)技术来降低电厂锅炉NOx排放。
为此,将电厂SNCR脱硝法介绍如下:2、选择性非催化还原法(SNCR)技术介绍1)SNCR脱硝简述SNCR 脱硝技术是一种较为成熟的商业性NOx控制处理技术。
SNCR 脱硝方法主要是将还原剂在850~1150 ℃温度区域喷入含NOx 的燃烧产物中, 发生还原反应脱除NOx , 生成氮气和水。
SNCR 脱硝在实验室试验中可达到90%以上的NOx脱除率。
在大型锅炉应用上,短期示范期间能达到75%的脱硝效率。
SNCR 脱硝技术是20世纪70 年代中期在日本的一些燃油、燃气电厂开始应用的, 80年代末欧盟国家一些燃煤电厂也开始了SNCR 脱硝技术的工业应用, 美国90 年代初开始应用SNCR 脱硝技术, 目前世界上燃煤电厂SNCR脱硝工艺的总装机容量在2GW 以上。
sncr脱硝工艺流程

sncr脱硝工艺流程SNCR(Selective Non-Catalytic Reduction)是一种常用的脱硝工艺,通过加入氨水或尿素来与烟气中的氮氧化物(NOx)进行反应,从而将其还原为氮气和水。
下面是SNCR脱硝工艺流程的详细介绍。
1.脱硝剂储存和供给:氨水或尿素作为脱硝剂,需要储存和供给到反应系统中。
储存通常采用专用的储罐,并通过泵站将脱硝剂供给到喷射装置。
2.反应器:反应器是进行脱硝反应的核心组件,通常包括喷射装置和混合区。
脱硝剂通过喷射装置喷射到烟气中,与烟气中的氮氧化物发生反应。
混合区通过搅拌装置等手段,将脱硝剂与烟气充分混合,以提高反应效果。
3.温度和浓度控制:脱硝反应对温度和氨氧比(NH3/NOx)有一定的要求。
通常需要在反应系统中设置温度控制器和氨氧比控制器,以确保反应在最佳条件下进行。
4.排放净化:反应后的烟气中可能还会残留一定量的氨、氮氧化物等物质,需要进行净化处理。
常见的处理方式有湿式脱硝、干式脱硝等。
湿式脱硝通常采用喷雾塔或湿式电除尘器将烟气中的颗粒物、氨和氮氧化物吸收或捕集,通过水洗或吸附剂反应后,排放净化后的烟气。
干式脱硝则通过调节烟气温度和添加吸附剂等方式,将烟气中的污染物吸附或化学转化,最终排放净化后的烟气。
5.控制系统:SNCR脱硝工艺通常需要配备一套完善的控制系统,以监测和控制反应过程中的各个参数,包括温度、压力、流量等。
控制系统可以自动调节脱硝剂供给、喷射装置位置和角度等参数,以实现最佳的脱硝效果。
总之,SNCR脱硝工艺是一种利用氨水或尿素与烟气中的氮氧化物进行反应,将其还原为无害物质的方法。
通过适当的脱硝剂供给、喷射装置设计和控制系统调节,可以实现高效、稳定和可靠的脱硝效果。
为了符合环保要求,通常会将脱硝后的烟气进行进一步的净化处理,以确保排放的烟气符合相关的排放标准。
脱硝工艺介绍

图6-1 典型火电厂SCR法烟气脱硝工艺流程图脱硝工艺介绍1脱硝工艺在锅炉系统中的位置图1 LNB、SNCR和SCR在锅炉系统中的位置目前成熟的燃煤电厂氮氧化物控制技术主要包括燃烧中脱硝技术和烟气脱硝技术,其中燃烧中脱硝技术是指低氮燃烧技术(LNB),烟气脱硝技术包括SCR、SNCR所示。
和SNCR/SCR联用技术等,其在锅炉系统中的位置如图1所示。
1.1烟气脱硝工艺应用气脱硝工艺应用目前进入工业应用的成熟的燃煤电厂烟气脱硝技术主要包括SCR、SNCR和SNCR/SCR联用技术。
联用技术。
1)SNCR 脱硝技术是指在锅炉炉膛出口900~1100℃的温度范围内喷入还原剂(如氨气)将其中的NOx 选择性还原成N 2和H 2O 。
SNCR 工艺对温度要求十分严格,对机组负荷变化适应性差,对煤质多变、机组负荷变动频繁的电厂,其应用受到限制。
大型机组脱硝效率一般只有25~45%,SNCR 脱硝技术一般只适用于老机组改造且对NOx 排放要求不高的区域。
排放要求不高的区域。
2)SCR 烟气脱硝技术是指在300~420℃的烟气温度范围内喷入氨气作为还原剂,在催化剂的作用下与烟气中的NOx 发生选择性催化反应生成N 2和H 2O 。
SCR 烟气脱硝技术具有脱硝效率高,成熟可靠,应用广泛,经济合理,适应性强,特别适合于煤质多变、机组负荷变动频繁以及对空气质量要求较敏感的区域的燃煤机组上使用。
SCR 脱硝效率一般可达80~90%,可将NOx 排放浓度降至100mg/m 3(标态,干基,6%O 2)以下。
)以下。
3)SNCR/SCR 联用技术是指在烟气流程中分别安装SNCR 和SCR 装置。
在SNCR 区段喷入液氨等作为还原剂,在SNCR 装置中将NOx 部分脱除;在SCR 区段利用SNCR 工艺逃逸的氨气在SCR 催化剂的作用下将烟气中的NOx 还原成N 2和H 2O 。
SNCR/SCR 联用工艺系统复杂,而且脱硝效率一般只有50~70%。
低温脱硝工艺

低温脱硝工艺一、概述低温脱硝工艺是指在200~400℃的温度下,利用还原剂将氮氧化物(NOx)转化为氮气(N2)的一种脱硝技术。
该工艺可广泛应用于燃煤电厂、钢铁厂等大型工业企业。
二、工艺流程低温脱硝工艺的主要流程包括:还原剂储存及输送系统、脱硝反应器、吸收塔及尾气处理系统等。
1.还原剂储存及输送系统还原剂一般采用氨水或尿素溶液,在储存和输送过程中需要注意防止挥发和泄漏。
该系统包括储罐、输送管道和喷淋装置等。
2.脱硝反应器脱硝反应器是低温脱硝工艺的核心部件,其主要作用是将NOx与还原剂进行反应,生成N2和水。
反应器通常采用立式结构,内部填充着催化剂,以提高反应效率。
反应器进出口处设有防爆门和阀门等安全设施。
3.吸收塔吸收塔是用于处理脱硝后的尾气的设备,其主要作用是净化尾气中的二氧化硫(SO2)和颗粒物等有害物质。
吸收塔通常采用湿式脱硫技术,即将尾气通过喷淋装置喷洒脱硫剂,使SO2与脱硫剂反应生成石膏或硫酸等物质。
4.尾气处理系统尾气处理系统包括除雾器、除湿器、风机和烟囱等设备。
其中,除雾器和除湿器主要用于去除尾气中的水汽和颗粒物,以保证排放达标。
三、工艺优点低温脱硝工艺具有以下优点:1.适用范围广:可广泛应用于各种燃料类型的锅炉系统中。
2.反应温度低:相对于高温脱硝工艺,低温脱硝工艺所需反应温度较低,不会对设备造成过多热损失。
3.节能环保:采用低温脱硝工艺可以有效降低NOx排放量,减少环境污染,同时也能节约能源。
4.易于操作:低温脱硝工艺的反应器内部填充着催化剂,可以提高反应效率,同时也便于操作和维护。
四、工艺注意事项在进行低温脱硝工艺时,需要注意以下事项:1.储存和输送还原剂时,要防止挥发和泄漏,以免造成安全事故。
2.脱硝反应器内部填充的催化剂需要定期更换或清洗,以保证反应效率。
3.吸收塔中使用的脱硫剂需要定期更换或补充,以保证净化效果。
4.尾气处理系统中的除雾器和除湿器需要定期清洗或更换滤网等设备,以保证排放达标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图6-1 典型火电厂SCR法烟气脱硝工艺流程图脱硝工艺介绍1脱硝工艺图1 LNB、SNCR和SCR在锅炉系统中的位置目前成熟的燃煤电厂氮氧化物控制技术主要包括燃烧中脱硝技术和烟气脱硝技术,其中燃烧中脱硝技术是指低氮燃烧技术(LNB),烟气脱硝技术包括SCR、SNCR和SNCR/SCR 联用技术等,其在锅炉系统中的位置如图1所示。
1.1烟气脱硝工艺应用目前进入工业应用的成熟的燃煤电厂烟气脱硝技术主要包括SCR、SNCR和SNCR/SCR 联用技术。
1)SNCR脱硝技术是指在锅炉炉膛出口900~1100℃的温度范围内喷入还原剂(如氨气)将其中的NOx选择性还原成N2和H2O。
SNCR工艺对温度要求十分严格,对机组负荷变化适应性差,对煤质多变、机组负荷变动频繁的电厂,其应用受到限制。
大型机组脱硝效率一般只有25~45%,SNCR脱硝技术一般只适用于老机组改造且对NOx排放要求不高的区域。
2)SCR烟气脱硝技术是指在300~420℃的烟气温度范围内喷入氨气作为还原剂,在催化剂的作用下与烟气中的NOx发生选择性催化反应生成N2和H2O。
SCR烟气脱硝技术具有脱硝效率高,成熟可靠,应用广泛,经济合理,适应性强,特别适合于煤质多变、机组负荷变动频繁以及对空气质量要求较敏感的区域的燃煤机组上使用。
SCR脱硝效率一般可达80~90%,可将NOx排放浓度降至100mg/m3(标态,干基,6%O2)以下。
3)SNCR/SCR联用技术是指在烟气流程中分别安装SNCR和SCR装置。
在SNCR区段喷入液氨等作为还原剂,在SNCR装置中将NOx部分脱除;在SCR区段利用SNCR工艺逃逸的氨气在SCR催化剂的作用下将烟气中的NOx还原成N2和H2O。
SNCR/SCR联用工艺系统复杂,而且脱硝效率一般只有50~70%。
三种烟气脱硝技术的综合比较见表1。
表1 烟气脱硝技术比较2 SCR 工艺2.1 SCR 技术简介选择性催化还原法(SCR )的基本原理是利用氨(NH 3)对NOx 的还原功能,使用氨气(NH 3)作为还原剂,将体积浓度小于5%的氨气通过氨气喷射格栅(AIG )喷入温度为300~420℃的烟气中,与烟气中的NOx 混合后,扩散到催化剂表面,在催化剂作用下,氨气(NH 3)将烟气中的NO 和NO 2还原成无公害的氮气(N 2)和水(H 2O )(图3-6)。
这里“选择性”是指氨有选择的与烟气中的NOx 进行还原反应,而不与烟气中大量的O 2作用。
整个反应的控制环节是烟气在催化剂表面层流区和催化剂微孔内的扩散。
图2 SCR 反应示意图SCR 反应化学方程式如下: 4NO + 4NH 3 + O 2 → 4N 2 + 6H 2O (3-1) 2NO 2 + 4NH 3 + O 2 → 3N 2 + 6H 2O(3-2)在燃煤烟气的NOx 中,NO 约占95%,NO 2约占5%,所以化学反应式(3-1)为主要反应,实际氨氮比接近1:1。
SCR 技术通常采用V 2O 5/TiO 2基催化剂来促进脱硝还原反应。
脱硝催化剂使用高比表面积专用锐钛型TiO 2作为载体,(钒)V 2O 5作为主要活性成分,为了提高脱硝催化剂的热稳定性、机械强度和抗中毒性能,往往还在其中添加适量的WO 3、(钼)MoO 3、玻璃纤维等作为助添加剂。
催化剂活性成分V 2O 5 在催化还原NOx 的同时,还会催化氧化烟气中SO 2 转化成SO 3(反应3-3)。
在空预器换热元件140~220℃低温段区域,SO 3 与逃逸的NH 3 反应生成高粘性NH 4HSO 4(反应3-4),粘结与粘附烟气中的飞灰颗粒恶化空预器元件堵塞与腐蚀。
为此,除严格控制氨逃逸浓度小于3ppm 外,应尽可能减少V 2O 5 含量,并添加WO 3或MoO 3,控制催化剂活性,抑制SO 2/SO 3 转化,通常要求烟气经过催化剂后的SO 2/SO 3 转化率低于%。
2SO 2 + O 2 → 2SO 3 (3-3) SO 3+NH 3+H 2O→NH 4HSO 4(3-4)SCR 技术是当前世界上主流的烟气脱硝工艺,自上世纪70年代在日本燃煤电厂开始正式商业应用以来,目前在全世界范围内得到广泛的应用。
作为一种成熟的深度烟气NOx 后处理技术,无论是新建机组还是在役机组改造,绝大部分煤粉锅炉都可以安装SCR 装置。
其具有如下特点:脱硝效率可以高达95%,NOx 排放浓度可以控制到50mg/m 3(标态,干基,6%O 2)以下,是其他任何一项脱硝技术都无法单独达到的;催化剂在与烟气接触过程中,受到气态化学物质毒害、飞灰堵塞与磨损等因素的影响,其活性逐渐降低,通常3~4年增加或更换一层催化剂。
对于废弃催化剂,由于富集了大量痕量重金属元素,需要谨慎处理;会增加锅炉烟道系统阻力900~1200Pa ;系统运行会增加空预器入口烟气中SO 3浓度,并残留部分未反应的逃逸氨气,两者在空预器低温换热面上易发生反应形成NH 4HSO 4,进而恶化空预器冷端的堵塞和腐蚀,因此需要对空预器采取抗NH 4HSO 4堵塞的措施。
2.2SCR技术分类烟气脱硝SCR工艺根据反应器在烟气系统中的位置主要分为三种类型(图3):高灰型、低灰型和尾部型等。
1)高灰型SCR工艺:脱硝催化剂布置在省煤器和空预器之间,烟气中粉尘浓度和SO2含量高,工作环境相对恶劣,催化剂活性下降较快,需选用低SO2氧化活性、大节距、大体积催化剂,但烟气温度合适(300~400℃),经济性最高,是目前燃煤电厂烟气脱硝的主流布置形式。
2)低灰型SCR工艺:脱硝催化剂位于除尘器和脱硫设施之间,烟气中粉尘浓度低,但SO2含量高,可选用低SO2氧化活性、小节距、中体积催化剂,但为了满足催化剂反应活性温度要求,需相应配置高温除尘系统,目前此项工艺仅在日本有所应用。
3)尾部型SCR工艺:脱硝催化剂位于脱硫设施后,烟气中粉尘浓度和SO2含量都很低,可选用低SO2氧化活性、小节距、小体积催化剂,但由于烟气温度低于80℃,与低灰布置形式类似,需要采用GGH烟气换热或外部热源加热方式将烟气温度升至催化剂活性反应温度,系统复杂,同样只适用于烟气成分复杂或者空间布置受到限制特定情况,此种布置形式在垃圾焚烧厂中有较多应用。
图3 SCR反应器布置示意图2.3还原剂选择还原剂的选择是影响SCR脱硝效率的主要因素之一,应具有效率高、价格低廉、安全可靠、存储方便、运行稳定、占地面积小等特点。
目前,常用的还原剂有液氨、尿素和氨水三种。
结合本期工程的特点、国家规范和当地环保部门要求,对脱硝剂的选择进行分析如下。
图4 液氨制氨工艺流程图图5氨水制氨工艺流程图1)液氨法(图4):液氨由专用密闭液氨槽车运送到液氨储罐,液氨储罐输出的液氨在液氨蒸发器蒸发成氨气,并将氨气加热至常温后,送到氨气缓冲罐备用。
缓冲罐的氨气经调压阀减压后,送入各机组的氨气/空气混合器中,与来自风机的空气充分混合后,通过喷氨格栅(AIG)喷人烟气中,与烟气混合后进入SCR催化反应器。
液氨法在国内的运行业绩较多。
2)氨水法(图5):通常是用25%的氨水溶液,将其置于存储罐中,然后通过加热装置使其蒸发,形成氨气和水蒸汽。
可以采用接触式蒸发器法或采用喷淋式蒸发器法。
氨水法对储存空间的需求较大,且运行中氨水蒸发需要消耗大量的能量,运行费用较高,国内业绩非常少。
3)尿素法:分为水解技术与热解技术。
其中水解技术包括AOD法(由SiiRTEC NiGi 公司提供),U2A法(由Wahlco公司和Hammon公司提供,图6)和NOxOUT Ultra热解技术(Fuel tech公司提供,图7)。
目前在国内只有国电青山电厂采用了尿素水解技术,该脱硝机组已于2011年8月27日通过168h试运,但其技术经济性与稳定性还有待验证。
热解技术在国内有部分运行业绩,如华能北京热电厂(4×830t/h锅炉)、京能石景山热电厂(4×670t/h锅炉)、华能玉环电厂(4×1000MW机组)等。
相对液氨法尿素法制氨初投资及运行费用均较高。
图6 尿素水解制氨工艺流程图图7 尿素热解制氨工艺流程图三种还原剂的性能比较见表2:使用氨水作为脱硝还原剂,对存储、卸车、制备区域以及采购、运输路线国家没有严格规定,但运输量大,运输费用高,制氨区占地面积大,而且在制氨过程中需要将大量的水分蒸发,消耗大量的热能,运行成本高昂。
由于液氨来源广泛、价格便宜、投资及运行费用均较其他两种物料节省,因而目前国内SCR装置大多都采用液氨作为SCR脱硝还原剂;但同时液氨属于危险品,对于存储、卸车、制备、采购及运输路线国家均有较为严格的规定。
液氨可作为本项目的首选方案,但需要经过安全与环评论证确定。
表2 还原剂性能比较(以2×300MW脱硝机组为例)潜在管道堵塞现象无无有无还原剂制备副产物无无CO2CO2设备安全要求有法律规定需要基本上不需要基本上不需要占用场地空间不小于1500m2不小于2000m2很小小于400m2很小小于400m2固定投资最低低高最高运行费用最低高高最高尿素制氨工艺安全成熟可靠,占地面积小,而且国家目前对尿素作为脱硝还原剂在存储、卸车、制备、采购及运输路线方面尚无要求,但由于尿素需要使用专用设备热解或水解制备氨气,设备投资成本高,而且尿素价格高,制氨过程中需要消耗大量的热量,运行成本高,所以在国内仅有少量的城市电厂因安全和占地等因素不得已使用尿素作为脱硝剂。
虽然尿素制氨有水解和热解两种工艺,但由于水解法存在启动时间长、跟踪机组负荷变化的速度较慢、腐蚀严重等问题,国内使用尿素作为脱硝剂几乎全部采用尿素热解工艺作为制氨工艺。
3催化剂系统3.1催化剂系统选型催化剂是整个SCR系统的核心和关键,催化剂的设计和选择是由烟气条件、组分及性能目标来确定的,设计的基本要求包括:催化剂设计应充分考虑锅炉飞灰的特性合理选择孔径大小并设计有防堵灰措施,确保催化剂不堵灰。
催化剂模块设计应能有效防止烟气短路的密封系统,密封装置的寿命不低于催化剂的寿命。
催化剂应采用模块化设计,减少更换催化剂的时间。
催化剂能满足烟气温度不高于420℃的情况下长期运行,同时催化剂应能承受运行温度450℃不少于5h的考验,而不产生任何损坏。
目前进入商业应用的SCR脱硝催化剂的矿物组成比较接近,都是以(钛)TiO2(含量约80~90%)作为载体,以V2O5(含量约1~2%)作为活性材料,以WO3或MoO3(含量约占3~7%)作为辅助活性材料,具有相同的化学特性。
但外观形状的不同导致其物理特性存在较大差异,主要可分为蜂窝式、平板式与波纹式三种形态(图8)。
图8 脱硝催化剂形态蜂窝式催化剂:采取整体挤压成型,适用于燃煤锅炉的催化剂节距范围为~,比表面积约410~539m2/m3,单位体积的催化剂活性高,相同脱硝效率下所用催化剂的体积较小,一般适合于灰含量低于30g/m3的工作环境(可用极限范围为50g/m3以内)。