或门的真值表和逻辑表达式剖析
数字电路基础公开课:逻辑电路图、逻辑表达式与真值表之间的互换

B
&Y
A
≥1
C
(b)
解:由逻辑图逐级写出输出端表达式: Y1 = Y2 = Y=
【例4】已知函数Y的逻辑图所示,写出函数Y的逻辑表达式,
解:由逻辑图逐级写出输出端表达式: Y1 = Y2 = Y3 = Y=
【例5】已知函数Y的逻辑图所示,写出函数Y的逻辑表达式,
解:由逻辑图逐级写出输出端表达式: Y1 = Y2 = Y3 = Y4 = Y=
与非门电路图符号 或非门电路图符号 与或非门电路图符号
2、逻辑表达式
第四节
3、真值表
第四节
第四节
一、逻辑电路图转化为逻辑表达式
方法:从电路图的输入端开始,逐级写出各门电路的逻 辑表达式Y1、Y2、Y3-----,一直到最后输出端Y
例1:根据下列逻辑电路图,写出输出端Y的逻辑表达式
A
&
B
A
&
C
≥1 Y
图。
第四节
二、逻辑表达式转化为逻辑电路图 方法:
根据逻辑表达式中逻辑运算的优先级别画出对应门电 路实现逻辑运算,优先级别通常为:非----与----或,有 括号先算括号的原则进行运算。
例3:根据逻辑表达式
画出逻辑电路图。
第四节
二、逻辑表达式转化为逻辑电路图 方法:
根据逻辑表达式中逻辑运算的优先级别画出对应门电 路实现逻辑运算,优先级别通常为:非----与----或,有 括号先算括号的原则进行运算。
输出端Y的逻辑表达式为:Y=A.B+ A .C
【例2】已知函数Y的逻辑图如图1-12所示,写出函数Y的逻辑 表达式,
图1-12
解:由逻辑图逐级写出输出端表达式: Y1 = AB Y2 = AB Y = Y1 + Y2
与非门、或非门、异或门逻辑表达式

一、概述逻辑门是数字电子电路中重要的组成部分,其中与非门、或非门、异或门是其中的几种类型。
它们在数字电路中起到了至关重要的作用,并且在计算机科学和工程领域有着广泛的应用。
本文将对这几种逻辑门的逻辑表达式进行详细的介绍和分析。
二、与非门(AND非门)1. 与非门的逻辑表达式与非门是由一个与门和一个反相器组成的逻辑门,其输出与输入相反。
与非门的逻辑表达式可以表示为:输出= ~(A ∧ B),其中∧表示与操作符,~表示反相操作符。
2. 与非门的功能与非门的主要功能是输出与输入相反的逻辑结果。
当输入的A和B同时为1时,输出为0;否则输出为1。
与非门常用于数字电路中的多种逻辑功能的实现,如加法器、乘法器等。
三、或非门(OR非门)1. 或非门的逻辑表达式或非门是由一个或门和一个反相器组成的逻辑门,其输出与输入相反。
或非门的逻辑表达式可以表示为:输出= ~(A ∨ B),其中∨表示或操作符,~表示反相操作符。
2. 或非门的功能或非门的主要功能是输出与输入相反的逻辑结果。
当输入的A和B任意一个为1时,输出为0;否则输出为1。
或非门在数字电路中常用于多种逻辑功能的实现,如单片机的输入端口、输出端口等。
四、异或门(XOR门)1. 异或门的逻辑表达式异或门是一种常用的逻辑门,其逻辑表达式可以表示为:输出= A ⊕ B,其中⊕表示异或操作符。
2. 异或门的功能异或门的主要功能是实现两个输入信号的异或运算。
当输入的A和B 不相输出为1;否则输出为0。
异或门在数字电路中有着广泛的应用,如在加法器、校验电路、数据传输等领域。
五、总结在数字电子电路中,与非门、或非门、异或门是常用的逻辑门类型,它们分别实现了与、或、异或等不同的逻辑运算。
逻辑门的逻辑表达式对于理解和设计数字电路具有重要意义,通过对逻辑门的逻辑表达式的分析和理解,可以更好地应用和设计数字电路,提高数字电路的性能和可靠性。
希望本文对读者对于与非门、或非门、异或门的逻辑表达式有所帮助。
基本逻辑关系和常用逻辑门电路

通常,把反映“条件”和“结果”之间的关系称为逻辑关系。
如果以电路的输入信号反映“条件”,以输出信号反映“结果”,此时电路输入、输出之间也就存在确定的逻辑关系。
数字电路就是实现特定逻辑关系的电路,因此,又称为逻辑电路。
逻辑电路的基本单元是逻辑门,它们反映了基本的逻辑关系。
基本逻辑关系和逻辑门2.1.1 基本逻辑关系和逻辑门逻辑电路中用到的基本逻辑关系有与逻辑、或逻辑和非逻辑,相应的逻辑门为与门、或门及非门。
一、与逻辑及与门与逻辑指的是:只有当决定某一事件的全部条件都具备之后,该事件才发生,否则就不发生的一种因果关系。
如图2.1.1所示电路,只有当开关A 与B 全部闭合时,灯泡Y 才亮;若开关A 或B 其中有一个不闭合,灯泡Y就不亮。
这种因果关系就是与逻辑关系,可表示为Y =AB ,读作“A 与B”。
在逻辑运算中,与逻辑称为逻辑乘。
与门是指能够实现与逻辑关系的门电路。
与门具有两个或多个输入端,一个输出端。
其逻辑符号如图2.1.2所示,为简便计,输入端只用A 和B 两个变量来表示。
与门的输出和输入之间的逻辑关系用逻辑表达式表示为:Y =AB =AB两输入端与门的真值表如表2.1.1所示。
波形图如图所示。
由此可见,与门的逻辑功能是,输入全部为高电平时,输出才是高电平,否则为低电平。
二、或逻辑及或门或逻辑指的是:在决定某事件的诸条件中,只要有一个或一个以上的条件具备,该事件就会发生;当所有条件都不具备时,该事件才不发生的一种因果关系。
如图2.1.4所示电路,只要开关A 或B 其中任一个闭合,灯泡Y 就亮;A 、B 都不闭合,灯泡Y 才不亮。
这种因果关系就是或逻辑关系。
可表示为:Y =A +B读作“A 或B”。
在逻辑运算中或逻辑称为逻辑加。
或门是指能够实现或逻辑关系的门电路。
或门具有两个或多个输入端,一个输出端。
其逻辑符号如图2.1.5所示。
表2.1.1 与门真值表图2.1.3 与门的波形图图2.1.4 或逻辑举例或门的输出与输入之间的逻辑关系用逻辑表达式表示为:Y=A+B两输入端或门电路的真值表和波形图分别如表2.1.2和图所示。
3-逻辑门

3.1.2反相器真值表
• 当反相器的输入是高电平时,它的输出就是低电 平。当反相器的输入是低电平时,它的输出就是 高电平。 • 真值表中以电平和对应的位值给出了每个可能的 输入和与之对应的输出。这样的表称为真值表。
《数字电子技术》
输入 低(0) 高(1) 输出 高(1) 低(0)
3.1.3反相器运算
3.6.1异或门
• 对于异或门来说,如果输入A是低电平而输入B是 高电平,或者输入A是高电平而输入B是低电平, 那么输出X就是高电平;如果A和B都是高电平或 者都是低电平,那么输出X为低电平。
《数字电子技术》
• 异或门的真值表为:
输入 A 0 0 1 B 0 1 0 输出 X 0 1 1
X A B
《数字电子技术》
《数字电子技术》
3.4与非门
• 与非(NAND)是非-与(NOT-AND)的 缩写,意思是具有反码(反相)输出的与 函数。 • 2输入的与非门的标准逻辑符号和一个与门 在其后再加一个反相器的电路图等价。
《数字电子技术》
3.4.1与非门的运算
• 只有所有的输入都是高电平时,与非门才会输出 低电平。当任何一个输入为低电平时,输出就是 高电平。 • 2输入与非门真值表为:
3.2.5应用举例《数Leabharlann 电子技术》《数字电子技术》
3.3或门
• 或门的标准逻辑符号:
3.3.1或门的运算 • 当任意一个输入为高电平时,或门的输出 就是高电平。当且仅当所有的输入是低电 平时,输出才是低电平。
《数字电子技术》
3.3.2或门真值表
• 两个输入一个输出的或门真值表:
输入 A 0 0 1 1 B 0 1 0 1 输出 X 0 1 1 1
三输入异或门真值表计算详解

三输入异或门真值表计算详解
异或门的应用范围广,在实际应用中可以用来实现奇偶发生器或模2加法器,还可以用作加法器、异或密码、异或校检、异或门倍频器、可控反相器等等。
虽然异或不是开关代数的基本运算之一,但是在实际运用中我们依然会相当普遍地使用到分立的异或门。
因此,我们为了熟练了解、掌握异或门这一基本逻辑电路,对异或门电路进行了这次课程设计。
异或门的逻辑表达式:
Y=ABC+ABC+ABC+ABC=A⊕B⊕C
进一步可得到一位比较器的真值表:
异或逻辑运算(半加运算)
异或运算通常用符号♁表示,其运算规则为:。
与或非异或运算的逻辑表达式

与或非异或运算的逻辑表达式1.引言1.1 概述逻辑运算是计算机科学中非常重要的一部分,它在描述和处理真值(True/False)以及逻辑关系时起着至关重要的作用。
在逻辑运算中,与(AND)、或(OR)、非(NOT)以及异或(XOR)是我们经常会使用的四种基本逻辑运算。
与运算是指当且仅当所有的输入条件都为真时,结果才为真。
它的逻辑表达式可以用逻辑符号“∧”表示,例如,表达式“A∧B”代表A和B 都为真时,结果为真。
与运算除了在逻辑中常用外,在计算机科学中也广泛应用,例如在编程语言中,我们常常使用与运算来判断两个条件是否同时满足。
或运算是指当且仅当至少有一个输入条件为真时,结果才为真。
它的逻辑表达式可以用逻辑符号“∨”表示,例如,表达式“A∨B”代表A或者B其中一个为真时,结果为真。
或运算在逻辑中的一个重要应用是进行多个条件的判断,只要其中一个条件成立,我们就可以进行相应的操作。
非运算是指将输入条件取反,即如果原始条件为真,则取反后为假;如果原始条件为假,则取反后为真。
它的逻辑表达式可以用逻辑符号“¬”表示,例如,表达式“¬A”代表A的逆否命题。
非运算常常用于取反判断、条件判断等场景中,是逻辑推理中的一种重要手段。
异或运算是指当且仅当两个输入条件不同时,结果才为真。
它的逻辑表达式可以用逻辑符号“⊕”表示,例如,表达式“A⊕B”代表A和B不同时,结果为真。
异或运算在计算机领域特别常用,经常应用于数据的加密与解密、错误检测等方面。
本文将详细探讨与、或、非以及异或运算的定义、特点和逻辑表达式,并对它们的真值表进行分析。
同时,我们还将讨论逻辑运算在实际应用中的一些例子,帮助读者更好地理解逻辑运算的重要性和应用场景。
在深入理解这些逻辑运算的基础上,我们可以更准确地进行问题的分析和解决。
文章结构部分的内容如下:1.2 文章结构本文主要围绕与运算、或运算、非运算和异或运算的逻辑表达式展开讨论。
7种逻辑门电路的逻辑符号和逻辑表达式

序在现代电子学和计算机科学中,逻辑门电路是至关重要的基础组成部分。
而逻辑门电路最基本的形式就是7种逻辑门,它们分别是与门、或门、非门、异或门、与非门、或非门以及同或门。
每种逻辑门都有其独特的逻辑符号和逻辑表达式,它们在数字电子电路中扮演着不可或缺的角色。
接下来,我们将深入探讨这7种逻辑门电路的逻辑符号和逻辑表达式,并从浅到深逐步分析它们的原理和应用。
一、与门与门是最简单的逻辑门之一,它的逻辑符号是一个“Λ”形状,而其逻辑表达式可以用“Y=A·B”来表示。
在与门电路中,只有当输入的布尔值均为1时,输出才会为1;否则输出为0。
这个逻辑表达式实际上就表明了与门的原理,即只有当所有输入为真时,输出才为真。
二、或门或门的逻辑符号是一个“V”形状,而其逻辑表达式可以用“Y=A+B”来表示。
与与门相反,或门只要有一个输入为1,输出就为1;只有当所有输入为0时,输出才为0。
可以看出,或门的逻辑表达式和与门的逻辑表达式是相对应的。
三、非门非门的逻辑符号是一个“¬”形状,而其逻辑表达式可以用“Y=¬A”来表示。
非门的原理是将输入的布尔值取反,即如果输入为1,则输出为0;如果输入为0,则输出为1。
四、异或门异或门的逻辑符号是一个带有一个加号的“⊕”形状,而其逻辑表达式可以用“Y=A⊕B”来表示。
异或门的原理是只有当输入不同时为1时,输出为1;否则输出为0。
异或门也常被用于比较两个输入是否相等的情况。
五、与非门与非门实际上是与门和非门的组合,其逻辑符号是一个与门后加上一个小圆点的符号,而其逻辑表达式可以用“Y=¬(A·B)”表示。
与非门的原理是先进行与运算,再对结果取反。
六、或非门或非门实际上是或门和非门的组合,其逻辑符号是一个或门后加上一个小圆点的符号,而其逻辑表达式可以用“Y=¬(A+B)”表示。
或非门的原理是先进行或运算,再对结果取反。
七、同或门同或门的逻辑符号是一个带有一个加号和一个横线的“⊙”形状,而其逻辑表达式可以用“Y=¬(A⊕B)”表示。
基本逻辑运算

2.3.1 TTL与非门的基本结构及工作原理
+VCC( + 5V) R 3kΩ
D
Rc 1kΩ
D5 3 1
A B C
1
P
D
4
L
T 2
D2 D 3
R1 4.7kΩ
+VCC ( + 5V ) Rb1
+VCC ( +5V) R b1
A B C
N N N
P P P
P
N
1
3
A B C
T1
1. 电路基本结构
+V CC ( + 5V) Rc 2 R b1 4kΩ
1.输入低电平电流IIL——是指当门电路的输入端接低电平时,从 门电路输入端流出的电流。
可以算出:
I IL
VCC VB1 5 1 1(mA) Rb1 4
产品规定IIL<1.6mA。
2.输入高电平电流IIH ——是指当门电路的输入端接高电平时,流入 输入端的电流。
产品规定:IIH<40uA。
3 主要参数
(1)TTL与非门提高工作速度的原理
a.采用多发射极三极管加快了存储电荷的消散过程。
+VCC Rc 2 i B1 1V R b1 4kΩ
1
1.6kΩ
3.6V A B C 0.3V
3
1.4V
1
3
T1 β iB1 0.7V
T2 2
3 1
Vo T3 2
Re 2 1kΩ
b.采用了推拉式输出级,输出阻抗比较小,可迅速给负载电容充放电。
2.1
一、基本逻辑运算 1.与运算
设:开关闭合=―1‖ 开关不闭合=―0‖