组合 1
(新人教版)新版高中数学 第一章1.2 排列与组合 1.2.2 第2课时 组合的综合应用学案 新人教A版选修2-3【提

第2课时组合的综合应用学习目标 1.能应用组合知识解决有关组合的简单实际问题.2.能解决有限制条件的组合问题.知识点组合的特点(1)组合的特点是只取不排组合要求n个元素是不同的,被取出的m个元素也是不同的,即从n个不同的元素中进行m 次不放回地取出.(2)组合的特性元素的无序性,即取出的m个元素不讲究顺序,没有位置的要求.(3)相同的组合根据组合的定义,只要两个组合中的元素完全相同(不管顺序如何),就是相同的组合.类型一有限制条件的组合问题例1 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长,现从中选5人主持某项活动,依下列条件各有多少种选法?(1)至少有一名队长当选;(2)至多有两名女生当选;(3)既要有队长,又要有女生当选.考点组合的应用题点有限制条件的组合问题解(1)C513-C511=825(种)(2)至多有2名女生当选含有三类:有2名女生;只有1名女生;没有女生,所以共有C25C38+C15C48+C58=966(种)选法.(3)分两类:第一类女队长当选,有C412=495(种)选法,第二类女队长没当选,有C14C37+C24C27+C34C17+C44=295(种)选法,所以共有495+295=790(种)选法.反思与感悟有限制条件的抽(选)取问题,主要有两类:一是“含”与“不含”问题,其解法常用直接分步法,即“含”的先取出,“不含”的可把所指元素去掉再取,分步计数;二是“至多”“至少”问题,其解法常有两种解决思路:一是直接分类法,但要注意分类要不重不漏;二是间接法,注意找准对立面,确保不重不漏.跟踪训练1 某食堂每天中午准备4种不同的荤菜,7种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭.则每天不同午餐的搭配方法共有( )A.210种 B.420种 C.56种 D.22种考点组合的应用题点有限制条件的组合问题答案 A解析由分类加法计数原理知,两类配餐的搭配方法之和即为所求,所以每天不同午餐的搭配方法共有C24C27+C14C27=210(种).类型二与几何有关的组合应用题例2 如图,在以AB为直径的半圆周上,有异于A,B的六个点C1,C2,…,C6,线段AB上有异于A,B的四个点D1,D2,D3,D4.(1)以这10个点中的3个点为顶点可作多少个三角形?其中含C1点的有多少个?(2)以图中的12个点(包括A,B)中的4个点为顶点,可作出多少个四边形?考点组合的应用题点与几何有关的组合问题解(1)方法一可作出三角形C36+C16·C24+C26·C14=116(个).方法二可作三角形C310-C34=116(个),其中以C1为顶点的三角形有C25+C15·C14+C24=36(个).(2)可作出四边形C46+C36·C16+C26·C26=360(个).反思与感悟(1)图形多少的问题通常是组合问题,要注意共点、共线、共面、异面等情形,防止多算.常用直接法,也可采用间接法.(2)在处理几何问题中的组合问题时,应将几何问题抽象成组合问题来解决.跟踪训练2 空间中有10个点,其中有5个点在同一个平面内,其余点无三点共线,无四点共面,则以这些点为顶点,共可构成四面体的个数为( )A.205 B.110 C.204 D.200考点 组合的应用题点 与几何有关的组合问题 答案 A解析 方法一 可以按从共面的5个点中取0个、1个、2个、3个进行分类,则得到所有的取法总数为C 05C 45+C 15C 35+C 25C 25+C 35C 15=205.方法二 从10个点中任取4个点的方法数中去掉4个点全部取自共面的5个点的情况,得到所有构成四面体的个数为C 410-C 45=205. 类型三 分组、分配问题命题角度1 不同元素分组、分配问题例3 6本不同的书,分为3组,在下列条件下各有多少种不同的分配方法? (1)每组2本(平均分组);(2)一组1本,一组2本,一组3本(不平均分组); (3)一组4本,另外两组各1本(局部平均分组). 考点 排列组合综合问题 题点 分组分配问题解 (1)每组2本,均分为3组的方法数为C 26C 24C 22A 33=15×6×16=15.(2)一组1本,一组2本,一组3本的分组种数为C 36C 23C 11=20×3=60. (3)一组4本,另外两组各1本的分组种数为C 46C 12C 11A 22=15×22=15.反思与感悟 一般地,n 个不同的元素分成p 组,各组内元素数目分别为m 1,m 2,…,m p ,其中k 组元素数目相等,那么分组方法数是C m 1n C m 2n -m 1C m 3n -m 1-m 2…C m p m pA kk. 跟踪训练3 6本不同的书,分给甲、乙、丙3人,在下列条件下各有多少种不同的分配方法? (1)甲2本,乙2本,丙2本; (2)甲1本,乙2本,丙3本; (3)甲4本,乙、丙每人1本; (4)每人2本;(5)一人1本,一人2本,一人3本; (6)一人4本,其余两人每人1本. 考点 排列组合综合问题 题点 分组分配问题解 (1)(2)(3)中,由于每人分的本数固定,属于定向分配问题,由分步乘法计数原理得: (1)共有C 26C 24C 22=90(种)不同的分配方法;(2)共有C16C25C33=60(种)不同的分配方法;(3)共有C46C12C11=30(种)不同的分配方法.(4)(5)(6)属于不定向分配问题,是该类题中比较困难的问题.分配给3人,同一本书给不同的人是不同的分法,属于排列问题.实际上可看作两个步骤:先分为3组,再把这3组分给甲、乙、丙3人的全排列数A33即可.因此,(4)共有C26C24C22÷A33×A33=90(种)不同的分配方法;(5)共有C16C25C33×A33=360(种)不同的分配方法;(6)共有C46C12C11÷A22×A33=90(种)不同的分配方法.命题角度2 相同元素分配问题例4 将6个相同的小球放入4个编号为1,2,3,4的盒子,求下列方法的种数.(1)每个盒子都不空;(2)恰有一个空盒子;(3)恰有两个空盒子.考点排列组合综合问题题点分组分配问题解(1)先把6个相同的小球排成一行,在首尾两球外侧放置一块隔板,然后在小球之间5个空隙中任选3个空隙各插一块隔板,有C35=10(种).(2)恰有一个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选2个空隙各插一块隔板,如|0|000|00|,有C25种插法,然后将剩下的一块隔板与前面任意一块并放形成空盒,如|0|000||00|,有C14种插法,故共有C25·C14=40(种).(3)恰有两个空盒子,插板分两步进行.先在首尾两球外侧放置一块隔板,并在5个空隙中任选1个空隙各插一块隔板,有C15种插法,如|00|0000|,然后将剩下的两块隔板插入形成空盒.①这两块板与前面三块板形成不相邻的两个盒子,如||00||0000|,有C23种插法.②将两块板与前面三块板之一并放,如|00|||0000|,有C13种插法.故共有C15·(C23+C13)=30(种).反思与感悟相同元素分配问题的处理策略(1)隔板法:如果将放有小球的盒子紧挨着成一行放置,便可看作在排成一行的小球的空隙中插入了若干隔板,相邻两块隔板形成一个“盒”.每一种插入隔板的方法对应着小球放入盒子的一种方法,此法称之为隔板法.隔板法专门解决相同元素的分配问题.(2)将n个相同的元素分给m个不同的对象(n≥m),有C m-1n-1种方法.可描述为n-1个空中插入m-1块板.跟踪训练4 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有( )A.4种B.10种C.18种D.20种考点排列组合综合问题题点分组分配问题答案 B解析由于只剩一本书,且这些画册、集邮册分别相同,可以从剩余的书的类别进行分析.又由于排列、组合针对的是不同的元素,应从4位朋友中进行选取.第一类:当剩余的一本是画册时,相当于把3本相同的集邮册和1本画册分给4位朋友,只有1位朋友得到画册.即把4位朋友分成人数为1,3的两队,有1个元素的那队分给画册,另一队分给集邮册,有C14种分法.第二类:当剩余的一本是集邮册时,相当于把2本相同的画册和2本相同的集邮册分给4位朋友,有2位朋友得到画册,即把4位朋友分成人数为2,2的两队,一队分给画册,另一队分给集邮册,有C24种分法.因此,满足题意的赠送方法共有C14+C24=4+6=10(种).1.某乒乓球队有9名队员,其中2名是种子选手,现在挑选5名选手参加比赛,种子选手必须在内,那么不同选法共有( )A.26种 B.84种 C.35种 D.21种考点组合的应用题点有限制条件的组合问题答案 C解析从7名队员中选出3人有C37=7×6×53×2×1=35(种)选法.2.身高各不相同的7名同学排成一排照相,要求正中间的同学最高,左右两边分别顺次一个比一个低,这样的排法种数是( )A.5 040 B.36 C.18 D.20考点组合的应用题点有限制条件的组合问题答案 D解析最高的同学站中间,从余下6人中选3人在一侧只有一种站法,另3人在另一侧也只有一种站法,所以排法有C36=20(种).3.直角坐标平面xOy上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有( )A.25个 B.36个 C.100个 D.225个考点组合的应用题点与几何有关的组合问题答案 D解析从垂直于x轴的6条直线中任取2条,从垂直于y轴的6条直线中任取2条,四条直线相交得出一个矩形,所以矩形总数为C26×C26=15×15=225.4.从7名志愿者中安排6人在周六、周日两天参加社区公益活动,若每天安排3人,则不同的安排方案共有________种.(用数字作答)考点排列组合综合问题题点分组分配问题答案140解析安排方案分为两步完成:从7名志愿者中选3人安排在周六参加社区公益活动,有C37种方法;再从剩下的4名志愿者中选3人安排在周日参加社区公益活动,有C34种方法.故不同的安排方案共有C37C34=7×6×53×2×1×4=140(种).5.正六边形顶点和中心共7个点,可组成________个三角形.考点组合的应用题点与几何有关的组合问题答案32解析不共线的三个点可组成一个三角形,7个点中共线的是:正六边形过中心的3条对角线,即共有3种情况,故组成三角形的个数为C37-3=32.1.无限制条件的组合应用题.其解题步骤为:(1)判断;(2)转化;(3)求值;(4)作答.2.有限制条件的组合应用题:(1)“含”与“不含”问题:这类问题的解题思路是将限制条件视为特殊元素和特殊位置,一般来讲,特殊要先满足,其余则“一视同仁”.若正面入手不易,则从反面入手,寻找问题的突破口,即采用排除法.解题时要注意分清“有且仅有”“至多”“至少”“全是”“都不是”“不都是”等词语的确切含义,准确把握分类标准.(2)几何中的计算问题:在处理几何问题中的组合应用问题时,应先明确几何中的点、线、面及构型,明确平面图形和立体图形中的点、线、面之间的关系,将几何问题抽象成组合问题来解决.(3)分组、分配问题:分组问题和分配问题是有区别的,前者组与组之间只要元素个数相同,是不可区分的,而后者即使两组元素个数相同,但因元素不同,仍然是可区分的.一、选择题1.若从1,2,3,…,9这9个整数中同时取3个不同的数,使其和为奇数,则不同的取法共有( )A.30种 B.33种 C.37种 D.40种考点组合的应用题点有限制条件的组合问题答案 D解析从1,2,3,…,9这9个数中取出3个不同的数,使其和为奇数的情况包括:(1)取出的3个数都是奇数,取法有C35=10(种);(2)取出的3个数中有2个偶数、1个奇数,取法有C24C15=30(种),根据分类加法计数原理,满足题意的取法共有10+30=40(种).2.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A.24种 B.14种 C.28种 D.48种考点组合的应用题点有限制条件的组合问题答案 B解析方法一分两类完成:第1类,选派1名女生、3名男生,有C12·C34种选派方案;第2类,选派2名女生、2名男生,有C22·C24种选派方案.故共有C12·C34+C22·C24=14(种)不同的选派方案.方法二6人中选派4人的组合数为C46,其中都选男生的组合数为C44,所以至少有1名女生的选派方案有C46-C44=14(种).3.直线a∥b,a上有5个点,b上有4个点,以这九个点为顶点的三角形个数为( ) A.C25C14+C15C24B.(C25+C14)(C15+C24)C.C39-9 D.C39-C35考点组合的应用题点 与几何有关的组合问题 答案 A解析 可以分为两类:a 上取两点,b 上取一点,则可构成三角形个数为C 25C 14;a 上取一点,b 上取两点,则可构成三角形个数为C 15C 24,利用分类加法计数原理可得以这九个点为顶点的三角形个数为C 25C 14+C 15C 24,故选A.4.从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法有( ) A .C 25C 26种 B .C 25A 26种 C .C 25A 22C 26A 22种D .A 25A 26种考点 排列组合综合问题 题点 排列与组合的综合应用 答案 B解析 先从5名男选手中任意选取2名,有C 25种选法,再从6名女选手中任意选择两名与选出的男选手打比赛,有C 26A 22,即A 26种.所以共有C 25A 26种.5.将标号为A ,B ,C ,D ,E ,F 的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为A ,B 的卡片放入同1个信封,则不同的放法共有( ) A .12种 B .18种 C .36种 D .54种 考点 排列组合综合问题 题点 分组分配问题 答案 B解析 由题意知,不同的放法共有C 13C 24=3×4×32=18(种).6.某地招募了20名志愿者,他们编号分别为1号,2号,…,19号,20号,如果要从中任意选取4人再按编号大小分成两组去做一些预备服务工作,其中两个编号较小的人在一组,两个编号较大的人在另一组,那么确保5号与14号入选并被分配到同一组的选取种数是( )A .16B .21C .24D .90 考点 排列组合综合问题 题点 分组分配问题 答案 B 解析 分2类:第1类,5号与14号为编号较大的一组,则另一组编号较小的有C 24=6(种)选取方法. 第2类,5号与14号为编号较小的一组,则编号较大的一组有C 26=15(种)选取方法. 由分类加法计数原理得,共有C 24+C 26=6+15=21(种)选取方法.7.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为( ) A .C 1214C 412C 48 B .C 1214A 412A 48 C.C 1214C 412C 48A 33D .C 1214C 412C 48A 38考点 排列组合综合问题 题点 分组分配问题 答案 A解析 首先从14人中选出12人共C 1214种,然后将12人平均分为3组共C 412·C 48·C 44A 33种,然后这两步相乘,得C 1214·C 412·C 48A 33.将三组分配下去共C 1214·C 412·C 48种.故选A. 8.假如北京大学给中山市某三所重点中学7个自主招生的推荐名额,则每所中学至少分到一个名额的方法数为( ) A .30 B .21 C .10 D .15 考点 排列组合综合问题 题点 分组分配问题 答案 D解析 用“隔板法”.在7个名额中间的6个空位上选2个位置加2个隔板,有C 26=15(种)分配方法. 二、填空题9.在2017年的上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理6门学科中选择3门学科参加等级考试.小明同学决定在生物、政治、历史三门中至多选择一门,那么小明同学的选择方案有________种. 考点 组合的应用题点 有限制条件的组合问题 答案 10解析 ①在生物、政治、历史三门中选择1门,则在物理、化学、地理中选2门,有C 13C 23=9(种)选法;②在生物、政治、历史三门中选择0门,则物理、化学、地理全选,有C 33=1(种)选法. 共有选法9+1=10(种).10.如图所示的几何体是由一个正三棱锥P -ABC 与正三棱柱ABC -A 1B 1C 1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A 1B 1C 1不涂色),要求相邻的面均不同色,则不同的涂色方案共有______种.考点涂色问题题点涂色问题答案12解析先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12(种)不同的涂法.11.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种.(用数字作答)考点排列组合综合问题题点排列与组合的综合应用答案60解析一、二、三等奖,三个人获得,有A34=24(种).一、二、三等奖,有一个人获得2张,一个人获得1张,共有C23A24=36(种),共有24+36=60(种)不同的获奖情况.三、解答题12.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,求不同取法的种数.考点组合的应用题点有限制条件的组合问题解若没有红色卡片,则需从黄、蓝、绿三色卡片中选3张,若都不同色,则有C14×C14×C14=64(种),若2张同色,则有C23×C12×C24×C14=144(种),若红色卡片有1张,剩余2张不同色,则有C14×C23×C14×C14=192(种),剩余2张同色,则有C14×C13×C24=72(种),所以共有64+144+192+72=472(种)不同的取法.13.现有8名青年,其中有5名能胜任英语翻译工作,有4名能胜任德语翻译工作(其中有1名青年两项工作都能胜任).现在要从中挑选5名青年承担一项任务,其中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?考点排列组合综合问题题点分组分配问题解可以分三类.精品试卷第一类,让两项工作都能胜任的青年从事英语翻译工作,有C24C23种选法;第二类,让两项工作都能胜任的青年从事德语翻译工作,有C34C13种选法;第三类,让两项工作都能胜任的青年不从事任何工作,有C34C23种选法.根据分类加法计数原理,一共有C24C23+C34C13+C34C23=42(种)不同的选法.四、探究与拓展14.20个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的放法种数为________.考点排列组合综合问题题点分组分配问题答案120解析先在编号为2,3的盒内分别放入1,2个球,还剩17个小球,三个盒内分别至少再放入1个球,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共C216=120(种)方法.15.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?考点排列组合综合问题题点排列与组合的综合应用解(1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24(种)测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103 680(种).(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16C34A44=576(种).欢迎下载。
组合数学讲义1

概述组合数学在生活中处处可见。
计算单循环、双循环赛制下比赛的场数、构造幻方、一笔画、计算扑克牌游戏中满堂红牌的手数,概率等。
扎根于数学游戏和娱乐中,计算机技术的发展促进了其发展。
解决两类问题:排列的存在性问题(这是根本性问题。
排列集合中的某些元素使其满足某些条件,其排列的存在性并非总是显而易见的,若不存在,那么什么条件下会存在);排列的计数和分类问题。
(若存在,则会有多种方法实现,需要计数,并将其分类)。
一、棋盘的完美覆盖问题二、切割立方体三、幻方:四、四色问题五、36军官问题来自6个军团的6个军衔的军官,排成方阵,要求每行每列都有各种军衔的军官1名,并且每行每列的军官都是来自不同的军团。
六、最短路径问题组合优化的问题。
(路由选择)七、Nim 取子游戏鸽笼原理(抽屉原则)一、简单形式:把n+1个物体放入n 个盒子中,有一个盒子中至少有2个物体。
证明方法:反证法。
鸽笼原理与反证法的关系,类似于不完全归纳法与数学归纳法的关系。
例1 13个人中至少有两个人的生日在同一个月。
例2 有n 对夫妇,至少选择多少个人,才能保证至少有一对夫妇被选出?变化形式:把n 个物体放入n 个盒子中,每一个盒子中至少有1个物体,那么每一个盒子恰好有1个物体。
把n 个物体放入n 个盒子中,每一个盒子中至多有1个物体,那么每一个盒子恰好有1个物体。
例3 整数列a 1,a 2,〃〃〃〃〃〃,a m 中,一定有若干个连续的数的和能被m 整除。
构造∑==ij j i a b 1,构造所有被m 除所得余数的鸽笼,共有m 个若两个b i 被m 除的余数相同,则其差能被m 整除,现在笼子多一个,不用考虑余数为0的情况(此时已经满足要求)例4 大师11周训练,每天至少下一盘,每周不超过12盘,证明:有连续的若干天,刚好下了21盘棋。
证明:共77天,分别下a 1,a 2,〃〃〃〃〃〃,a 77构造则前i 天共下了∑==ij j i a b 1要证明存在b i ,b j ,使得b i - b j =21构造t i =21+b i ,变成证明存在t i = b j1≤b 1< b 2<〃〃〃〃〃〃<b 77≤13222≤t 1< t 2<〃〃〃〃〃〃<b 77≤153b 与t 混合在一起总共有154个,而结果只能有153个,从而必有两个数相同,但不可能同是t ,或同是b ,因为分别严格增加。
组合与组合数公式

漯河实验高中高三数学组朱联朋
第一章 1.2.2 组 合
学习目标
XUE XI MU BIAO
1.理解组合的定义,正确认识组合与排列的区别与联系. 2.理解排列数与组合数之间的联系,掌握组合数公式,能运用组合数
公式进行计算. 3.会解决一些简单的组合问题.
内
知识梳理
容
题型探究
索
随堂演练
②选出2名男教师或2名女教师参加会议,有__2_1__种不同的选法;
解析 可把问题分两类情况: 第 1 类,选出的 2 名是男教师有 C26种方法; 第 2 类,选出的 2 名是女教师有 C24种方法. 根据分类加法计数原理,共有 C26+C24=15+6=21(种)不同选法.
③现要从中选出男、女教师各2名去参加会议,有_9_0__种不同的选法.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4.若 A3m=6C4m,则 m 等于
A.9
B.8
√C.7
D.6
解析 A3m=6C4m,∴m≥4 且 m∈N*, ∴m(m-1)(m-2)=6·mm-4×13m×-22×1m-3, 即m-4 3=1,∴m=7.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.从4台甲型电视机和5台乙型电视机中任意取出3台,其中至少有甲型和
乙型电视机各1台,则不同的取法种数为
A.84
√B.70
C.60
D.48
解析 根据结果分类:第一类,两台甲型机,有 C24·C15=30(种); 第二类,两台乙型机,有 C14·C25=40(种). 根据分类加法计数原理,共有 C24·C15+C14·C25=70(种)不同的取法.
(新)高中数学排列组合公式排列组合计算公式(供参考)

排列组合公式/排列组合计算公式排列P------和顺序有关组合C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示.p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn (两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
15以内的组合和拆分1

15以内的组合和拆分1介绍本文将介绍在15以内进行数字的组合和拆分。
我们将探讨如何使用这些数字进行各种组合和拆分操作。
组合两个数字的组合1和2可以组合成3: 1 + 2 = 31和3可以组合成4: 1 + 3 = 4依此类推,以下是在15以内可以得到的所有数字的组合操作:- 1 + 2 = 3- 1 + 3 = 4- 1 + 4 = 5- 1 + 5 = 6 - 1 + 6 = 7 - 1 + 7 = 8 - 1 + 8 = 9 - 1 + 9 = 10 - 1 + 10 = 11 - 1 + 11 = 12 - 1 + 12 = 13 - 1 + 13 = 14 - 1 + 14 = 15 - 2 + 3 = 5 - 2 + 4 = 6 - 2 + 5 = 7 - 2 + 6 = 8 - 2 + 7 = 9 - 2 + 8 = 10 - 2 + 9 = 11 - 2 + 10 = 12 - 2 + 11 = 13 - 2 + 12 = 14- 2 + 13 = 15 - 3 + 4 = 7 - 3 + 5 = 8 - 3 + 6 = 9 - 3 + 7 = 10 - 3 + 8 = 11 - 3 + 9 = 12 - 3 + 10 = 13 - 3 + 11 = 14 - 3 + 12 = 15 - 4 + 5 = 9 - 4 + 6 = 10 - 4 + 7 = 11 - 4 + 8 = 12 - 4 + 9 = 13 - 4 + 10 = 14 - 4 + 11 = 15 - 5 + 6 = 11 - 5 + 7 = 12 - 5 + 8 = 13- 5 + 9 = 14- 5 + 10 = 15- 6 + 7 = 13- 6 + 8 = 14- 6 + 9 = 15- 7 + 8 = 15三个数字的组合在15以内,我们可以组合三个数字得到其他数字。
下面是在15以内可以得到的所有三个数字的组合操作:- 1 + 2 + 3 = 6- 1 + 2 + 4 = 7- 1 + 2 + 5 = 8- 1 + 2 + 6 = 9- 1 + 2 + 7 = 10- 1 + 2 + 8 = 11- 1 + 2 + 9 = 12- 1 + 2 + 10 = 13- 1 + 2 + 11 = 14 - 1 + 2 + 12 = 15 - 1 + 3 + 4 = 8 - 1 + 3 + 5 = 9 - 1 + 3 + 6 = 10 - 1 + 3 + 7 = 11 - 1 + 3 + 8 = 12 - 1 + 3 + 9 = 13 - 1 + 3 + 10 = 14 - 1 + 3 + 11 = 15 - 1 + 4 + 5 = 10 - 1 + 4 + 6 = 11 - 1 + 4 + 7 = 12 - 1 + 4 + 8 = 13 - 1 + 4 + 9 = 14 - 1 + 4 + 10 = 15 - 1 + 5 + 6 = 12 - 1 + 5 + 7 = 13 - 1 + 5 + 8 = 14 - 1 + 5 + 9 = 15- 1 + 6 + 7 = 14 - 1 + 6 + 8 = 15 - 1 + 7 + 8 = 15 - 2 + 3 + 4 = 9 - 2 + 3 + 5 = 10 - 2 + 3 + 6 = 11 - 2 + 3 + 7 = 12 - 2 + 3 + 8 = 13 - 2 + 3 + 9 = 14 - 2 + 3 + 10 = 15 - 2 + 4 + 5 = 11 - 2 + 4 + 6 = 12 - 2 + 4 + 7 = 13 - 2 + 4 + 8 = 14 - 2 + 4 + 9 = 15 - 2 + 5 + 6 = 13 - 2 + 5 + 7 = 14 - 2 + 5 + 8 = 15 - 2 + 6 + 7 = 15 - 3 + 4 + 5 = 12- 3 + 4 + 6 = 13- 3 + 4 + 7 = 14- 3 + 4 + 8 = 15- 3 + 5 + 6 = 14- 3 + 5 + 7 = 15- 3 + 6 + 7 = 16- 4 + 5 + 6 = 15拆分拆分为两个数字在15以内,我们可以拆分数字为两个数字之和。
《组合(一)》(课件)

排列与元素的顺序有关,而组 合与元素的顺序无关,这是它的根 本区别.
[练习] 在4个不同元素a、b、c、 d中取出2个,共有多少种不同的组 合?请你写出所有的组合.
判断下列问题是组合问题还是排列问题? (1) 设集合A={a,b,c,d,e},则集合A的
含有3个元素的子集有多少个?
(2) 某铁路线上有5个车站,则这条 铁路线上共需准备多少种车票?
根据分步计数原理, 得A43
C
3 4
A33
因此, C43
A43 A33
组合数公式
C
m n
Anm Amm
n(n 1)(n 2) m!
(n m 1)
(n, m N , m n)
C
m n
n! m!(n
m)!
[例1] 计算(1) C74;
(2) C170.
[例1] 计算(1) C74;
(2) C170.
多
少?
由于从4个不同元素中取出3个的排 列 数A43可 以 求 得, 我 们 可 以 考 察 一 下C 43 和A43的关系.从4个不同元素a, b, c, d中取 出3个元素的组合与排列的关系如下:
由于从4个不同元素中取出3个的排
列 数A43可 以 求 得, 我 们 可 以 考 察 一 下C 43
含有3个元素的子集有多少个? 组合问题
(2) 某铁路线上有5个车站,则这条 铁路线上共需准备多少种车票?
排列问题 有多少种不同的火车票价?
判断下列问题是组合问题还是排列问题? (1) 设集合A={a,b,c,d,e},则集合A的
含有3个元素的子集有多少个? 组合问题
(2) 某铁路线上有5个车站,则这条 铁路线上共需准备多少种车票?
组合综合--1

组合综合问题(1)组合数学是一个既古老又年轻的离散数学分支,竞赛中的组合问题主要包括组合计数问题、组合极值问题、存在性问题、操作变换问题、组合几何问题以及图论中的问题,求解竞赛中的组合问题并不是需要复杂的数学知识,然而在趣味性命题的陈述下包含了高超的解题技巧,无论是从智力训练的角度,还是从竞赛准备的角度考虑,理解和钻研这些问题都是十分有意义的.在解决组合问题时,有时会用到以下几个原理.1、极端原理原理 1 设M 是自然数集的一个非空子集,则M 中必有最小数.原理 2 设M 是实数集的有限非空子集,则M 中必有最小数.2、抽屉原理第一抽屉原理 若将m 个球放入n 个抽屉中,则必有一个抽屉内至少有11+⎥⎦⎤⎢⎣⎡-n m 个球. 第二抽屉原理 若将m 个球放入n 个抽屉中,则必有一个抽屉内至多有⎥⎦⎤⎢⎣⎡n m 个球. 3、算两次原理所谓算两次原理(又称富比尼原理)就是对同一个量,如果用两种不同的方法去计算,所得的结果应相等.【典型例题】例 1 (2008年山西省预赛试题)设M ={1,2,…,2008}是前2008个正整数组成的集合,A ={1a ,2a ,…30a }是M 的一个30元子集,已知A 中的元素两两互质,证明A 中至少一半元素是质数.分析 考查集合A 中的合数a ,设p 是a 的最小质因数,则p ≤a .又a ≤2008,于是p ≤45,再由A 中元素两两互质,可证明A 的16个元素中必有一个是质数,进而可导出结论. 证明 先证明:A 中16个元素中必有一个是质数.为此,任取16个元素,不妨设为1a ,2a ,...,16a ,若其中没有质数,则它们中至多一个为1,其余15个皆为合数.设1a ,2a ,...,15a 都是合数,则每个数皆可分解成至少两个质因数的乘积,若i p 是i a 的最小质因数,则i p ≤i a (i =1,2, (15).由于A 中的数两两互质,则1p ,2p ,…,15p 互不相同,而将全体质数自小到大排列,第15个质数是47,所以,若1p 是1p ,2p ,…,15p 中的最大数,即有1p ≥47,于是1a ≥21p ≥247>2008,即1a ∉M,矛盾! 因此,1a ,2a ,…,15a 中必有质数,不妨设1a 为质数,今从集合A 中去掉1a ,在剩下的29个元素中,再次进行同样的讨论,可知其中的16个元素中也必有一个是质数,设为2a .如此下去,可以连续进行15次,每次都可从A 中取到一个新的质数, 因此A 中至少有15个质数.例 2 已知A 与B 是集合{1,2,3,…,100}的两个子集,满足:A 与B 的元素个数相同,且A ∩B 为空集,若n ∈A 时总有2n+2∈B,则集合A ∪B 的元素个数最多为多少?分析 该问题是组合构造,由条件“A 与B 的元素个数相同且若n ∈A 时总有2n +2∈B ”知|A |=|B |,且2n +2≤100,从而可知A 中的元素不超过49个,为此需要进行分类考虑.解 首先证明|A ∪B |≤66,只需要证明|A |≤33,由分析知需要证明:若A 是{1,2,3,…,49}的任何一个34元子集,则必存在n ∈A,使得2n+2∈A.证明如下:将{1,2,3,…,49}分成如下33个集合:{1,4},{3,8},{5,12},…,{23,48},共12个;{2,6},{10,22},{14,30},{18,38},共4个;{25},{27},{29},…,{49},共13个;{26},{34},{42},{46},共4个.若A 是{1,2,3,…,49}的任何一个34元的子集,则由抽屉原理可知上述33个集合中至少有一个2元集合中的两个数均属于A ,即存在n ∈A ,2n +2∈A .所以|A |≤33.事实上,如取A ={1,3,5,…,23,2,10,14,18,25,27,29,…,49,26,34,42,46},B ={2n +2|n ∈A },则A ,B 满足题中要求,且|A ∪B |=66.所以集合A ∪B 的元素个数最多为66.例3 (2007年浙江省预赛试题)设M ={1,2,…,65},A ⊆M 为子集,若|A|=33,且存在x ,y ∈A ,x <y ,x | y ,则称A 为“好集”,求最大的a ∈M ,使含a 的任意33元子集为好集.分析 首先要准确理解“好集”的含义,搞清楚“好集”中元素的构成规律,再来分析a 的可能的取值.解 令P ={21 +i |i =1,2,…,44}—{2(21 + i )|i = 1,2,…,11},| p |=33. 显然对任意1≤i <j ≤44,不存在n ≥3,使得21+j = n (21 +i )成立,故P 是非好集. 因此a ≤21,下面证明:包含21的任意一个33元子集A 一定为好集.设A ={1a ,2a ,…,32a ,21}.若1,3,7,42,63中之一为集合A 的元素,显然A 为好集.现考虑1,3,7,42,63都不属于集合A .构造集合:1A ={2,4,8,16,32,64},2A ={5,10,20,40},3A ={6,12,24,48},4A ={9,18,36},5A ={11,22,44},6A ={13,26,52},7A ={14,28,56},8A ={15,30,60},9A ={17,34},10A ={19,38},11A ={23,36},12A ={25,50},13A ={27,54},14A ={29,58},15A ={31,62},'A ={33,35,37,…,61,65},由上可见,1A ,2A ,…,15A 每个集合中两个元素都是倍数关系,考虑最不利的情况,即'A A ,也即'A 中16个元素全部选作A 的元素,A 中剩下16个元素必须从1A ,2A ,…,15A 这15个集合中选取,根据抽屉原理,至少有一个集合有两个元素被选,即集合A 中至少有两个元素存在倍数关系.综上所述,包含21的任意一个33 元子集A 一定为好集,即a 的最大值为21.说明 对于这一类型的集合问题,一般都需要通过适当的方式构造出符合某种要求的集合,抽屉原理是解决集合构造问题的常用工具.例4 (2008年甘肃省预赛试题)一个20行若干列的0、1数阵满足:各列互不相同且任意两列同一行都取1的行数不超过2.求当列数最多时,数阵中1的个数的最小值.分析 由题设,对于数阵中1的个数超过3的列,保留其中任意3个1,而将其余的都变成0,得到的新数阵仍然满足要求,于是可知当列数最多时,数阵中至多包含1的个数不超过3的所有的列.这样可得列数最大值,进而求得此时数阵中1的个数的最小值.解 对于满足条件的列数最大的一个数阵,如果这个数阵中某一列1的个数超过3个,那么就保留其中任意3个1,其余的都改变成0,这样就会得到一个列数相同并有仍然满足要求的一个新数阵,如果这个新数阵中还有1的个数超过3的列,则重复上述过程,最后可以得到一个列数最多,且每列中1的个数最多为3的满足要求的数列,它的列数最多为1+120C +220C +320C .另一方面,构造一个满足要求的数阵如下:它包括没有1的列以及所有互不相同的只有一个1的列,2个1的列和3个1的列,由上所说,可知这个数阵的列数是最多的,同时在满足要求的列数最多的所有数阵中所有数阵中,该数阵中的1是最少的,此数阵的列数为1+120C +220C +320C ,此数列中1的个数是120C +2202C +3203C =20+380+3420=3820说明 本题中求数阵的列数的最大值的方法叫做局部整法,它是解决最值问题的一种行之有效的方法,尤其是离散变量最值问题常常需要用到这种方法.例 5 (2008年浙江省预赛试题)将3k (k 为正整数)个石子分成五堆,如果通过每次从其中3堆中各取走一个石子,而最后取完,则称这样的分法是“和谐的”,试给出和谐分法的充分必要条件,并加以证明.分析 从整体上看,就是从3k 个石子中每次取3个,恰好k 次取完,于是和谐的分法就是要求每堆石子的个数不超过k ,再用数学归纳法证明,最多一堆石子的个数不超过k 的分法是和谐的.解 分析是和谐的充分必要条件是最多一堆石子的个数不超过k .下面设五堆石子的个数分别为a 、b 、c 、d 、e (其中a ≥b ≥c ≥d ≥e ).“必要性”的证明:若分法是和谐的,则把a 所对应的石子取完至少要取a 次,这a 次每次都要取走3个石子,如果a >k ,则3a >3k ,即把a 所对应的一堆取完时,需取走的石子多于五堆石子的总数,矛盾,因此最多一堆石子的个数不能超过k.“充分性”的证明:(数学归纳法)(1)当k = 1时,满足a ≤k 的分法只能是1、1、1、0、0.显然这样的分法是和谐的.(2)假设k ≤n 时,若a ≤k 的分法是和谐的.当k = n +1时,若a ≤n +1,且分法a 、b 、c 、d 、e 是不和谐的,则分法a -1、b -1、c -1、d 、e 也是不和谐的.由(2)及必要性的证明,可知max {a -1,b -1,c -1,d ,e }>n .因为a ≥b ≥c ≥d ≥e ,所以max {a -1,b -1,c -1,d ,e }=max {a -1,d }>n .若a -1≥d ,则有a -1>n .这与a ≤n +1矛盾.若a -1<d ,则有n < d ≤ c ≤b ≤ a ≤ n +1,从而有a = b = c = d = n +1,于是有3(n +1)= a + b + c + d + e = 4 (n +1) + e ,这是不可能的.因此,当a ≤n+1时,分法a 、b 、c 、d 、e 是和谐的说明 本题充分性的证明采用的是数学归纳法,这是一种归纳构造,它是利用构造思想解决存在性问题的一种重要手段例 6 在坐标平面上是否存在一个含有无穷条直线1l ,2l ,…,n l ,…的直线族,满足:(1)点(1,1)∈n l ,n =1,2,3,…;(2)1+n k = n a -n b ,其1+n k 中是1+n l 的斜率,n a 和n b 分别是n l 在x 轴和y 轴上的截距,1k 是1l 的斜率,n = 1,2,3,…;(3)1+n n k k ≥0,n = 1,2,3,…并证明你的结论(88年全国联赛).分析 假设这样的直线族存在,先利用直线n l 的方程求出n a 与n b ,即可得到{n k }的递推关系,再结合条件(3)求解解 题中给出的是以点(1,1)为公共点的中心直线族,若这样的直线族存在,则n l 的方程为y -1 = ()1-x k n当y =0时,-1=()1-n n a k ,n a = 1-nk 1;当x =0时,n b -1=-n k ,n b = 1-n k 因为n l 存在,所以n a 和n b 都存在,从而n k ≠0,n = 1,2,3,…,利用条件(2) 有 1+n k = n a -n b = n k -nk 1 继续有n k = 1-n k -11-n k ; …… 2k = 1k -11k ; 以上诸式相加得到1+n k = 1k -(11k + 21k + … + n k 1) ① 由n k ≠0及条件(3)得1+n n k k >0,故所有的i k (i = 1,2,3,…)同号,不妨设i k >0,则1+n k =n k - n k 1<n k ,即数列{n k }是正项递减数列,从而11+n k >n k 1,于是11k + 21k + … + n k 1>1k n ,这样,由①式得1+n k <1k -1k n = 121k n k - ② 当n >21k 时,由②式推出1+n k <0.由假设n k >0,得1+n n k k <0,与己知矛盾同理可证,当n k <0 时,也导致矛盾所以,同时满足条件(1),(2),(3)的直线族不存在例7 (2007年吉林省预赛试题)一个空间中的点组成的集合S满足性质:S中任意两点之间的距离互不相同,假设S中的点的坐标(x ,y ,z )都是整数,并且1≤ x ,y ,z ≤ n ,证明:集合S 的元素个数小于min {(n +2)·3n ,6n } 证明 记 | S | = t ,则对任意(,1,1,1z y x ),(,2,2,2z y x )∈S ,都有()221x x -+()221y y -+()221z z -≤3()21-n (因为满足1≤x,y,z ≤n 的整点之间的距离不超过(1,1,1)与(n ,n ,n )之间的距离) 并且依题意,S 中任意两点之间的距离互不相同,故2t C ≤3()21-n , 得2t -t ≤ 6()21-n ,于是t ≤21+21()21241-+n <6n (最后一个不等式价于1+24()21-n <()2162-n ,展开后移项即可得到)另一方面,对S 中的任意两点(,,,i i i z y x )、(,,,i i i z y x ),考虑集合{a ,b ,c }(允许出现重复元素),这里a = | j i x x -|,b =|j i y y -|,c = |j i z z -|,依题意,所得的{a ,b ,c }两两不同,且0 ≤ a ,b ,c ≤n -1,a 、b 、c 不全为0,于是,我们有2t C ≤12123-++n n n C C C ①故2t C <1232n n n C C C ++,解得t <()()21314121++++n n n . 当n ≥3时,有t <()32n n +.这只需证明()()21314121++++n n n ≤()32n n +,等价于()()213141+++n n n ≤()22132⎥⎦⎤⎢⎣⎡-+n n ,展开后移项即可知此不等式在n ≥3时成立). 于是,当n ≥3时,总有t ≤()⎭⎬⎫⎩⎨⎧+6,32min n n n ②而当n =1时,t =1;当n =2时,由①知t ≤3,这时②都成立,命题获证.说明:本题从两个不同的角度,分别得到了2t C 的上界,从而完成了证明.这种思想的实质是算两次原理.它是研究跟计算有关的组合问题的一种重要策略.例8 (2009年山西省预赛试题)有七种颜色的珍珠,共计14颗,其中每种颜色的珍珠各两颗;今把这珍珠分装于七个珠盒中,使得每个珠盒中各有一对不同颜色的珍珠.(1)证明:不论各盒中的珍珠怎样搭配,总可以将这七个珠盒分别放置于一个正七边形的七个顶点之上,使得七边形的任两个相邻顶点处所放置的盒中的四颗珍珠互不同色.(2)如将以上条件与待证结论中的“七”一律改为“五”,“14”改为“10”,则情况如何?解:(1)用点v 1,v 2,…,v 7分别表示这七种颜色,如果一个i v 色的珍珠和一个j v 色的珍珠装在同一盒中(i ≠j ),则在点i v 与j v 间连一条边,这样就得到一个图G (点i v 与j v 之间有可能连出两条边),由于同一色的珍珠有两颗,每颗珍珠都需与一颗其他颜色的珍珠共盒,则图G 的每点恰好发出两条边;从G 的任一点A 出发,沿一条边走到点B ,再由B 沿另一条边走到C ,…,如此下去,最后必定回到出发点A (这是由于,途中经过的每个点P 都有两条边,若参沿一条边进入点P ,则必沿另一条边可离开点P ,而由点P 不能再加到途中已经过的点,因为这种点所发出的两条边都已走过,因此只能到达新点或回到出发点,而新点终将逐渐耗尽,最后必定回到出发点A ),这样就得到一个圈.去掉这个圈,若剩下还有点,依上述方法,又将得到新的圈,若称两点的的圈为“两边形”,则图G 的结构只有如下四种情况:1°一个七边形2°一个五边形和一个两边形3°一个四边形和一个三角形4°一个三角形和两个两边形对于每种情况,我们都对相应的边作出适当编号,并将这些边所对应的珠盒放置于七边形的顶点之上,如图5所示.因此所证结论成立.(2)当14颗七以珍珠改为10颗五色珍珠后,结论不成立.例如,对于五色54321,,,,v v v v v ,我们若将10颗珍珠这样装盒:()211,v v e =,()322,v v e =,()133,v v e =,()544,v v e =,()545,v v e =,则无论怎样摆放于正五边形的顶点上,都不能满足条件(因为1e 、2e 、3e 中,任两盒都有同色的珠,无论怎样摆放于正五边形的顶点上,必有两盒相邻).。
组合飞花令一一数字一和植物

组合飞花令⼀⼀数字⼀和植物中国诗词⼤会第五季第五场,组合飞花令出的是数字和植物组合。
今天⼩编整理了⼀组数字“⼀'和植物的组合,希望⼤家喜欢。
1.两个黄鹂鸣翠柳,⼀⾏⽩鹭上青天。
2.稻花⾹⾥说丰年,听取蛙声⼀⼀⽚。
3.忽如⼀夜春风来,千树万树梨花开。
4.中有⼀⼈字太真,雪肤花貌参差是。
5.⽟容寂寞泪阑⼲,梨花⼀枝春带⾬。
6.碧⽟妆成⼀树⾼,万条垂下绿丝绦。
7.⼭重⽔复疑⽆路,柳暗花明⼜⼀村。
8.遥知兄弟登⾼处,遍插茱萸少⼀⼈。
9.此地⼀为别,孤蓬万⾥征。
10.离离原上草,⼀岁⼀枯荣。
11.梅须逊雪三分⽩,雪却输梅⼀段⾹。
12.⼭⼀程,⽔⼀程,⾝向榆关那畔⾏,夜深千帐灯。
13.梨落疏疏⼀径深,树头花落未成阴。
14.吴酒⼀杯春⽵叶,吴娃双舞醉芙蓉。
15.最是⼀年春好处,绝胜烟柳满皇都。
16.贤愚千载知谁是,满眼蓬蔫共⼀丘。
17.⽔晶帘动微风起,满架蔷薇⼀院⾹。
18.⼀年好景君须记,正是橙黄橘绿时。
19.知有⼉童挑促织,夜深篱落⼀灯明。
20.不解藏踪迹,浮萍⼀道开。
21.桃花⼀处开⽆主,可爱深红爱浅红。
22.春种⼀粒粟,秋成万颗⼦。
23.池上碧苔三四点,叶底黄鹂⼀两声,⽇长飞絮轻。
24.蒲苇⼀时纫,便作旦⼣间。
25.满眼游丝兼絮落,红杏开时,⼀霎清明⾬。
26.晓来⾬过,遗踪何在?⼀池萍碎。
27.风声⼀何盛,松枝⼀何劲。
28.⽓下落梅如雪,乱拂了⼀⾝还满。
29.绣⾯芙蓉⼀笑开,斜飞宝鸭衬⾹腮。
30.⼀树寒梅⽩⽟条,迥临林村傍谿桥。
31.明敕星驰封宝剑,辞君⼀夜取楼兰。
32.⼩楼⼀夜听春⾬,深巷明朝卖杏花。
33.何须浅碧轻红⾊,⾃是花中第⼀流。
34.岂知⼀夜秦楼客,偷看吴王苑内花。
35.试上超然台上望,半壕春⽔⼀城花。
36.忆来何事最销魂,第⼀折枝花样画罗裙。
37.桃波⼀步地,了了语声闻。
38.郎听采菱⼥,⼀道夜歌归。
39.叶上初阳⼲宿⾬,⽔⾯清圆,⼀⼀风荷举。
40.飞絮飞花何处是,层冰积雪摧残,疏疏⼀树五更寒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sie hören ein Gespräch zwischen zwei Studierenden auf einer Party. Krise im Studium0 Woher kennen sich Daniel und Venera? vom Medizinstudium1 Was wird auf der Party gefeiert?2 Wann bekam Venera Zweifelan ihrem Medizinstudium?3 Warum hat man Venera geraten,einen Job zu machen?Nennen Sie einen Punkt.4 Was gefiel Venera an ihrem Job?Nennen Sie einen Punkt.5 Warum hat Venera das MedizinstudiumAbgebrochen?6 Warum fällt Venera das Lernennicht mehr so schwer?Nennen Sie einen Punkt.7 Warum hat Venera für ihre Entscheidungso lange gebraucht?8 Was schlägt Daniel Venera vor?Sie hören ein Interview mit drei Gesprächsteilnehmern zum ThemaBörsenhandel an der Hochschule0 Die Universität Ulm hat als erste deutsche Hochschule einen falsch …Trading Room“ eingerichtet.9 Im …Trading Room“ können Studierende mit kleinenBörsengeschäften Geld verdienen.10 Herr Kirch arbeitet seit seiner Promotion als Börsenmakler.11 Herr Kirch hätte an der Börse viel Geld verloren.12 Die Studierenden lernen, bei Veränderungen in Politik undWirtschaft schnell zu handeln.13 Frau Prof. Kurse sagt, dass Wirtschaftsvertreter auch einebessere theoretische V orbereitung der Studierenden wünschen.14 Prof. Kurse berichtet, dass eine Bank den Aufbaudes ,,Trading Room“ finanziell unterstützt hat.15 Nach Herrn Kirch sind die Arbeitschancen vonWirtschaftsmathematikern leider nicht so gut.16 Nach Herrn Kirch ist die Zahl der Absolventen inWirtschaftsmathematik relativ niedrig.17 Auch andere deutsche Hochschulen wollen einen,,Trading Room“ einrichten.18 Frau Prof. Kurse möchte, dass Studenten der Universität Ulmin Zukunft auch Unterrichtsangebote anderer Hochschulen nutzen.Sie hören ein Interview mit Frau Dr. Stevens von der Welternährungsorganisation FAO zum Thema Heuschreckenplage in AfrikaHeuschreckenplage in Afrika0 Warum ist die Wüstenheuschrecke eine Vermehrt sich schnell und Bedrohung für die Menschen frisst die Nutzpflanzen wegin Nordwestafrika?19 Wie begünstigt der Sommerregen dieVermehrung der Heuschrecken?20 Aus welchem Grund fordert die FAO den Einsatzvon Pestiziden gegen die Heuschrecken?21 Wie vernichtet der im Labor gezüchtetePilz die Heuschrecken?22 Warum wird geraten, den Pilz in den kühlenMorgen- und Abendstunden zu verspritzen?23 Warum sollte der Pilz auch vom Flugzeugaus eingesetzt werden?24 Was genau will Frau Dr. Stevens mit 17 Mio.Dollar finanzieren?Nennen Sie zwei Punkte.25 Welche Notwendigkeit sieht Frau Dr. Stevenszum Schluss?Sie sind in der Mensa und hören ein Gespräch zwischen zwei Studierenden.Das Stipendium0 Wonach fragt Klaus seine Bekannte? nach ihrem Stipendium1 Wer gibt das Geld für die Stipendiender Fachhochschule?2 Was gefällt Kerstin an ihrem Praktikum?Nennen Sie einen Punkt.3 Wer hilft Kerstin während des Praktikums?Nennen Sie eine Möglichkeit.4 Was muss Kerstin machen, wenn sie ihrStudium beendet?5 Welche V oraussetzungen müssen dieStipendiaten haben?Nennen Sie eine.6 Wer hat Kerstin bei der Bewerbung fürdas Stipendium unterstützt?7 Wie viel Prozent der Bewerber erhaltenein Stipendium?8 Wie lange erhält Kerstin Geld?Sie hören ein Interview mit vier Gesprächsteilnehmern über Berufsaussichten von Geografen.Geografie-Studium und dann?0 Geografen haben bei der Arbeitssuche Konkurrenz von richtig Studienabgängern anderer Fachrichtungen.9 Frau Müller meint, dass Geografen in Schulbuchverlagenneue Tätigkeitsfelder finden.10 Laut Frau Müller braucht man verstärkt Geografen inöffentlichen Verwaltungen für den Umweltschutz.11 Frau Müller glaubt, dass Geografen mit Kenntnissen inInformatik bessere Aussichten haben.12 Laut Prof. Meusburger sind neuerdings auch Ingenieurbürosan Geografen interessiert.13 Prof. Meusburger glaubt, dass ein Geografie-Studium einegute Basis für das Berufsleben allgemein darstellt.14 Prof. Meusburger empfiehlt Studierenden, Praktika nicht indie Zeit ihrer Diplomarbeit zu legen.15 Frau Waluga hat durch ihr Praktikum eine Arbeitsstelle bekommen.16 Frau Waluga hat außer ihrem Hauptstudienfach auch Botanik studiert.17 Frau Waluga wurde von der Firma Prognis kontaktiert.18 Wer heutzutage im Studium das Pflichtprogramm schafft,erhält auch eine Chance auf dem Arbeitsmarkt.Sie hören einen kurzen V ortrag von Professor Schubert zu neuen Formen der Industriearbeit.Neue Formen der Industriearbeit und ihre Folgen0 Was sehen manche Soziologen und die traditionelle Solidarität Gewerkschaftler bedroht? der Arbeiter19 Wie wird die Arbeit in der traditionellenFabrik aufgeteilt?20 Was ist das Prinzip der neuen Organisationvon Arbeitsprozessen?21 Welche negativen Auswirkungen der neuenArbeitsorganisation befürchten die Kritiker?Nennen Sie zwei Punkte.22 Welche positiven Auswirkungen kannselbständige Arbeit haben?Nennen Sie eine Auswirkung.23 Welche Entscheidungen müssen die Arbeiter inihren Gruppengesprächen selbst treffen?24 Wie kann man das Verhalten der Arbeiter in einertraditionellen Fabrik gegenüber der Direktion beschreiben?25 Wie sehen die Beschäftigten, die in derneuen Organisationsform arbeiten, ihreeigene Gruppe im Vergleich zu anderen?Sie sind am Bahnhof und hören ein Gespräch zwischen zwei StudierendenExkursion mit dem Professor0 Wo treffen sich Axel und Tina? Am Bahnhof1 Warum fährt Tina oft zu ihren Eltern?2 Wo war Axel während der Woche?3 Welches Seminar organisierte die Exkursion?4 Welche Institution hat Axel während derReise besucht?5 In welchen Gebäudeteil durfte Axel nicht hinein?6 Was für ein Referat hat Axel gehört?7 Wie gefiel Axel das Referat?8 Was bekamen die Studierenden geschenkt?Sie hören ein Interview mit drei Gesprächsteilnehmern zum Thema Saisonarbeit auf Schweizer Bergalpen.Semesterferien in den Bergen0 Viele Schweizer Studierende leisten im Sommer harte falsch Arbeit auf Schweizer Bergalpen.9 Der Job bei den Schweizer Bergbauern gilt als Praktikumim Landwirtschaftsstudium.10 Olaf Seifert hat die harten Anforderungen trotz allem bewältigt.11 Prof. Spatz arbeitet als Ökologe in den Schweizer Bergen.12 Prof. Spatz findet: Nur wer die Arbeit auf der Alp allein schafft,kann dort arbeiten.13 Prof. Spatz kritisiert, dass die Studierenden sich nichtausreichend über die Verhältnisse auf derAlp informieren.14 Die Schweizer Bauern könnten ihre Bergweiden ohnedie Praktikanten nicht wie bisher bewirtschaften.15 Olaf Seifert hat die Praktikumsstelle durch die Vermittlungeines Mitstudenten bekommen.16 Auch Anfänger finden auf der Alp leicht eine Stelle.17 Man bekommt einen Teil des Gehalts als Essen und Unterkunft.18 Es gibt im Internet eine Stellenbörse für die Arbeitauf den Berghöfen.Sie hören ein Interview mit Frau Hartmann über eine Erfindung von Modeschöpfern und Ingenieuren.,,Intelligente Kleidung”0 Welche technischen Geräte möchte man in z.B.Telefon, Kleidungsstücke integrieren? Sprachcomputer, PC 19 V or welcher Schwierigkeit steht manmanchmal im beruflichen Alltag?20 Welchen Schutz könnte elektronischausgerüstete Kleidung in bestimmtenArbeitsbereichen bieten?21 Was ist an den technischen Geräten in derKleidung noch unbefriedigend?22 Wodurch wollen Hersteller vonFreizeitbekleidung sportlich aktiveMenschen ansprechen?23 Wo soll elektronisch ausgerüstete Kleidungin der Medizin zum Einsatz kommen?24 Was für Textilien wollen Mediziner undChemiker gemeinsam entwickeln?25 Welche Produkte haben besonders guteVerkaufschancen?。