2018届重庆中考复习:重庆中考几何题分类汇编(含答案)

合集下载

2018届重庆中考复习_重庆中考几何题分类汇编(含答案解析)

2018届重庆中考复习_重庆中考几何题分类汇编(含答案解析)

重庆中考几何题分类汇编(含答案)类型1 线段的倍分:要证线段倍与半,延长缩短去实验例1 如图Z3-1,在△ABC中,AB=AC,CM平分∠ACB交AB于M,在AC的延长线上截取CN=BM,连接MN 交BC于P,在CB的延长线截取BQ=CP,连接MQ.(1)求证:MQ=NP;(2)求证:CN=2CP.针对训练:1.如图Z3-2,在▱ABCD中,AC⊥BC,点E、点F分别在AB、BC上,且满足AC=AE=CF,连接CE、AF、EF.(1)若∠ABC=35°,求∠EAF的度数;(2)若CE⊥EF,求证:CE=2EF.2.已知,在△ABC 中,AB =AC ,∠BAC =90°,E 为边AC 任意一点,连接BE.(1)如图①,若∠ABE=15°,O 为BE 中点,连接AO ,且AO =1,求BC 的长;(2)如图②,F 也为AC 上一点,且满足AE =CF ,过A 作AD⊥BE 交BE 于点H ,交BC 于点D ,连接DF 交BE于点G ,连接AG.若AG 平分∠CAD,求证:AH =12AC.3.在△ACB 中,AB =AC ,∠BAC =90°,点D 是AC 上一点,连接BD ,过点A 作AE⊥BD 于E ,交BC 于F.(1)如图①,若AB =4,CD =1,求AE 的长;(2)如图②,点G 是AE 上一点,连接CG ,若BE =AE +AG ,求证:CG =2AE.4.在等腰直角三角形ABC 中,∠BAC =90°,AB =AC ,D 是斜边BC 的中点,连接AD.(1)如图①,E 是AC 的中点,连接DE ,将△CDE 沿CD 翻折到△CDE′,连接AE′,当AD =6时,求AE′的值.(2)如图②,在AC 上取一点E ,使得CE =13AC ,连接DE ,将△CDE 沿CD 翻折到△CDE′,连接AE′交BC 于点F ,求证:DF =CF.类型2 线段的和差:要证线段和与差,截长补短去实验例2 如图,在△ABC中,∠BAC=90°,在BC上截取BD=BA,连接AD,在AD左侧作∠EAD=45°交BD于E.(1)若AC=3,则CE=________(直接写答案);(2)如图①,M、N分别为AB和AC上的点,且AM=AN,连接EM、DN,若∠AME+∠AND=180°,求证:DE =DN+ME;(3)如图②,过E作EF⊥AE,交AD的延长线于F,在EC上选取一点H,使得EH=BE,连接FH,在AC上选取一点G,使得AG=AB,连接BG、FG,求证:FH=FG.针对训练:1.如图Z3-7,在▱ABCD中,AE⊥BC于E,AE=AD,EG⊥AB于G,延长GE、DC交于点F,连接AF.(1)若BE=2EC,AB=13,求AD的长;(2)求证:EG=BG+FC.2.如图,在正方形ABCD 中,点P 为AD 延长线上一点,连接AC 、CP ,过点C 作CF⊥CP 于点C ,交AB 于点F ,过点B 作BM⊥CF 于点N ,交AC 于点M.(1)若AP =78AC ,BC =4,求S △ACP ;(2)若CP -BM =2FN ,求证:BC =MC.3.如图,在△ABC 中,AB =BC ,以AB 为一边向外作菱形ABDE ,连接DC ,EB 并延长EB 交AC 于F ,且CB⊥AE 于G.(1)若∠EBG=20°,求∠AFE;(2)试问线段AE ,AF ,CF 之间的数量关系并证明.类型3 倍长中线:三角形中有中线,延长中线等中线例3 如图Z3-10①,在Rt△ABC中,∠ABC=90°,D、E分别为斜边AC上两点,且AD=AB,CE=CB,连接BD、BE.(1)求∠EBD的度数;(2)如图Z3-10②,过点D作FD⊥BD于点D,交BE的延长线于点F,在AB上选取一点H,使得BH=BC,连接CH,在AC上选取一点G,使得GD=CD,连接FH、FG,求证:FH=FG.针对训练:1.如图,已知在▱ABCD中,G为BC的中点,点E在AD边上,且∠1=∠2.(1)求证:E是AD中点;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2,求证:CD=BF+DF.2.如图Z 3-12,在菱形ABCD 中,点E 、F 分别是BC 、CD 上的点,连接AE ,AF ,DE 、EF ,∠DAE =∠BAF.(1)求证:CE =CF ;(2)若∠ABC=120°,点G 是线段AF 的中点,连接DG ,EG.求证:DG⊥GE.3.在Rt △ABC 中,∠ACB =90°,点D 与点B 在AC 同侧,∠ADC >∠BAC,且DA =DC ,过点B 作BE∥DA 交DC 于点E ,M 为AB 的中点,连接MD ,ME.(1)如图①,当∠ADC=90°时,线段MD 与ME 的数量关系是________;(2)如图②,当∠ADC=60°时,试探究线段MD 与ME 的数量关系,并证明你的结论;(3)如图③,当∠ADC=α时,求ME MD的值.(3)如图③,把图3-14②中的△CDE绕点C顺时针旋转任意角度,然后连接BE,点P为BE中点,连接AP,PD,AD,问第(2)问中的结论还成立吗?若成立,请证明;若不成立,请说明理由.5.在△ABC中,以AB为斜边,作直角三角形ABD,使点D落在△ABC内,∠ADB=90°.(1)如图①,若AB=AC,∠BAD=30°,AD=6 3,点P、M分别为BC、AB边的中点,连接PM,求线段PM 的长;(2)如图②,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP;(3)如图③,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).例4 2017·河南如图①,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图①中,线段PM与PN的数量关系是__________,位置关系是__________;(2)探究证明:把△ADE绕点A按逆时针方向旋转到图②的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.针对训练:1.如图①,在任意的三角形ABC中,分别以AB和AC为一边作等腰三角形ABE和等腰三角形ACD,AB=AE,AC=AD,且∠BAE+∠CAD=180°,连接DE,延长CA交DE于F.(1)求证:∠CAB=∠AED+∠ADE;(2)若∠ACB=∠BAE=∠CAD=90°,如图②,求证:BC=2AF;(3)若在△ABC中,如图③所示,作等腰三角形ABE和等腰三角形ACD,AB与DE交于点F,F为DE的中点,请问(2)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.3.如图①,在等腰三角形ABC中,AB=AC,在底边BC上取一点D,在边AC上取一点E,使AE=AD,连接DE,在∠ABD的内部作∠ABF=2∠EDC,交AD于点F.(1)求证:△ABF是等腰三角形;(2)如图②,BF的延长交AC于点G.若∠DAC=∠CBG,延长AC至点M,使GM=AB,连接BM,点N是BG的中点,连接AN,试判断线段AN、BM之间的数量关系,并证明你的结论.图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现.角平分线平行线,等腰三角形来添.角平分线加垂线,三线合一试试看.例5.如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6 3,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值.针对训练:1.已知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.F.(1)如图①,若AB=4,CD=1,求AE的长;(2)如图②,点P是AC上一点,连接FP,若AP=CD,求证:∠ADB=∠CPF.3.已知,在▱ABCD中,∠BAD=45°,AB=BD,E为BC上一点,连接AE交BD于F,过点D作DG⊥AE 于G,延长DG交BC于H.(1)如图①,若点E与点C重合,且AF=5,求AD的长;(2)如图②,连接FH,求证:∠AFB=∠HFB.4.如图,将正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.当点M在边AD上移动时,连接BM、BP.(1)求证:BM是∠AMP的平分线;(2)△PDM的周长是否发生变化?证明你的结论.类型6 旋转型全等问题:图中若有边相等,可用旋转做实验例6.△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF.(1)观察猜想:如图①,当点D 在线段BC 上时,①BC 与CF 的位置关系为:________.②BC ,CD ,CF 之间的数量关系为:___________;(将结论直接写在横线上)(2)数学思考:如图Z 3-25②,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸:如图Z 3-25③,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE.若已知AB=2 2,CD =14BC ,请求出GE 的长.针对训练:1.在四边形ABCD 中,∠B +∠D=180°,对角线AC 平分∠BAD.(1)如图①,若∠DAB=120°,且∠B=90°,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图②,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图③,若∠DAB=90°,探究边AD 、AB 与对角线AC 的数量关系并说明理由.2.如图①,在正方形ABCD中,点E为边BC上一点,将△ABE沿AE翻折得△AHE,延长EH交边CD于F,连接AF.(1)求证:∠EAF=45°;(2)延长AB,AD,如图②,射线AE、AF分别交正方形两个外角的平分线于M、N,连接MN,若以BM、DN、MN为三边围成三角形,试猜想三角形的形状,并证明你的结论.3.如图①,在正方形ABCD内有一点P,PA=5,PB=2,PC=1,求∠BPC的度数.【分析问题】根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图Z3-28②),然后连接PP′.(1)请你通过计算求出图Z3-28②中∠BPC的度数;(2)如图③,若在正六边形ABCDEF内有一点P,且PA=2 13,PB=4,PC=2.请求出∠BPC的度数.重庆中考几何题分类汇编答案例1. 证明:(1)∵AB=AC ,∴∠ABC =∠ACB.∵∠MBQ +∠ABC=180°,∠ACB +∠PCN=180°,∴∠MBQ =∠PCN.在△QBM 和△PCN 中,⎩⎪⎨⎪⎧QB =PC ,∠MBQ =∠PCN,BM =CN ,∴△QBM ≌△PCN(SAS).∴MQ=NP.(2)过M 作MG∥AC 交BC 于G ,∵MG ∥AC ,∴∠MGB =∠ACB,∠MGC =∠PCN,∵由(1)知,∠ABC =∠ACB,∴∠ABC =∠MGB,∴MB =MG ,∵MB =CN ,∴MG =CN.在△MGP 和△NCP 中,⎩⎪⎨⎪⎧∠MPG=∠CPN,∠MGC =∠PC N ,MG =NC ,∴△MGP ≌△NCP(AAS).∴PG =CP ,∴CG =CP +PG ,即CG =2CP.∵CM 平分∠ACB,∴∠BCM =∠MCA,∵MG ∥AC ,∴∠MCA =∠GMC,∴∠BCM =∠GMC,∴MG =CG ,∵MG =CN ,∴CN =CG ,∴CN =2CP.针对训练1. 解:(1)∵AC⊥BC,∴∠ACB =90°,又∵AC=CF ,∴∠AFC ABC=35°,∴∠EAF =10°;(2)证明:方法1:取CF 的中点M ,连接EM 、AM ,∵CE ⊥EF ,∴EM =CM =FM =12CF , 又∵AC=AE ,∴AM 为EC 的中垂线,∴∠CAM +∠ACE=90°,又∵∠ECF+∠ACE=90°,∴∠CAM =∠FCE,又∵∠CEF=∠ACM=90°,∴△ACM ∽△CEF ,∴AC CM =CE EF, 又∵CF=AC =2CM ,∴AC CM =CE EF =21,即CE =2EF ; 方法2:延长FE 至M ,使EF =EM ,连接CM ,∵CE ⊥EF ,∴△CMF 为等腰三角形,又∵AC=AE =CF ,且∠ACE=∠CFE(易证),∴△CMF ≌△CEA ,∴FM =CE =2EF.2. 解:(1)如图①,在AB 上取一点M ,使得BM =ME ,连接ME.在Rt △ABE 中,∵OB =OE ,∴BE =2OA =2,∵MB =ME ,∴∠MBE =∠MEB=15°,∴∠AME =∠MBE+∠MEB=30°,设AE =x ,则ME =BM =2x ,AM =3x ,∵AB 2+AE 2=BE 2,∴(2x +3x)2+x 2=22,∴x =6-22(负根舍弃),∴AB =AC =(2+ 3)·6-22, ∴BC =2AB =3+1.(2)证明:如图②,作CP⊥AC,交AD 的延长线于P ,GM ⊥AC 于M.∵BE ⊥AP ,∴∠AHB =90°,∴∠ABH +∠BAH=90°,∵∠BAH +∠PAC=90°,∴∠ABE =∠PAC,∴△ABE ≌△CAP ,∴AE =CP =CF ,∠AEB =∠P,在△DCF 和△DCP 中,⎩⎪⎨⎪⎧CD =CD ,∠DCF =∠DCP,CF =CP ,∴△DCF ≌△DCP ,∴∠DFC =∠P,∴∠GFE =∠GEF,∴GE =GF ,∵GM ⊥EF ,∴FM =ME ,∵AE =CF ,∴AF =CE ,∴AM =CM ,在△GAH 和△GAM 中,⎩⎪⎨⎪⎧∠GAH=∠GAM,∠AHG =∠AMG,AG =AG ,∴△AGH ≌△AGM ,∴AH =AM =CM =12AC.3. 解:(1)∵AB=4,∴AC =AB =4.∵CD =1,∴AD =AC -CD =3.∵在Rt △ABD 中,∠BAC =90°,∴BD =AB 2+AD 2=5,∵S △ABD =12AB·AD=12AE·BD,∴AE =2.4. (2)证明:如图,在线段EB 上截取EH =AE ,并连接AH.∵AE ⊥BD ,EH =AE ,∴AH =2AE.∵BE =AE +AG ,∴BH =BE -HE =AG.∵∠BAD =∠BEA=90°,∴∠ABE +∠BAE=∠CAG+∠BAE=90°,∴∠ABE =∠CA G.∵BA =AC ,∴△ABH ≌△CAG ,∴CG =AH =2AE.4. 解:(1)∵∠BAC=90°,AB =AC ,D 是斜边BC 的中点,∴∠ADC =90°,∠ACD =45°.在Rt △ADC 中,AC =AD÷sin45°=2 3.∵E 是AC 的中点,∴CE =12AC = 3.∵将△CDE 沿CD 翻折到△CDE′,∴CE ′=CE =3,∠ACE ′=90°.由勾股定理,得AE′=CE′2+AC 2=15.(2)证明:如图,过B 作AE′的垂线交AD 于点G ,交AC 于点H.∵∠ABH +∠BAF=90°,∠CAF +∠BAF=90°,∴∠ABH =∠CAF.又∵AB=AC ,∠BAH =∠ACE′=90°,∴△ABH ≌△CAE ′.∴AH =CE′=CE ,∵CE =13AC ,∴AH =HE =CE. ∵D 是BC 中点,∴DE ∥BH ,∴G 是AD 中点.在△ABG 和△CAF 中:AB =AC ,∠BAD =∠ACD=45°,∠ABH =∠CAF,∴△ABG ≌△CAF.∴AG =CF.∵AG =12AD ,∴CF =12AD =12CD.∴DF=CF.类型2 线段的和差:要证线段和与差,截长补短去实验例2:解:(1)3(2)证明:延长DN 到K ,使得NK =ME ,连接AK ,如图①,因为∠1+∠3=180°,∠1+∠2=180°,∴∠2=∠3.⎩⎪⎨⎪⎧AM =AN ,∠2=∠3,ME =NK ,∴△AME ≌△ANK (SAS).∴AE =AK ,∠4=∠5,∴∠4+∠EAC =90°,∴∠5+∠EAC =90°,即∠EAK =90°,∵∠EAD =45°,∴∠KAD =∠EAK -∠EAD =90°-45°=45°.∴∠EAD =∠KAD .在△EAD 和△KAD 中,⎩⎪⎨⎪⎧EA =KA ,∠EAD =∠KAD ,AD =AD ,∴△EAD ≌△KAD (SAS),∴ED =KD .∵DK =DN +KN ,∴ED =DN +KN ,又NK =ME ,∴ED =DN +ME .(3)证明:延长AE 到J ,使得EJ =AE ,连接JH ,JF.如图②,在△ABE 和△JHE 中,⎩⎪⎨⎪⎧AE =JE ,∠AEB =∠JEH,BE =HE ,∴△ABE ≌△JHE(SAS),∴JH =AB ,∠1=∠2,∵AB =AG ,∴JH =AG ,∵AE =EJ ,EF ⊥AJ ,∴AF =JF ,∴∠JAF =∠AJF=45°,即∠2+∠3=45°,∵∠BAC =90°,∴∠1+∠EAD+∠4=90°,∴∠1+∠4=90°-∠EAD,=90°-45°=45°,∵∠1=∠2,∴∠3=∠4,在△JHF 和△AGF 中,⎩⎪⎨⎪⎧JH =AG ,∠3=∠4,JF =AF ,∴△JHF ≌△AGF(SAS),∴FH =FG.针对训练:1. 解:(1)∵四边形ABCD 是平行四边形,∴AD =BC.∵BE =2EC ,设CE =x ,BE =2x ,∴BC =AD =AE =3x.又∵EG⊥AB,∴∠AEB =90°,∴AB 2=AE 2+BE 2,即13=9x 2+4x 2,∴x =1,∴AD =3x =3.(2)证明:如图,过C 作CH⊥AB 于H ,则四边形CHGF 为矩形.∴CF =HG ,∠CHB =90°,GF =CH.∵AE ⊥BC ,EG ⊥AB ,∴∠AEB =∠CHB=90°,∠BCH +∠B=90°,∠BAE +∠B=90°,∴∠BCH =∠BAE.又∵AE=BC ,∴△AGE ≌△CHB ,∴GE =BH ,AG =GF ,∴GE =BH =BG +GH =BG +CF.2. 解:(1)∵四边形ABCD 是正方形,BC =4,∴AB =AD =CD =BC =4,∠ADC =∠ABC=90°.∵在Rt △ABC 中,AC =AB 2+BC 2=4 2,∴AP =78AC =72 2, ∴S △ACP =12AP·CD=7 2.∵四边形ABCD 是正方形,∴AB =BC =DC ,∠ABC =∠BCD=∠ADC=90°.∵∠BCD =90°,CF ⊥CP ,∴∠1+∠DCF=∠2+∠DCF=90°,∴∠1=∠2,∵在△FBC 和△PDC 中,⎩⎪⎨⎪⎧∠FBC=∠3,BC =DC ,∠1=∠2,∴△FBC ≌△PDC(ASA),∴CF =CP ,∵CP -2FN =BM ,∴CF -FK =BM ,即CK =BM ,∵∠FBC =90°,BM ⊥CF ,∴∠1+∠NBC=∠4+∠NBC=90°,∴∠1=∠4,∵在△ABM 和△BCK 中,⎩⎪⎨⎪⎧AB =BC ,∠4=∠1,BM =CK ,∴△ABM ≌△BCK(SAS),∴∠7=∠6.∵BM ⊥CF ,NK =NF ,∴BF =BK ,∵BF =BK ,BM ⊥CF ,∴∠4=∠5,∴∠4+∠7=∠5+∠6,∵∠8=∠4+∠7,∴∠8=∠MBC,∴BC =解:方法二:如图②,延长BM 交AD 于点G ,过A 作AE⊥BG 于E先证△AEB ≌△BNC(AAS),∴AE =BN ,又证△AEG ≌△BNF(AAS),∴EG =NF ,再证四边形BCPG 为平行四边形,∴BG =CP ,∵CP -BM =2FN ,∴BG -BM =2EG ,∴MG =2EG ,∴点E 为MG 中点,∵AE ⊥MG ,EM =EG ,∴AM =AG ,∴∠3=∠4,∵∠2=∠3,∠1=∠4,∴∠1=∠2,∴BC =MC.3. 解:(1)∵∠EBG=20°,CB ⊥AE ,∴∠BEG =70o ,∠CBF =∠EBG=20°,∵四边形ABDE 是菱形,∴∠ABE =∠BEG=70°,∴∠ABG =50°,∵AB =BC ,∴∠FCB =25°,∴∠AFE =∠CBF+∠FCB=45°;(2)AE ,AF ,CF 之间的数量关系是AF 2+CF 2=2AE 2,证明如下:连接DF ,∵四边形ABDE 是菱形,∴AB =DB ,∠DBE =∠ABE,∴∠DBF =∠ABF,∵BF =BF ,∴△DBF ≌△ABF(SAS),∴DF =AF ,∠BDF =∠BAF,∵∠BCF =∠BAF,∴∠BCF =∠BDF,∵CB ⊥AE ,AE ∥DB ,∴DB ⊥CB ,∵CB =AB =BD ,∴△DBC 是等腰直角三角形,∴DC =2BD =2AE ,∵∠DPB =∠CPF,∴∠CFP =∠DBP=90°,∴DF 2+CF 2=DC 2,即有:AF 2+CF 2=2AE 2.类型3 倍长中线:三角形中有中线,延长中线等中线例3解:(1)设∠BEC =α,∠BDA =β,则∠C =180°-2α,∠A =180°-2β.∵在Rt △ABC 中,∠ABC =90°,∴∠A +∠C =90°,即180°-2α+180°-2β=90°,∴α+β=135°,∴∠EBD =45°.(2)证明:法一:如图①,延长BD 至点B′,使得DB′=DB ,连接FB′、GB′.在△GDB′和△CDB 中,⎩⎪⎨⎪⎧GD =CD ,∠GDB ′=∠CDB,B ′D =BD ,∴△GDB ′≌△CDB.∴GB ′=BC =BH ,∠GB ′D =∠CBD.∵FD ⊥BD ,BD =DB′,∴FB =FB′.∵∠FB ′G =45°-∠GB′D,∠HBF =90°-45°-∠CBD=45°-∠CBD,∴∠FB ′G =∠HBF.在△FHB 和△FGB′中,⎩⎪⎨⎪⎧HB =GB′,∠HBF =∠GB′F,BF =B′F,∴△FHB ≌△FGB ′,∴HF =GF.法二:如图②,延长FD 至点F ′,使得DF ′=DF ,连接BF ′.先证△DGF ≌△DCF ′,再证△BHF ≌△BCF ′,∴HF =GF .针对训练1. 证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∠A =∠C .又∵∠1=∠2,∴△ABE ≌△CDG (ASA),∴AE =CG .∵G 为BC 中点,∴CG =12BC , ∴AE =CG =12BC =12AD ,∴E 是AD 中点.(2)如图,延长BE ,CD 交于点H.∵四边形ABCD 是平行四边形,∴AB 綊CD ,∴∠A =∠ADH,∠1=∠4,又∵∠1=∠2,∠3=∠2,∴∠1=∠2=∠3=∠4,∴FH =FB.由(1),E 是AD 中点,∴AE =DE ,∴△ABE ≌△DHE(AAS),∴AB =DH ,∴CD =AB =DH =DF +FH =DF +BF ,即CD =BF +DF.2. 证明:(1)在菱形ABCD 中,AB =BC =CD =AD ,∠ADF =∠ABE,∵∠DAE =∠BAF,∴∠DAE -∠EAF=∠BAF-∠EAF,即∠DAF=∠BAE.∴△DAF ≌△BAE ,∴BE =DF.又∵BC=CD ,∴CE =CF∵在菱形ABCD 中,AB ∥CD ,∴∠DFA =∠GAH.∵G 为AF 中点,∴AG =GF.又∵∠DGF=∠AGH,∴△DGF ≌△HGA.∴DG =GH ,AH =DF.又∵AB=CD ,∴BH =CF.又∵AB∥CD,∠ABC =120°,∴∠C =60°.又∵CE =CF ,∴△CEF 为等边三角形,∴CF =EF ,∠CFE =60°,∴EF =BH ,∠DFE =∠ABC=120°.又∵BE=DF ,∴△EFD ≌△HBE ,∴HE =ED ,又∵HG=DG ,∴DG ⊥GE.3. 解:(1)MD=ME2)MD =3ME.理由如下:如图①,延长EM 交DA 于点F.∵BE ∥DA ,∴∠FAM =∠EBM.又∵AM=BM ,∠AMF =∠BME,∴△AMF ≌△BME ,∴AF =BE ,MF =ME.∵DA =DC ,∠ADC =60°,∴∠BED =∠ADC=60°,∠ACD =60°.∵∠ACB =90°,∴∠ECB =30°,∴∠EBC =30°,∴CE =BE ,∴AF =EC ,∴DF =DE ,∴DM ⊥EF ,DM 平分∠ADC,∴∠MDE =30°.在Rt △MDE 中,tan ∠MDE =ME MD =33. ∴MD =3ME.(3)如图②,延长EM 交DA 于点F ,∵BE ∥DA ,∴∠FAM =∠EBM,又∵AM=BM ,∠AMF =∠BME,∴△AMF ≌△BME ,∴AF =BE ,MF =ME.延长BE 交AC 于点N ,∴∠BNC =∠DAC.∵DA =DC ,∴∠DCA =∠DAC,∴∠BNC =∠DCA,∵∠ACB =90°,∴∠ECB =∠EBC,∴CE =BE ,∴AF =CE.∴DF =DE ,∴DM ⊥EF ,DM 平分∠ADC,∵∠ADC =α,∴∠MDE =α2. ∴在Rt △MDE 中,ME MD =tan ∠MDE =tan α2.4.解:(1)如图①,作EH ⊥BC 于点H .∵△ABC 是等边三角形,∴∠ACB =60°.∵CE 平分∠ACB ,∴∠ECH =12∠ACB =30°, ∵EC =4,∠ECH =30°,∴EH =2,HC =2 3.∵BC =6 3,∴BH =6 3-2 3=4 3.在Rt △BHE 中,BE 2=(4 3)2+22=52,∴BE =2 13.(2)如图②,延长DP 至M ,使DP =PM ,连接BM 、AM .在△PDE 和△PMB 中,⎩⎪⎨⎪⎧PD =PM ,∠EPD =∠BPM ,PE =PB ,∴△PDE ≌△PMB (SAS).∴BM =DE ,∠1=∠2.∴BM ∥DE .∴∠MBD +∠BDE =180°.∵CE 平分∠ACB ,DE =CD ,∴∠BDE =30°+30°=60°.∴∠MBD =120°.∵△ABC 是等边三角形,∴∠ABC =60°,∴∠3=60°.∵BM =DE ,DE =CD ,∴BM =CD .在△ABM 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠3=∠ACD ,BM =CD ,∴△ABM ≌△ACD (SAS).∴AD =AM ,∠4=∠5.∵PD =PM ,∴AP ⊥PD .∵∠4=∠5,∠BAD +∠5=60°,∴∠4+∠BAD =60°,即∠MAD =60°.∴∠PAD =12∠MAD =30°.∵在Rt △APD 中,tan30°=PD AP,∴AP =3PD .(3)第(2)问中的结论成立,理由如下:如图③,延长DP 至N ,使DP =PN ,连接BN 、AN ,取BE 、AC 交于点O.在△PDE 和△PNB 中,⎩⎪⎨⎪⎧PD =PN ,∠EPD =∠BPN,PE =PB ,∴△PDE ≌△PNB(SAS).∴BN =DE ,∠1=∠2.∵DE =CD ,∴BN =CD.∵∠AOB =∠EOC,∴∠1+∠3+∠BAO=∠2+∠4+∠DEC+∠DCE.∵∠BAO =60°,∠DEC =∠DCE=30°,∴∠1+∠3=∠2+∠4,∴∠3=∠4.在△ABN 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠3=∠4,BN =CD ,∴△ABN ≌△ACD(SAS).∴∠5=∠6,AN =AD.∵PD =PN ,∴AP ⊥PD.∵∠NAC +∠5=60°,∴∠NAC +∠6=60°,即∠NAD=60°.∴∠PAD =12∠NAD=30°, ∵在Rt △APD 中,tan ∠PAD =PD AP,∴AP =3PD.5. 解:(1)∵∠ADB =90°,∠BAD =30°,AD =6 3,∴cos ∠BAD =AD AB ,∴32=6 3AB,∴AB =12. 又∵AB =AC ,∴AC =12,∴PM 为△ABC 的中位线,∴PM =12AC =6.(2)证明:方法一:如图①,在截取ED 上截取EQ =PD ,∵∠ADB =90°,∴∠1+∠2=90°,又∵AD=AE ,∴∠2=∠3,又∵∠3+∠4=90°,∴∠1=∠4.在△BDP 和△CEQ 中,PD =QE ,∠1=∠4,BD =CE ,∴△BDP ≌△CEQ.∴BP =CQ ,∠DBP =∠QCE,又∵∠5=∠1+∠DBP,∠6=∠4+∠QCE,∴∠5=∠6,∴PC =CQ ,∴BP =CP.方法二:如图②,过点B 作EP 的垂线交EP 的延长线于点M ,过C 点作EP EP 于点N.∵∠ADB =90°,∴∠1+∠2=90°,又∵AD=AE ,∴∠2=∠3,又∵∠3+∠4=90°,∴∠1=∠4,在△BMD 和△CNE 中,∠1=∠4,∠BMD =∠CNE=90°,BD =CE ,∴△BMD ≌△CNE.∴BM =CN.在△BMP 和△CNP 中,∠5=∠6,∠BMP =∠CNP,BM =CN ,∴△BMP ≌△CNP,∴BP =CP.方法三:如图③,过点B 作BM ∥CE 交EP 的延长线于点M .略证△BMP ≌△CEP ,∴BP =CP .(3)BF 2+FC 2=2AD 2.类型4 中位线:三角形中两中点,连接则成中位线例4: 解:(1)PM=PN;PM ⊥PN(2)△PMN 为等腰直角三角形,理由如下:由题意知△ABC 和△ADE 均为等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE=90°,∴∠BAD +∠DAC=∠CAE+∠DAC,∴∠BAD =∠CAE,∴△BAD ≌△CAE ,∴∠ABD =∠ACE,BD =CE.又∵M、P 、N 分别是DE 、CD 、BC 的中点,∴PM 是△CDE 的中位线,∴PM ∥CE 且PM =12CE ,∠MPD =∠ECD=∠ACD+∠ACE. 同理,PN ∥BD 且PN =12BD ,∠DBC =∠PNC, 又∵BD=CE ,∠ABD =∠ACE,∴PM =PN ,∴∠MPN =∠MPD+∠DPN=∠ECD +∠DCN+∠CNP=∠ACD+∠ACE+∠DCN+∠CBD=∠ACD+∠DCN+∠ABD+∠CBD=∠ACB+∠ABC=90°,∴PM ⊥PN ,∴△PMN 为等腰直角三角形;(3)△PMN 面积的最大值为492.提示:在旋转的过程中,由(2)中的结论知△PMN 为等腰直角三角形,S △PMN =12PN 2=18BD 2,当S △PMN 有最大值时,则BD 的值最大,由三角形三边关系可推断出当B 、A 、D 三点共线时,BD的值最大,其最大值为14,此时S △PMN =12PN 2=18BD 2=18×14×14=492.针对训练:1. 解:(1)证明:延长DA 交BE 于G 点.∵∠BAE +∠CAD =180°,即∠EAG +∠GAB +∠CAD =180°,∵∠GAB +∠BAC +∠CAD =180°,∴∠EAG =∠CAB .∵∠EAG =∠AED +∠ADE ,∴∠CAB =∠AED +∠ADE .(2)证明:如图①,过E 点作DA 延长线的垂线,垂足为H .∴∠AHE =∠ACB =90°,由(1)可知,∠EAH =∠BAC ,又∵AE =AB ,∴△AHE ≌△ACB ,∴EH =BC ,AH =AC .∵AC =AD ,∴AH =AD .∵∠EHA =∠FAD =90°,∴AF ∥EH .∵A 为DH 中点,∴AF 为△DHE 中位线,∴EH =2AF ,∴BC =2AF .(3)成立.证明如下:如图②,延长DA 至M 点,使AM =DA ,连接EM ,∵∠BAE +∠CAD =180°,∠CAD +∠CAM =180°,∴∠BAE =∠CAM ,∴∠BAE +∠CAC =∠CAM +∠EAC ,即∠BAC =∠CAM .∵AM =AD ,AD =AC ,∴AM =AC .又∵AB =AE ,∠BAC =∠EAM ,∴△BAC ≌△EAM ,∴BC =EM .∵F 、A 分别为DE 、DM 中点,∴AF 为△DEM 中位线,∴EM =2AF ,∴BC =2AF .2. 解:(1)证明:∵∠BAC+∠EAD=180°,∠BAE =90°,∴∠DAC =90°,在△ABE 与△ACD 中,AE =AD ,∠BAE =∠CAD=90°,AB =AC ,∴△ABE ≌△ACD(SAS),∴CD =BE , ∵在Rt △ABE 中,F 为BE 的中点,∴BE =2AF ,∴CD =2AF.(2)成立,证明:如图,延长EA 交BC 于G ,在AG 上截取AH =AD ,∵∠BAC +∠EAD=180°,∴∠EAB +∠DAC=180°,∵∠EAB +∠BAH=180°,∴∠DAC =∠BAH,在△ABH 与△ACD 中,AH =AD ,∠BAH =∠CAD,AB =AC ,∴△ABH ≌△ACD(SAS),∴BH =DC ,∵AD =AE ,AH =AD ,∴AE =AH ,∵EF =FB ,∴BH =2AF ,∴CD =2AF.3. 解:(1)证明:∵AB=AC ,∴∠ABD =∠ACD,∵AE =AD ,∴∠ADE =∠AED,∵∠BAD +∠ABD=∠ADE+∠EDC,∠EDC +∠ACD=∠AED ,∴∠BAD =2∠EDC,∵∠ABF =2∠EDC,∴∠BAD =∠ABF,∴△ABF 是等腰三角形;(2)方法一:如图①,延长CA 至点H ,使AG =AH ,连接BH ,∵点N 是BG 的中点,∴AN =12BH , ∵∠BAD =∠ABF,∠DAC =∠CBG,∴∠CAB =∠CBA,∴△ABC 是等边三角形.∴AB =BC =AC ,∠BAC =∠BCA=60°,∵GM =AB ,AB =AC ,∴CM =AG ,∴AH =CM ,在△BAH 和△BCM 中,⎩⎪⎨⎪⎧AB =BC ,∠BAH =∠BCM=120°,AH =CM ,∴△BAH ≌△BCM(SAS),∴BH =BM ,∴AN =12BM , 方法二:如图②,延长AN 至K ,使NK =AN ,连接KB ,同方法一,先证△ABC 是等边三角形,再证△ANG ≌△KNB (SAS),所以BK =AG =CM ,然后可以证得∠ABK =∠BCN =120°,最后证△ABK ≌△BCN (SAS),所以BM =AK =2AN .类型5 角的和差倍分例5:解:(1)如图,过点P 作PG⊥EF 于G.∵PE =PF =6,EF =6 3,∴FG =EG =3 3,∠FPG =∠EPG=12∠EPF. 在Rt △FPG 中,sin ∠FPG =FG PF =3 36=32. ∴∠FPG =60°,∴∠EPF =2∠FPG=120°.(2)如图,作PM ⊥AB 于M ,PN ⊥AD 于N .∵AC 为菱形ABCD 的对角线,∴∠DAC =∠BAC ,AM =AN ,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴NF =ME .又∵AP =10,∠PAM =12∠DAB =30°, ∴AM =AN =AP cos30°=10×32=5 3. ∴AE +AF =(AM +ME )+(AN -NF )=AM +AN =10 3.针对训练:1. 证明:如图,过D 作DE ⊥AB 于E ,过D 作DF ⊥AC 于F ,∵DA 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵∠B +∠ACD =180°,∠ACD +∠FCD =180°,∴∠B =∠FCD ,在△DFC 和△DEB 中,⎩⎪⎨⎪⎧∠F =∠DEB ,∠FCD =∠B ,DF =DB ,∴△DFC ≌△DEB ,∴DC =DB .2. 解:(1)∵AC=AB =4,且CD =1,∴AD =AC -CD =3.在Rt △ABD 中,∠BAD =90°,∴BD =AB 2+AD 2=5,∵S △ABD =12AB·AD=12AE·BD, ∴AE =2.4.(2)证明:如图,取BC 的中点M ,连接AM 交BD 于点N .∵∠BAC =90°,AB =AC ,点M 为BC 的中点,∴AM =BM =CM ,AM ⊥BC ,∠NAD =∠FCP =45°,∴∠AMF =∠BMN =90°.∵AE ⊥BD ,∴∠MAF +∠ANE =∠MBN +∠BNM =90°,又∠ANE =∠BNM ,∴∠MAF =∠MBN ,∴△AMF ≌△BMN ,∴MF =MN ,∴AM -MN =CM -MF ,即AN =CF .∵AP =CD ,∴AC -CD =AC -AP ,即AD =CP .∴△ADN ≌△CPF ,∴∠ADB =∠CPF .3. 解:(1)∵AB =BD ,∠BAD =45°,∴∠BDA =45°,即∠ABD =90°.∵四边形ABCD 是平行四边形,∴当E 、C 重合时,BF =12BD =12AB . ∵在Rt △ABF 中,AB 2+BF 2=AF 2,∴(2BF )2+BF 2=(5)2,∴BF =1,AB =2.在Rt △ABD 中,AD =AB 2+BD 2=2AB 2=2 2.(2)证明:如图,在AF 上截取AK =HD ,连接BK.∵∠AFD =∠ABF+∠2=∠FGD+∠3且∠ABF=∠FGD=90°,∴∠2=∠3.在△ABK 与△DBH 中,⎩⎪⎨⎪⎧AB =BD ,∠2=∠3,AK =HD ,∴△ABK ≌△DBH ,∴BK =BH ,∠6=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠5=∠4=45°,∴∠6=∠5=45°,∴∠7=∠ABD-∠6=45°=∠5.在△BFK 与△BFH 中,⎩⎪⎨⎪⎧BK =BH ,∠7=∠5,BF =BF ,∴△BFK ≌△BFH.∴∠BFK =∠BFH,即∠AFB=∠HFB.4. 解:(1)证明:由折叠知∠EMN=∠ABC=90°,BE =EM ,∴∠EMB =∠EBM,∴∠EMN -∠EMB=∠ABC-∠EBM,即∠BMP=∠MBC.∵在正方形ABCD 中,AD ∥BC ,∴∠AMB =∠MBC,∴∠AMB =∠BMP,∴BM 是∠AMP 的平分线.(2)△PDM 的周长没有发生变化.证明如下:如图,过B 作BQ ⊥MP∵∠A =90°,且由(1)知BM 是∠AMP 的平分线,∴BA =BQ ,∵∠A =∠MQB =90°,∠AMB =∠BMP ,MB =MB ,∴△AMB ≌△QMB (AAS).∴MA =MQ .∵BA =BC ,∴BQ =BC ,又∵∠BQP =90°=∠C ,BP =BP ,∴Rt △BPC ≌Rt △BPQ (HL).∴PC =PQ ,∴△PDM 的周长=MD +MP +DP =MD +MQ +QP +PD=MD +MA +PC +PD =AD +DC =2AD .∴△PDM 的周长没有发生变化.类型6 旋转型全等问题:图中若有边相等,可用旋转做实验例6:解:(1)①∵四边形ADEF 是正方形,∴AD =AF ,AB =AC ,∵∠BAC =∠DAF=90°,∴∠BAD =∠CAF,∴△DAB ≌△FAC ,∴∠B =∠ACF,∴∠ACB +∠ACF=90°,即CF⊥BC;②∵△DAB ≌△FAC ,∴CF =BD ,∵BC =BD +CD ,∴BC =CF +CD.(2)结论①成立,结论②不成立.∵四边形ADEF 是正方形,∴AD =AF ,AB =AC.∵∠BAC =∠DAF=90°,∴∠BAD =∠CAF,∴△DAB ≌△FAC ,∴∠ABD =∠ACF,CF =BD ,∴∠BCF =∠ACF-∠ACB=∠ABD-∠ACB=90°,即CF⊥BC;∵BC=CD -BD ,∴BC =CD -CF.(3)如图,过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于∵∠BAC =90°,AB =AC ,∴BC =2AB =4,AH =CH =12BC =2,∴CD =14BC =1,∴DH =3,同(2)证得△BAD ≌△CAF , ∴∠ABD =∠ACF =45°,∴∠BCF =∠ACB +∠ACF =90°,∴BC ⊥CF ,CF =BD =5.∵四边形ADEF 是正方形,∴AD =DE ,∠ADE =90°,∵BC ⊥CF ,EM ⊥BD ,EN ⊥CF ,∴四边形CMEN 是矩形,∴NE =CM ,EM =CN ,∵∠AHD =∠ADE =∠EMD =90°,∴∠ADH +∠EDM =∠EDM +∠DEM =90°,∴∠ADH =∠DEM ,∴△ADH ≌△DEM ,∴EM =DH =3,DM =AH =2,∴CN =EM =3,EN =CM =3,∵∠ABC =45°,∴∠BGC =45°,∴△BCG 是等腰直角三角形,∴CG =BC =4,∴GN =1,∴EG =GN 2+EN 2=10.针对训练:1. 解:(1)AC =AD +AB .证明如下:∵∠B +∠D =180°,∠B =90°,∴∠D =90°.∵∠DAB =120°,AC 平分∠DAB ,∴∠DAC =∠BAC =60°,∵∠B =90°,∴AB =12AC , 同理AD =12AC . ∴AC =AD +AB .(2)(1)中的结论成立,理由如下:如图①,以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 的延长线于点E ,∵∠BAC =60°,∴△AEC 为等边三角形,∴AC =AE =CE ,∠E =60°,∵∠ABC +∠D=180°,∠DAB =120°,∴∠DCB =60°,∴∠DCA =∠ECB.在△DAC 和△BEC 中,⎩⎪⎨⎪⎧∠DAC=∠E,AC =CE ,∠DCA =∠BCE,∴△DAC ≌△BEC ,∴AD =BE ,∴AC =AE =AD +AB.(3)AD +AB =2AC.理由如下:如图②,过点C 作CE⊥AC 交AB 的延长线于点E∵∠ABC +∠D=180°,∠DAB =90°,∴∠DCB =90°,∵∠ACE =90°,∴∠DCA =∠BCE,又∵AC 平分∠DAB,∴∠CAB =45°,∴∠E =45°,∴AC =CE.∴△CDA ≌△CBE ,∴AD =BE ,∴AD +AB =AE.∵在Rt △ACE 中,∠CAB =45°,∴AE =AC cos45°=2AC , ∴AD +AB =2AC.2. 解:(1)证明:∵四边形ABCD 是正方形,∴∠B =∠D=∠BAD=90°,AB =AD ,∵△ABE 沿AE 翻折得到△AHE,∴△ABE ≌△AHE ,∴AH =AB =AD ,BE =EH ,∠AHE =∠AHF=∠B=∠D=90°.在Rt △AHF 和Rt △ADF 中,⎩⎪⎨⎪⎧AF =AF ,AH =AD , ∴Rt △AHF ≌Rt △ADF(HL),∴∠HAF =∠DAF,∴∠EAF =∠EAH+∠FAH=12∠BAH+12∠HAD=12∠BAD=45°,(2)以BM ,DN ,MN 为三边围成的三角形为直角三角形.证明如下:如图,过点A 作AH ⊥AN 并截取AH =AN ,连接BH 、HM ,∵∠1+∠BAN =90°,∠3+∠BAN =90°,∴∠1=∠3,在△ABH 和△ADN 中,⎩⎪⎨⎪⎧AB =AD ,∠1=∠3,AH =AN ,∴△ABH ≌△ADN (SAS),∴BH =DN ,∠HBA =∠NDA =135°,∵∠HAN =90°,∠MAN =45°,∴∠1+∠2=∠HAM =∠MAN =45°,在△AHM 和△ANM 中,⎩⎪⎨⎪⎧AH =AN ,∠HAM =∠MAN ,AM =AM ,∴△AHM ≌△ANM (SAS),∴HM =NM ,∴∠HBP =180°-∠HBA =180°-135°=45°,∴∠HBP +∠PBM =45°+45°=90°,∴△HBM 是直角三角形,∵HB =DN ,HM =MN ,∴以BM ,DN ,MN 为三边围成的三角形为直角三角形.3. 解:(1)如图①,将△PBC 绕点B 逆时针旋转90°得△P ′BA ,连接PP ′,则△AP ′B ≌△CPB , ∴P ′B =PB =2,P ′A =PC =1,∠1=∠2,∠AP ′B =∠BPC .∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =90°,∴∠2+∠3=90°,∴∠1+∠3=90°,即∠P ′BP =90°,∴∠BP ′P =45°.在Rt △P ′BP 中,由勾股定理,得PP ′2=4.∵P ′A =1,AP =5∴P ′A 2=1,AP 2=5,∴P ′A 2+PP ′2=AP 2,∴△P ′AP 是直角三角形,∴∠AP ′P =90°,∴∠AP′B=45°+90°=135°,∴∠BPC=135°.(2)仿照【分析】中的思路,将△BPC绕点B逆时针旋转120°,得到了△BP′A,连接PP′,如图②.则△PBC≌△P′BA,∴P′B=PB=4,P′A=PC=2,∠BPC=∠BP′A,∴△BPP′为等腰三角形,∵∠ABC =120°,∴∠PBP′=120°,∴∠BP′P=30°,过点B作BG⊥PP′于G,则∠P′GB=90°,∴PP′=2P′G.∵P′B=PB=4,∠BP′P=30°,∴BG=2,∴P′G=2 3.∴PP′=4 3,在△APP′中,∵PA=2 13,P′A=2,PP′=4 3,∴P′A2+P′P2=PA2,∴△PP′A是直角三角形,∴∠AP′P=90°,∴∠BPC=∠BP′A=∠PP′B+∠AP′P=30°+90°=120°.。

2018重庆中考几何专题1学生版.docx

2018重庆中考几何专题1学生版.docx

25.在AABC中,以AB为斜边,作直角AABD,使点D落在AABC内,ZADB=90°.H A图1 图2 图3(1) 如图1,若AB=AC, ZBAD=30°, AD二6馅,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;(2) 如图2,若AB=AC,把AABD绕点A逆时针旋转一定角度,得到AACE,连接ED 并延长交BC于点P,求证:BP=CP且ZADE=75°.25.在厶ABC屮,AB=AC,点D,点E在边BC上不同的两点,(1)如图1,若ZBAC=90°, CDf/耳求BC 的 2;(2)如图2,若ZBAC=90°, ZEAD=45°,求证:DCr/^BE;25. (1)如图1,若点D为等腰直角三角形ABC斜边BC的屮点,点E、F分别在AB、AC 边上,且ZEDF二90。

,连接AD、EF,当BO5典,FO2时,求EF的长度;(2)如图2,若点D为等边三角形ABC边BC的中点,点E、F分别在AB、AC边上,且ZEDF=90°; M 为EF 的中点,连接CM,当DF//AB 时,证明:3ED二2MC;图225.在Z\ABC中,AB二AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF 与点A在BC的同侧,连结BE,点G是BE的中点,连结AG、DG.(1)如图①,当ZBAOZDCF二90°时,已知AC二3血,CD二2,求AG的氏度;(2)如图②,当ZBAC二ZDCF二60°时,AG与DG有怎样的位置和数量关系,并证明;25.如图,四边形ABCD为矩形,连接AC, AD=2CD,点E在AD边上.(1)如图1,若ZECD=30° , CE二4,求Z\AEC 的面积;・(2)如图2,延长BA至点F使得AF二2CD,连接FE并延长交CD于点G,过点D作DH丄EGEDGC25.己知四边形ABCD为菱形,连接BD,点E为菱形ABCD外任一点.图1 图2 图3(1)如图(1),若ZA二45° , AB=V6,点E为过点B作AD边的垂线与CD边的延长线的交点,BE, AD交于点F, •求DE的长.(2)如图(2),若2ZAEB=180° - ZBED, ZABE二60°,求证:BOBE+DE已知在LABC中,乙4^0=45°,过:点C作CD丄A5干点D, ZACD=^BDE,过点占作恥丄交加干点E.⑴如图4若眈=3私=,求40的长;2⑵如图2,过点C作少丄干点化点G是巧C中点,求证:ZC^G=45°;己知在中,ZABC=45\过点C作CD丄40于点D, AACD=^BDE t过点尸作庞丄4万交DE千点E.⑴如图1,若BG=3,BE =求人C的长;(2如图2,过点c作铮丄a于点兀点G是召C中点,求证:FC = j2FG+DF;2•如国,P为正方形ABCDi^BC M-点.BG1AP于点&在朋的延£线上取点臥使AG= GE,连^BS, CE.(1)如国1,咅正方形的逍辰为㊇、P"•求0G的£度:(2)如因2・当P点为方C的中点时,求证:CE』BG :AN(3)如图3, ZCBE的平分线交直E干N点,连接DN,请直接写出河‘的値。

2018年重庆市中考数学试卷(a卷)答案及答案解析-名师推荐

2018年重庆市中考数学试卷(a卷)答案及答案解析-名师推荐

2018年重庆市中考数学试卷(A 卷)答案及解析一、 选择题 (本大题12个小题,每小题4分,共48分。

) 1.2的相反数是A .2-B .12-C.12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.40°直角三角形B.四边形C.平行四边形D.矩形【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。

3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。

4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18【答案】C 【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6; 第3个图案中的三角形个数为:2+2+2+2=2×4=8; ……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。

(完整版)2018年重庆市中考数学试卷(A卷)答案及解析(可编辑)

(完整版)2018年重庆市中考数学试卷(A卷)答案及解析(可编辑)

2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。

)1.2的相反数是 A .2-B .12-C.12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。

3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。

4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18 【答案】C 【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。

最新2018重庆中考数学25题几何证明

最新2018重庆中考数学25题几何证明

2017年12月04日月之恒的初中数学组卷一.解答题(共 小题).( 贵港)已知: 是等腰直角三角形,动点 在斜边 所在的直线上,以 为直角边作等腰直角三角形 ,其中 ,探究并解决下列问题:( )如图 ,若点 在线段 上,且 , ,则:线段 , ;猜想: , , 三者之间的数量关系为;( )如图 ,若点 在 的延长线上,在( )中所猜想的结论仍然成立,请你利用图 给出证明过程;( )若动点 满足 ,求的值.(提示:请利用备用图进行探求).( 保亭县模拟)如图 ,在 和 中, , , 与 交于 , 与 、 分别交于 、.( )试说明 ;( )如图 , 不动,将 从 的位置绕点 顺时针旋转,当旋转角 为多少度时,四边形 是平行四边形,请说明理由;( )当 时,在( )的条件下,求四边形 的面积..( 春 嘉兴期末)如图,菱形 中, ,有一度数为 的 绕点 旋转.( )如图 ,若 的两边 , 分别交 , 于点 , ,则线段 , 的大小关系如何?请证明你的结论;( )如图 ,若 的两边 , 分别交 , 的延长线于点 , ,则线段 ,还有( )中的结论吗?请说明你的理由..( 营口)【问题探究】( )如图 ,锐角 中分别以 、 为边向外作等腰 和等腰 ,使 , , ,连接 , ,试猜想 与 的大小关系,并说明理由.【深入探究】( )如图 ,四边形 中, , , ,求 的长.( )如图 ,在( )的条件下,当 在线段 的左侧时,求 的长..( 菏泽)如图,已知 , 是直线 上的点, .( )如图 ,过点 作 ,并截取 ,连接 、 、 ,判断 的形状并证明;( )如图 , 是直线 上一点,且 ,直线 、 相交于点 , 的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由..( 春 重庆校级期末)如图 , 中, 于点 , 于点 ,连接.( )若 , , ,求 的周长;( )如图 ,若 , , 的角平分线 交 于点 ,求证: ;( )如图 ,若 , ,将 沿着 翻折得到 ,连接 、 ,请猜想线段 、 、 之间的数量关系,并证明你的结论..( 于洪区一模)如图 ,在 中, 为锐角,点 为射线 上一点,连接 ,以 为一边且在 的右侧作正方形 .( )如果 , ,当点 在线段 上时(与点 不重合),如图 ,线段 、 所在直线的位置关系为,线段 、 的数量关系为;当点 在线段 的延长线上时,如图 , 中的结论是否仍然成立,并说明理由;( )如果 , 是锐角,点 在线段 上,当 满足什么条件时, (点 、 不重合),并说明理由..( 绍兴)( )如图 ,正方形 中,点 , 分别在边 , 上, ,延长 到点 ,使 ,连结 , .求证: .( )如图,等腰直角三角形 中, , ,点 , 在边 上,且 ,若 , ,求 的长..( 东营)( )如图( ),已知:在 中, , ,直线 经过点 , 直线 , 直线 ,垂足分别为点 、 .证明: .( )如图( ),将( )中的条件改为:在 中, , 、 、 三点都在直线 上,并且有 ,其中 为任意锐角或钝角.请问结论 是否成立?如成立,请你给出证明;若不成立,请说明理由.( )拓展与应用:如图( ), 、 是 、 、 三点所在直线 上的两动点( 、 、 三点互不重合),点 为 平分线上的一点,且 和 均为等边三角形,连接 、 ,若 ,试判断 的形状..( 昭通)已知 为等边三角形,点 为直线 上的一动点(点 不与 、 重合),以 为边作菱形 ( 、 、 、 按逆时针排列),使 ,连接 .( )如图 ,当点 在边 上时,求证: ; ;( )如图 ,当点 在边 的延长线上且其他条件不变时,结论 是否成立?若不成立,请写出 、 、 之间存在的数量关系,并说明理由;( )如图 ,当点 在边 的延长线上且其他条件不变时,补全图形,并直接写出 、 、 之间存在的数量关系..( 常德)已知两个共一个顶点的等腰 , , ,连接 , 是 的中点,连接 、 .( )如图 ,当 与 在同一直线上时,求证: ;( )如图 ,若 , ,求 , 的长;( )如图 ,当 时,求证: ..( 庐阳区校级模拟)如图,将两个全等的直角三角形 、 拼在一起(图 ). 不动,( )若将 绕点 逆时针旋转,连接 , 是 的中点,连接 、 (图 ),证明: .( )若将图 中的 向上平移, 不变,连接 , 是 的中点,连接 、 (图 ),判断并直接写出 、 的数量关系.( )在( )中,若 的大小改变(图 ),其他条件不变,则( )中的 、 的数量关系还成立吗?说明理由..( 武汉模拟)已知 中, .( )如图 ,在 中,若 ,且 ,求证: ;( )如图 ,在 中,若 ,且 垂直平分 , , ,求 的长;( )如图 ,在 中,当 垂直平分 于 ,且 时,试探究 , , 之间的数量关系,并证明..( 长春)感知:如图 ,点 在正方形 的边 上, 于点 , 于点 ,可知 .(不要求证明)拓展:如图 ,点 、 分别在 的边 、 上,点 、 在 内部的射线 上, 、 分别是 、 的外角.已知 , ,求证: .应用:如图 ,在等腰三角形 中, , > .点 在边 上, ,点 、 在线段 上, .若 的面积为 ,则 与 的面积之和为..( 昌平区模拟)( )如图,在四边形 中, , , 、 分别是边 、 上的点,且 .求证: ;( )如图,在四边形 中, , , 、 分别是边 、 上的点,且 ,( )中的结论是否仍然成立?( )如图,在四边形 中, , , 、 分别是边 、 延长线上的点,且 ,( )中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明..( 哈尔滨模拟)已知 是等腰三角形, , 为边 上任意一点, 于 , 于 ,且 , 分别在边 , 上.( )如图 ,当 是等边三角形时,证明: .( )如图 ,若 中, ,探究线段 , , 之间的数量关系,并对你的猜想加以证明.( )如图 ,若 中, , , ,利用你对( ),( )两题的解题思路计算出线段 ( > )的长..( 绍兴)数学课上,李老师出示了如下框中的题目.小敏与同桌小聪讨论后,进行了如下解答:( )特殊情况 探索结论当点 为 的中点时,如图 ,确定线段 与的 大小关系.请你直接写出结论:(填 > , < 或 ).( )特例启发,解答题目解:题目中, 与 的大小关系是: (填 > , < 或 ).理由如下:如图 ,过点 作 ,交 于点 ,(请你完成以下解答过程)( )拓展结论,设计新题在等边三角形 中,点 在直线 上,点 在直线 上,且 .若 的边长为 , ,求 的长(请你直接写出结果)..( 沈阳)已知, 为等边三角形,点 为直线 上一动点(点 不与 、 重合).以 为边作菱形 ,使 ,连接 .( )如图 ,当点 在边 上时,求证: ; 请直接判断结论 是否成立;( )如图 ,当点 在边 的延长线上时,其他条件不变,结论 是否成立?请写出 、 、 之间存在的数量关系,并写出证明过程;( )如图 ,当点 在边 的延长线上时,且点 、 分别在直线 的异侧,其他条件不变,请补全图形,并直接写出 、 、 之间存在的等量关系..( 梅州)如图 ,已知线段 的长为 ,点 是 上的动点( 不与 , 重合),分别以 、 为边向线段 的同一侧作正 和正 .( )当 与 的面积之和取最小值时, ;(直接写结果)( )连接 、 ,相交于点 ,设 ,那么 的大小是否会随点 的移动面变化?请说明理由;( )如图 ,若点 固定,将 绕点 按顺时针方向旋转(旋转角小于 ),此时 的大小是否发生变化?(只需直接写出你的猜想,不必证明).( 抚顺)如图 ,在 中, , , 为斜边 上的中线,将 绕点 顺时针旋转 ( < < ),得到 ,点 的对应点为点 ,点 的对应点为点 ,连接 、 .( )判断 与 的位置、数量关系,并说明理由;( )若连接 、 ,请直接写出在旋转过程中四边形 能形成哪些特殊四边形;( )如图 ,将 中 改成 时,其他条件不变,直接写出 为多少度时( )中的两个结论同时成立..( 安徽模拟)如图,在 中, , ,且 > , 于 , 于 , 于 .( )在图( )中, 是 边上的中点,计算 和 的长(用 , 表示),并判断 与 的关系.( )在图( )中, 是线段 上的任意一点, 与 的关系是否仍然成立?如果成立,证明你的结论;如果不成立,请说明理由.( )在图( )中, 是线段 延长线上的点,探究 、 与 的关系.(不要求证明).( 丹东)如图,已知等边三角形 中,点 , , 分别为边 , , 的中点, 为直线 上一动点, 为等边三角形(点 的位置改变时, 也随之整体移动).( )如图 ,当点 在点 左侧时,请你判断 与 有怎样的数量关系?点 是否在直线 上?都请直接写出结论,不必证明或说明理由;( )如图 ,当点 在 上时,其它条件不变,( )的结论中 与 的数量关系是否仍然成立?若成立,请利用图 证明;若不成立,请说明理由;( )若点 在点 右侧时,请你在图 中画出相应的图形,并判断( )的结论中 与 的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由..( 铁岭) 是等边三角形,点 是射线 上的一个动点(点 不与点 、 重合), 是以 为边的等边三角形,过点 作 的平行线,分别交射线 、 于点 、 ,连接 .( )如图( )所示,当点 在线段 上时.求证: ;探究四边形 是怎样特殊的四边形?并说明理由;( )如图( )所示,当点 在 的延长线上时,直接写出( )中的两个结论是否成立;( )在( )的情况下,当点 运动到什么位置时,四边形 是菱形?并说明理由.。

重庆市2018年中考数学试题(含解析)

重庆市2018年中考数学试题(含解析)

2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。

)1.2的相反数是 A .2- B .12-C .12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。

3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。

4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18【答案】C 【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。

全国中考数学真题分类汇编专题复习(八)函数与几何图形综合探究题(答案不全)(2021年整理)

全国2018年中考数学真题分类汇编专题复习(八)函数与几何图形综合探究题(答案不全)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(全国2018年中考数学真题分类汇编专题复习(八)函数与几何图形综合探究题(答案不全))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为全国2018年中考数学真题分类汇编专题复习(八)函数与几何图形综合探究题(答案不全)的全部内容。

(分类)专题复习(八)函数与几何图形综合探究题类型1 探究线段最值问题(2018·烟台)(2018·广西六市)(2018·淮安)(2018·郴州)(2018·咸宁)(2018·山西)(2018·菏泽)24。

(本小题满分9分)(2018·淄博)如图,抛物线2y ax bx =+经过OAB ∆的三个顶点,其中点(3A ,点(3,3B -,O 为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若()()P m Q t n为该抛物线上的两点,且n m4,,,<,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求BOC∠的大小及点C的坐标.(2018·湘潭)(2018·永州)(2018·泸州)25. 如图11,已知二次函数23(2)34y ax a x =--+的图象经过点A (4,0),与y 轴交于点B.在x轴上有一动点C(m ,0) (0〈m<4),过点C 作x 轴的垂线交直线AB 于点E,交该二次函数图象于点D.(1)求a 的值和直线AB 的解析式;(2)过点D 作DF ⊥AB 于点F ,设△ACE ,△DEF 的面积分别为1S ,2S ,若124S S =,求m 的值; (3)点H 是该二次函数图象上位于第一象限的动点,点G 是线段AB 上的动点,当四边形DEGH是平行四边形, 且DEGH 周长取最大值时,求点G 的坐标.xyOHGFEDCB A24.(2018·宜宾)(本小题12分)(注意..:在试题卷上作答无效.........) 在平面直角坐标系xOy 中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=错误!x 与抛物线交于A 、B 两点,直线l 为y= –1。

2018年重庆市中考数学试卷-答案

2018年重庆市中考数学试卷-答案重庆市2018年初中学业⽔平暨⾼中招⽣考试(A 卷)数学答案解析第Ⅰ卷⼀、选择题 1.【答案】A【解析】根据题意,2(2)0+-=,∴2的相反数是-2,故选A. 【考点】相反数的概念. 2.【答案】D【解析】A 中的直⾓三⾓形不是轴对称图形;B 中的直⾓梯形不是轴对称图形;C 中的平⾏四边形是中⼼对称图形,不是轴对称图形;D 中的矩形是轴对称图形,故选D.【提⽰】判断⼀个图形是不是轴对称图形,要将这个图形沿某条直线对折,对折的两部分能完全重合,则这个图形是轴对称图形,常见的轴对称图形有线段、⾓、等腰三⾓形、菱形、矩形、正⽅形、圆、正多边形等。

【考点】轴对称图形的概念. 3.【答案】C【解析】根据题意,采取随机抽取的⽅法进⾏调查⽐较全⾯,结果也会⽐较真实有效,故选C. 【提⽰】选择抽取样本的恰当的⽅法是解答本题的关键. 【考点】调查中的样本选择. 4.【答案】C【解析】由题可知,每增加⼀个图案则增加2个三⾓形,∴第○n 个图案中有42(1)n +-个三⾓形,∴第⑦个图案中有16个三⾓形,故选C. 【考点】探索规律. 5.【答案】C【解析】根据题意可知两个三⾓形相似,设最长边为x cm ,则592.5x=,解得 4.5x =,即这个三⾓形的最长边为4.5 cm ,故选C .【提⽰】理解相似三⾓形的性质是解答本题的关键. 【考点】相似三⾓形的性质. 6.【答案】D【解析】平⾏四边形的对⾓线互相平分⽽不垂直,∴命题A 不正确;矩形的对⾓线相等且互相平分⽽不垂直,∴命题B 不正确;菱形的对⾓线互相垂直平分⽽不相等,∴命题C 不正确;正⽅形的对⾓线互相垂直平分且相等,∴命题D 正确,故选D.【提⽰】掌握特殊四边形的对⾓线的性质是解答本题的关键. 【考点】命题的判断. 7.【答案】B【解析】24255223==<∴<<,,,即在2和3之间,故选B .【考点】⼆次根式的运算、估算⽆理数. 8.【答案】C【解析】根据题意,当输⼊33x y ==,时,2021512y x y ∴+=≥,≠;当输⼊42x y =-=-,时,20,22012y x y ∴-=<≠;当输⼊24x y ==,时,20,212y x y ∴+=≥;当输⼊42x y ==,时,20,22012y x y ∴+=≥≠,故选C.【提⽰】根据y 的范围分情况求值是解答本题的关键。

2018重庆中考几何专题-教师版

25.在△A B C中,以A B为斜边,作直角△A B D,使点D落在△A B C内,∠A D B=90°.(1)如图1,若AB=AC,∠BAD=30°,AD=6,点P、M分别为BC、AB边的中点,连接PM,求线段PM的长;(2)如图2,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC 于点P,求证:BP=CP【分析】(1)在直角三角形中,利用锐角三角函数求出AB,即可;(2)先利用互余判断出,∠BDP=∠PEC,得到△BDP和△CEQ,再用三角形的外角得到∠EPC=∠PQC,即可;【解答】(1)解:∵∠ADB=90°,∠BAD=30°,AD=6,∴cos∠BAD=,∴AB===12,∴AC=AB=12,∵点P、M分别为BC、AB边的中点,∴PM=AC=6,(2)如图2,在ED上截取EQ=PD,∵∠ADB=90°,∴∠BDP+∠ADE=90°,∵AD=AE,∴∠ADE=∠AED,∵把△ABD绕点A逆时针旋转一定角度,得到△ACE,∴∠AEC=∠ADB=90°∵∠AED+∠PEC=90°,∴∠BDP=∠PEC,在△BDP和△CEQ中,,∴△BDP≌△CEQ,∴BP=CQ,∠DBP=∠QCE,∵∠CPE=∠BDP+∠DBP,∠PQC=∠PEC+∠QCE,∴∠EPC=∠PQC,∴PC=CQ,∴BP=CP25.在△ABC中,AB=AC,点D,点E在边BC上不同的两点,且∠ADE=75°.(1)如图1,若∠BAC=90°,CD=,求BC的长;(2)如图2,若∠BAC=90°,∠EAD=45°,求证:DC=BE;【考点】相似形综合题.【分析】(1)作DG⊥AC于G,证明出△ABC是等腰直角三角形,进而求出AG的长,即可求出BC的长;(2)作DH⊥AE于H,设DC=a,利用a表示出BC、DE和CD的长,根据线段之间的关系得到结论;【解答】解:(1)如图1所示,作DG⊥AC于G,∵∠BAC=90°,AB=AC,∴△ABC是等腰直角三角形,∴∠1=∠B=45°,∵∠ADE=75°,∴∠2=60°,∠DAG=30°,∴DG=CG=CD=1,AD=2DG=2,∴AG==,∴AC=AG+CG=+1,∴BC=AG=+;(2)如图2所示,作DH⊥AE于H,设DC=a,则DG=CG=a,∴AD=2DG=a,AG=a,∴AC=AG+CG=a,∴BC=AC=(+1)a,∵∠EAD=45°,∴△ADH是等腰直角三角形,∴AH=DH=AD=a,∵∠4=180°﹣∠ADE﹣∠DAE=60°,∴DE=2EH,∴DE=DH÷=a,∴BE=BC﹣DE﹣CD=a=DC,∴DC=BE;25.(1)如图1,若点D为等腰直角三角形ABC斜边BC的中点,点E、F分别在AB、AC边上,且∠EDF=90°,连接AD、EF,当BC=5,FC=2时,求EF的长度;(2)如图2,若点D为等边三角形ABC边BC的中点,点E、F分别在AB、AC边上,且∠EDF=90°;M为EF 的中点,连接CM,当DF∥AB时,证明:3ED=2MC;【考点】三角形综合题;全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质;勾股定理;等腰直角三角形.【分析】(1)根据等腰直角三角形的性质,证得△ADE≌△CDF,根据全等三角形对应边相等,求得AE=CF=2,最后在在Rt△AEF中根据勾股定理求得EF的长;(2)先设等边三角形边长为2,在Rt△BDE中求得DE的长,再根据CM垂直平分DF,在Rt△CDN中求得CN,在Rt△MND中求得MN的长,最后根据CM与DE的长度之比求得3ED=2MC;【解答】解:(1)如图1∵点D为等腰直角三角形ABC斜边BC的中点∴AD⊥BC,AD=BC=CD=,∠DAE=∠C=45°∴AC=CD=5又∵∠EDF=90°,FC=2∴∠ADE=∠CDF,AF=5﹣2=3在△ADE和△CDF中∴△ADE≌△CDF(ASA)∴AE=CF=2∴在Rt△AEF中,EF==(2)设等边三角形边长为2,则BD=CD=1∵等边三角形ABC中,DF∥AB∴∠FDC=∠B=60°∵∠EDF=90°∴∠BDE=30°∴DE⊥BE∴BE=,DE=如图2,连接DM,则Rt△DEF中,DM=EF=FM∵∠FDC=∠FCD=60°∴△CDF是等边三角形∴CD=CF=1∴CM垂直平分DF∴∠DCN=30°∴Rt△CDN中,DN=,CN=,DF=1∴在Rt△DEF中,EF==∵M为EF的中点∴FM=DM=∴Rt△MND中,MN==∴CM=+=∴==∴3ED=2MC25.在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连结BE,点G是BE的中点,连结AG、DG.(1)如图①,当∠BAC=∠DCF=90°时,已知AC=32,CD=2,求AG的长度;(2)如图②,当∠BAC=∠DCF=60°时,AG与DG有怎样的位置和数量关系,并证明;【答案】(1)、5;(2)、AG⊥GD,AG=DG;证明过程见解析;【解析】试题分析:(1)、延长DG与BC交于H,先证△BG△≌EGD,得到BH=DC,=ED,HG=DG,得出BH,再证△ABH≌△ACD,得出∠BAH∠=∠CAD,AH=AD,进而求得∠HAD=90°,即可;(2)、延长DG与BC交于H,先证△BG△≌EGD,得到BH=DC,=ED ,HG=DG ,得出BH ,再证△ABH ≌△ACD ,得出∠BAH ∠=∠CAD ,AH=AD ,得到△H △AD 为等边三角形,即可;(3)、延长DG 与BC 交于H ,先证△BG △≌EGD ,得到BH=DC ,=ED ,HG=DG ,得出BH ,再证△ABH ≌△ACD ,得出∠BAH ∠=∠CAD ,AH=AD ,得到△H △AD 为等腰三角形,即可.试题解析:(1)、如图1,延长DG 与BC 交于H ,连接AH 、AD ,∵四边形D CEF 是正方形, ∴DE=DC ,DE ∥CF , ∴∠GBH=∠GED ,∠GHB=∠GDE , ∵G 是BC 的中点, ∴BG=EG , 在△BGH 和△EGD 中, ∵∠GBH=∠GED ,∠GHB=∠GDE ,BG=EG , ∴△BGH ≌△EGD (AAS ),∴BH=ED ,HG=DG , ∴BH=DC , ∵AB=AC ,∠BAC=90°, ∴∠ABC=∠ACB=45°, ∵∠DCF=90°,∴∠DCB=90°, ∴∠ACD=45°, ∴∠ABH=∠ACD=45°, 在△ABH 和△ACD 中, ∵AB=AC ,∠ABH=∠ACD ,BH=CD , ∴△ABH ≌△ACD (SAS ), ∴∠BAH=∠CAD ,AH=AD , ∵∠BAH+∠HAC=90°,∴∠CAD+∠HAC=90°, 即∠HAD=90°, ∴AG ⊥GD ,AG=GD ; 在Rt △ABC 中,AB=AC=2,∴BC=6 在Rt △DCH 中,DC=2,HC=BC ﹣BH=6﹣2=4, ∴DH=22DC HC =25, ∴GD=21DH=5, ∴AG=GD=5.(2)AG ⊥GD ,AG=DG ;如图2,延长DG 与BC 交于H ,连接AH 、AD ,∵四边形DCEF 是正方形, ∴DE=DC ,DE ∥CF , ∴∠GBH=∠GED ,∠GHB=∠GDE , ∵G 是BC 的中点, ∴BG=EG ,在△BGH 和△EGD 中, ∵∠GBH=∠GED ,∠GHB=∠GDE ,BG=EG , ∴△BGH ≌△EGD (AAS ), ∴BH=ED ,HG=DG , ∴BH=DC , ∵AB=AC ,∠BAC=∠DCF=60, ∴∠ABC=60°,∠ACD=60°,∴∠ABC=∠ACD=60°, 在△ABH 和△ACD 中, ∵AB=AC ,∠ABH=∠ACD ,BH=CD , ∴△ABH ≌△ACD (SAS ), ∴∠BAH=∠CAD ,AH=AD , ∴∠BAC=∠HAD=60°, ∴AG ⊥HD ,∠HAG=∠DAG=30°,∴tan ∠DAG=tan30°=33, ∴AG=DG ; 25.如图,四边形ABCD 为矩形,连接AC ,AD=2CD ,点E 在AD 边上.(1)如图1,若∠ECD=30°,CE=4,求△AEC 的面积;(2)如图2,延长B A 至点F 使得AF=2CD ,连接FE 并延长交CD 于点G ,过点D 作DH ⊥EG 于点H ,连接AH ,求证:;(【解析】试题分析:(1)根据30°的直角三角形求CD 和ED ,再利用面积公式求△AEC 的面积;(2)作辅助线,构建全等三角形,证明△AFM ≌△ADH ,得AM=AH ,FM=DH ,则△MAH 是等腰直角三角形,有AH ,根据线段的和代入得结论;(3)根据将线段AE 绕点A 旋转一定的角度α(0°<α<30°)得到线段AE′,先计算当AE 旋转时DN 的最小值和最大值,当α=0°时,DN 最小;当α=180°时,DN 最大,分别计算,写出结论.试题解析:(1)在Rt △EDC 中,∵∠EDC=30°,∴ED=12EC=12×4=2,cos30°=DC EC,∴DC=EC•cos30°=4×2,∴AE=2DC ﹣2,∴AEC S =12×AE ×DC=12(2)×﹣ (2)过A 作AM ⊥AH ,交FG 于M ,∴∠MAH=∠MAD+∠DAH=90°,又∵∠FAD=∠MAD+∠FAM=90°,∴∠FAM=∠DAH ,∵AF∥CD,∴∠F=∠FGD∵DH⊥EG,∴∠DHE=∠HDG+∠FGD=90°,∠EDG=∠EDH+∠HDG=90°,∴∠FGD=∠EDH,∴∠F=∠EDH,又∵AF=2CD,AD=2CD,∴AF=AD,∴△AFM≌△ADH,∴AM=AH,FM=DH,∴△MAH是等腰直角三角形,∴AH,∵FH=MH+FM,∴AH+DH;25.(12分)已知四边形ABCD为菱形,连接BD,点E为菱形ABCD外任一点.(1)如图(1),若∠A=45°,E为过点B作AD边的垂线与CD边的延长线的交点,BE,AD交于点F,求DE的长.(2)如图(2),若2∠AEB=180°﹣∠BED,∠ABE=60°,求证:BC=BE+DE【答案】(1)2)证明参见解析;【解析】试题分析:(1)首先证明△AFB与△EFD为等腰直角三角形,然后在△ABF中依据勾股定理可求得BF和AF的长,从而得到DF的长,然后在Rt△EDF中,可求得DE的长;(2)延长DE至K,使EK=EB,连结AK.首先证明∠AEB=∠AEK ,然后依据SAS 证明△AEB ≌△AEK ,由全等三角形的性质及等边三角形的判断定理可证明△AKD 为等边三角形,于是得到KD=BC ,通过等量代换可得到问题的答案;(3)记AB 与DE 的交点为O .首先证明依据菱形的性质可得到∠ABC=2∠ABD ,然后依据平行四边形的性质可证明∠CDE=∠BOE ,最后依据三角形外角的性质可得到问题的答案.试题解析:(1)如图1所示:∵四边形ABCD 为菱形,∴AB ∥CD .∴∠A=∠ADE=45°.∵AD ⊥BE ,∴∠AFB=DFE=90°.∴△AFB 与△EFD 为等腰直角三角形.∴BF 2+AF 2=AB 2,即:2BF 2=6,∴BF=AF=∵△EFD 为等腰直角三角形,∴EF=DF=AD ﹣.∴)(2)如图2所示:延长DE 至K ,使EK=EB ,联结AK .∵2∠AEB=180°﹣∠BED ,∴∠BED=180°﹣2∠AEB=180°﹣∠AEB ﹣∠AEK .∴∠AEB=∠AEK .在△AEB 和△AEK 中BK KE AEB AEK AE AE ⎧=⎪∠=∠⎨⎪=⎩,∴△AEB ≌△AEK .∴∠K=∠ABE=60°,Ak=AB .又∵AB=AD ,∴AK=AD .∴△AKD 为等边三角形.∴KD=AD .∴KD=BC .∵KD=KE+DE ,∴CB=EB+DE .7.已知两个全等的等腰直角ABC 、△D EF ,其中∠ACB=∠DFE=90,E 为AB 中点,△DE F 可绕顶点E 旋转,线段DE ,EF 分别交线段CA ,CB(或它们所在直线)于M 、N .(1)如图l ,当线段EF 经过ABC 的顶点C 时,点N 与点C 重合,线段DE 交AC于M,求证:AM=MC ;(2)如图2,当线段EF 与线段BC 边交于N 点,线段DE 与线段AC 交于M 点,连MN,EC,请探究AM ,MN,CN 之间的等量关系,并说明理由;(1)∵AC =BC ,E 为AB 中点∴CE ⊥AB, ∠ACE =∠BCE =12ACB=45o∴∠AEC =90o∴∠A =∠ACE=45o∴AE =CE∵DF =EF , ∠DFE =90o∴∠FED =45o ∴∠FED =12∠AEC又∵AE =CE ∴AM =MC(2)AM =MN +CN ,理由如下:在AM 截取AH ,使得AH =CN ,连接BH由(1)知AE =CE ,∠A =∠BCE =45o在AHE ∆与CNE ∆中:⎪⎩⎪⎨⎧=∠=∠=CE AE NCE A CN AH ∴AHE ∆≌CNE ∆∴HE =NE ,∠AEH =∠CEN∴∠HEM =∠AEC -∠AEH -MEC =∠AEC -∠CEN -MEC =∠AEC -∠MEF = 4590-=45o ∴∠HEM =∠NEM =45o在HEM ∆与NEM ∆中:⎪⎩⎪⎨⎧=∠=∠=CE AE NCE A CNAH ∴HEM ∆≌NEM ∆∴HM =MN ∴AM =AH+HM= CN +MN即AM =MN +CN。

[2018年中考真题数学卷]2018重庆市中考数学试题[B]含答案解析[版](word版可编辑修改)

[2018年中考真题数学卷]2018重庆市中考数学试题[B]含答案解析[版](word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望([2018年中考真题数学卷]2018重庆市中考数学试题[B]含答案解析[版](word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为[2018年中考真题数学卷]2018重庆市中考数学试题[B]含答案解析[版](word版可编辑修改)的全部内容。

点A 的横坐标为2,将直线沿y 轴向下平移4个单位长度,得到直线 ,直线与y 轴交于点B,1l 3l 3l 与直线交于点C,点C 的纵坐标为-2,直线与y 轴交于点D 。

2l 2l (1)求直线的解析式;2l (2)求△BDC 的面积.23.在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设,该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍。

(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值,据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2,为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投人10a % ,全部用于沼气池和垃圾集中处理点建设,经测算:从今年6月起,修建每个沼气池和垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a % ,5a%,新建沼气池和垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a% ,8a%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆中考几何题分类汇编(含答案)类型1 线段的倍分:要证线段倍与半,延长缩短去实验例1 如图Z3-1,在△ABC中,AB=AC,CM平分∠ACB交AB于M,在AC的延长线上截取CN=BM,连接MN 交BC于P,在CB的延长线截取BQ=CP,连接MQ.(1)求证:MQ=NP;(2)求证:CN=2CP.针对训练:1.如图Z3-2,在▱ABCD中,AC⊥BC,点E、点F分别在AB、BC上,且满足AC=AE=CF,连接CE、AF、EF.(1)若∠ABC=35°,求∠EAF的度数;(2)若CE⊥EF,求证:CE=2EF.2.已知,在△ABC 中,AB =AC ,∠BAC =90°,E 为边AC 任意一点,连接BE.(1)如图①,若∠ABE=15°,O 为BE 中点,连接AO ,且AO =1,求BC 的长;(2)如图②,F 也为AC 上一点,且满足AE =CF ,过A 作AD⊥BE 交BE 于点H ,交BC 于点D ,连接DF 交BE于点G ,连接AG.若AG 平分∠CAD,求证:AH =12AC.3.在△ACB 中,AB =AC ,∠BAC =90°,点D 是AC 上一点,连接BD ,过点A 作AE⊥BD 于E ,交BC 于F.(1)如图①,若AB =4,CD =1,求AE 的长;(2)如图②,点G 是AE 上一点,连接CG ,若BE =AE +AG ,求证:CG =2AE.4.在等腰直角三角形ABC 中,∠BAC =90°,AB =AC ,D 是斜边BC 的中点,连接AD.(1)如图①,E 是AC 的中点,连接DE ,将△CDE 沿CD 翻折到△CDE′,连接AE′,当AD =6时,求AE′的值.(2)如图②,在AC 上取一点E ,使得CE =13AC ,连接DE ,将△CDE 沿CD 翻折到△CDE′,连接AE′交BC 于点F ,求证:DF =CF.类型2 线段的和差:要证线段和与差,截长补短去实验例2 如图,在△ABC中,∠BAC=90°,在BC上截取BD=BA,连接AD,在AD左侧作∠EAD=45°交BD于E.(1)若AC=3,则CE=________(直接写答案);(2)如图①,M、N分别为AB和AC上的点,且AM=AN,连接EM、DN,若∠AME+∠AND=180°,求证:DE =DN+ME;(3)如图②,过E作EF⊥AE,交AD的延长线于F,在EC上选取一点H,使得EH=BE,连接FH,在AC上选取一点G,使得AG=AB,连接BG、FG,求证:FH=FG.针对训练:1.如图Z3-7,在▱ABCD中,AE⊥BC于E,AE=AD,EG⊥AB于G,延长GE、DC交于点F,连接AF.(1)若BE=2EC,AB=13,求AD的长;(2)求证:EG=BG+FC.2.如图,在正方形ABCD 中,点P 为AD 延长线上一点,连接AC 、CP ,过点C 作CF⊥CP 于点C ,交AB 于点F ,过点B 作BM⊥CF 于点N ,交AC 于点M.(1)若AP =78AC ,BC =4,求S △ACP ;(2)若CP -BM =2FN ,求证:BC =MC.3.如图,在△ABC 中,AB =BC ,以AB 为一边向外作菱形ABDE ,连接DC ,EB 并延长EB 交AC 于F ,且CB⊥AE 于G.(1)若∠EBG=20°,求∠AFE;(2)试问线段AE ,AF ,CF 之间的数量关系并证明.类型3 倍长中线:三角形中有中线,延长中线等中线例3 如图Z3-10①,在Rt△ABC中,∠ABC=90°,D、E分别为斜边AC上两点,且AD=AB,CE=CB,连接BD、BE.(1)求∠EBD的度数;(2)如图Z3-10②,过点D作FD⊥BD于点D,交BE的延长线于点F,在AB上选取一点H,使得BH=BC,连接CH,在AC上选取一点G,使得GD=CD,连接FH、FG,求证:FH=FG.针对训练:1.如图,已知在▱ABCD中,G为BC的中点,点E在AD边上,且∠1=∠2.(1)求证:E是AD中点;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2,求证:CD=BF+DF.2.如图Z 3-12,在菱形ABCD 中,点E 、F 分别是BC 、CD 上的点,连接AE ,AF ,DE 、EF ,∠DAE =∠BAF.(1)求证:CE =CF ;(2)若∠ABC=120°,点G 是线段AF 的中点,连接DG ,EG.求证:DG⊥GE.3.在Rt △ABC 中,∠ACB =90°,点D 与点B 在AC 同侧,∠ADC >∠BAC,且DA =DC ,过点B 作BE∥DA 交DC 于点E ,M 为AB 的中点,连接MD ,ME.(1)如图①,当∠ADC=90°时,线段MD 与ME 的数量关系是________;(2)如图②,当∠ADC=60°时,试探究线段MD 与ME 的数量关系,并证明你的结论;(3)如图③,当∠ADC=α时,求ME MD的值.4.如图①,等边三角形ABC中,CE平分∠ACB,D为BC边上一点,且DE=CD,连接BE.(1)若CE=4,BC=6 3,求线段BE的长;(2)如图②,取BE中点P,连接AP,PD,AD,求证:AP⊥PD且AP=3PD;(3)如图③,把图Z3-14②中的△CDE绕点C顺时针旋转任意角度,然后连接BE,点P为BE中点,连接AP,PD,AD,问第(2)问中的结论还成立吗?若成立,请证明;若不成立,请说明理由.5.在△ABC中,以AB为斜边,作直角三角形ABD,使点D落在△ABC内,∠ADB=90°.(1)如图①,若AB=AC,∠BAD=30°,AD=6 3,点P、M分别为BC、AB边的中点,连接PM,求线段PM 的长;(2)如图②,若AB=AC,把△ABD绕点A逆时针旋转一定角度,得到△ACE,连接ED并延长交BC于点P,求证:BP=CP;(3)如图③,若AD=BD,过点D的直线交AC于点E,交BC于点F,EF⊥AC,且AE=EC,请直接写出线段BF、FC、AD之间的关系(不需要证明).类型4 中位线:三角形中两中点,连接则成中位线例4 2017·河南如图①,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图①中,线段PM与PN的数量关系是__________,位置关系是__________;(2)探究证明:把△ADE绕点A按逆时针方向旋转到图②的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.针对训练:1.如图①,在任意的三角形ABC中,分别以AB和AC为一边作等腰三角形ABE和等腰三角形ACD,AB=AE,AC=AD,且∠BAE+∠CAD=180°,连接DE,延长CA交DE于F.(1)求证:∠CAB=∠AED+∠ADE;(2)若∠ACB=∠BAE=∠CAD=90°,如图②,求证:BC=2AF;(3)若在△ABC中,如图③所示,作等腰三角形ABE和等腰三角形ACD,AB与DE交于点F,F为DE的中点,请问(2)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.2.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.3.如图①,在等腰三角形ABC中,AB=AC,在底边BC上取一点D,在边AC上取一点E,使AE=AD,连接DE,在∠ABD的内部作∠ABF=2∠EDC,交AD于点F.(1)求证:△ABF是等腰三角形;(2)如图②,BF的延长交AC于点G.若∠DAC=∠CBG,延长AC至点M,使GM=AB,连接BM,点N是BG的中点,连接AN,试判断线段AN、BM之间的数量关系,并证明你的结论.类型5 角的和差倍分图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现.角平分线平行线,等腰三角形来添.角平分线加垂线,三线合一试试看.例5.如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=6 3,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值.针对训练:1.已知:如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知:DB=DC.探究:如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求证:DB=DC.2.在△ACB中,AB=AC,∠BAC=90°,点D是AC上一点,连接BD,过点A作AE⊥BD于E,交BC于F.(1)如图①,若AB=4,CD=1,求AE的长;(2)如图②,点P是AC上一点,连接FP,若AP=CD,求证:∠ADB=∠CPF.3.已知,在▱ABCD中,∠BAD=45°,AB=BD,E为BC上一点,连接AE交BD于F,过点D作DG⊥AE 于G,延长DG交BC于H.(1)如图①,若点E与点C重合,且AF=5,求AD的长;(2)如图②,连接FH,求证:∠AFB=∠HFB.4.如图,将正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.当点M在边AD上移动时,连接BM、BP.(1)求证:BM是∠AMP的平分线;(2)△PDM的周长是否发生变化?证明你的结论.类型6 旋转型全等问题:图中若有边相等,可用旋转做实验例6.△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF.(1)观察猜想:如图①,当点D 在线段BC 上时,①BC 与CF 的位置关系为:________.②BC ,CD ,CF 之间的数量关系为:___________;(将结论直接写在横线上)(2)数学思考:如图Z 3-25②,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸:如图Z 3-25③,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE.若已知AB=2 2,CD =14BC ,请求出GE 的长.针对训练:1.在四边形ABCD 中,∠B +∠D=180°,对角线AC 平分∠BAD.(1)如图①,若∠DAB=120°,且∠B=90°,试探究边AD 、AB 与对角线AC 的数量关系并说明理由.(2)如图②,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.(3)如图③,若∠DAB=90°,探究边AD 、AB 与对角线AC 的数量关系并说明理由.2.如图①,在正方形ABCD中,点E为边BC上一点,将△ABE沿AE翻折得△AHE,延长EH交边CD于F,连接AF.(1)求证:∠EAF=45°;(2)延长AB,AD,如图②,射线AE、AF分别交正方形两个外角的平分线于M、N,连接MN,若以BM、DN、MN为三边围成三角形,试猜想三角形的形状,并证明你的结论.3.如图①,在正方形ABCD内有一点P,PA=5,PB=2,PC=1,求∠BPC的度数.【分析问题】根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图Z3-28②),然后连接PP′.(1)请你通过计算求出图Z3-28②中∠BPC的度数;(2)如图③,若在正六边形ABCDEF内有一点P,且PA=2 13,PB=4,PC=2.请求出∠BPC的度数.重庆中考几何题分类汇编答案例1. 证明:(1)∵AB=AC ,∴∠ABC =∠ACB.∵∠MBQ +∠ABC=180°,∠ACB +∠PCN=180°,∴∠MBQ =∠PCN.在△QBM 和△PCN 中,⎩⎪⎨⎪⎧QB =PC ,∠MBQ =∠PCN,BM =CN ,∴△QBM ≌△PCN(SAS).∴MQ=NP.(2)过M 作MG∥AC 交BC 于G ,∵MG ∥AC ,∴∠MGB =∠ACB,∠MGC =∠PCN,∵由(1)知,∠ABC =∠ACB,∴∠ABC =∠MGB,∴MB =MG ,∵MB =CN ,∴MG =CN.在△MGP 和△NCP 中,⎩⎪⎨⎪⎧∠MPG=∠CPN,∠MGC =∠PC N ,MG =NC ,∴△MGP ≌△NCP(AAS).∴PG =CP ,∴CG =CP +PG ,即CG =2CP.∵CM 平分∠ACB,∴∠BCM =∠MCA,∵MG ∥AC ,∴∠MCA =∠GMC,∴∠BCM =∠GMC,∴MG =CG ,∵MG =CN ,∴CN =CG ,∴CN =2CP.针对训练1. 解:(1)∵AC⊥BC,∴∠ACB =90°,又∵AC=CF ,∴∠AFC ∠ABC =35°,∴∠EAF =10°;(2)证明:方法1:取CF 的中点M ,连接EM 、AM ,∵CE ⊥EF ,∴EM =CM =FM =12CF , 又∵AC=AE ,∴AM 为EC 的中垂线,∴∠CAM +∠ACE=90°,又∵∠ECF+∠ACE=90°,∴∠CAM =∠FCE,又∵∠CEF=∠ACM=90°,∴△ACM ∽△CEF ,∴AC CM =CE EF,又∵CF=AC =2CM ,∴AC CM =CE EF =21,即CE =2EF ; 方法2:延长FE 至M ,使EF =EM ,连接CM ,∵CE ⊥EF ,∴△CMF 为等腰三角形,又∵AC=AE =CF ,且∠ACE=∠CFE(易证),∴△CMF ≌△CEA ,∴FM =CE =2EF.2. 解:(1)如图①,在AB 上取一点M ,使得BM =ME ,连接ME.在Rt △ABE 中,∵OB =OE ,∴BE =2OA =2,∵MB =ME ,∴∠MBE =∠MEB=15°,∴∠AME =∠MBE+∠MEB=30°,设AE =x ,则ME =BM =2x ,AM =3x ,∵AB 2+AE 2=BE 2,∴(2x +3x)2+x 2=22,∴x =6-22(负根舍弃),∴AB =AC =(2+ 3)·6-22, ∴BC =2AB =3+1.(2)证明:如图②,作CP⊥AC,交AD 的延长线于P ,GM ⊥AC 于M.∵BE ⊥AP ,∴∠AHB =90°,∴∠ABH +∠BAH=90°,又∵AB=AC ,∠BAE =∠ACP=90°,∴△ABE ≌△CAP ,∴AE =CP =CF ,∠AEB =∠P,在△DCF 和△DCP 中,⎩⎪⎨⎪⎧CD =CD ,∠DCF =∠DCP,CF =CP ,∴△DCF ≌△DCP ,∴∠DFC =∠P,∴∠GFE =∠GEF,∴GE =GF ,∵GM ⊥EF ,∴FM =ME ,∵AE =CF ,∴AF =CE ,∴AM =CM ,在△GAH 和△GAM 中,⎩⎪⎨⎪⎧∠GAH=∠GAM,∠AHG =∠AMG,AG =AG ,∴△AGH ≌△AGM ,∴AH =AM =CM =12AC.3. 解:(1)∵AB=4,∴AC =AB =4.∵CD =1,∴AD =AC -CD =3.∵在Rt △ABD 中,∠BAC =90°,∴BD =AB 2+AD 2=5,∵S △ABD =12AB·AD=12AE·BD,∴AE =2.4. (2)证明:如图,在线段EB 上截取EH =AE ,并连接AH.∵AE ⊥BD ,EH =AE ,∴AH =2AE.∵BE =AE +AG ,∴BH =BE -HE =AG.∵∠BAD =∠BEA=90°,∴∠ABE +∠BAE=∠CAG+∠BAE=90°,∴∠ABE =∠CA G.∵BA =AC ,∴△ABH ≌△CAG ,∴CG =AH =2AE.4. 解:(1)∵∠BAC=90°,AB =AC ,D 是斜边BC 的中点,∴∠ADC =90°,∠ACD =45°.在Rt △ADC 中,AC =AD÷sin45°=2 3.∵E 是AC 的中点,∴CE =12AC = 3.∵将△CDE 沿CD 翻折到△CDE′,∴CE ′=CE =3,∠ACE ′=90°.由勾股定理,得AE′=CE′2+AC 2=15.(2)证明:如图,过B 作AE′的垂线交AD 于点G ,交AC 于点H.∵∠ABH +∠BAF=90°,∠CAF +∠BAF=90°,∴∠ABH =∠CAF.又∵AB=AC ,∠BAH =∠ACE′=90°,∴△ABH ≌△CAE ′.∴AH =CE′=CE ,∵CE =13AC ,∴AH =HE =CE. ∵D 是BC 中点,∴DE ∥BH ,∴G 是AD 中点.在△ABG 和△CAF 中:AB =AC ,∠BAD =∠ACD=45°,∠ABH =∠CAF,∴△ABG ≌△CAF.∴AG =CF.∵AG =12AD ,∴CF =12AD =12CD.∴DF=CF.类型2 线段的和差:要证线段和与差,截长补短去实验例2:解:(1)3(2)证明:延长DN 到K ,使得NK =ME ,连接AK ,如图①,在△AME 和△ANK 中,⎩⎪⎨⎪⎧AM =AN ,∠2=∠3,ME =NK ,∴△AME ≌△ANK (SAS).∴AE =AK ,∠4=∠5,∴∠4+∠EAC =90°,∴∠5+∠EAC =90°,即∠EAK =90°,∵∠EAD =45°,∴∠KAD =∠EAK -∠EAD =90°-45°=45°∴∠EAD =∠KAD .在△EAD 和△KAD 中,⎩⎪⎨⎪⎧EA =KA ,∠EAD =∠KAD ,AD =AD ,∴△EAD ≌△KAD (SAS),∴ED =KD .∵DK =DN +KN ,∴ED =DN +KN ,又NK =ME ,∴ED =DN +ME .(3)证明:延长AE 到J ,使得EJ =AE ,连接JH ,JF.如图②,在△ABE 和△JHE 中,⎩⎪⎨⎪⎧AE =JE ,∠AEB =∠JEH,BE =HE ,∴△ABE ≌△JHE(SAS),∴JH =AB ,∠1=∠2,∵AB =AG ,∴JH =AG ,∵AE =EJ ,EF ⊥AJ ,∴AF =JF ,∴∠JAF =∠AJF=45°,即∠2+∠3=45°,∵∠BAC =90°,∴∠1+∠EAD+∠4=90°,∴∠1+∠4=90°-∠EAD,=90°-45°=45°,∵∠1=∠2,∴∠3=∠4,在△JHF 和△AGF 中,⎩⎪⎨⎪⎧JH =AG ,∠3=∠4,JF =AF ,∴△JHF ≌△AGF(SAS),∴FH =FG.针对训练:1. 解:(1)∵四边形ABCD 是平行四边形,∴AD =BC.∵BE =2EC ,设CE =x ,BE =2x ,∴BC =AD =AE =3x.又∵EG⊥AB,∴∠AEB =90°,∴AB 2=AE 2+BE 2,即13=9x 2+4x 2,∴x =1,∴AD =3x =3.(2)证明:如图,过C 作CH⊥AB 于H ,则四边形CHGF 为矩形.∴CF =HG ,∠CHB =90°,GF =CH.∵AE ⊥BC ,EG ⊥AB ,∴∠AEB =∠CHB=90°,∠BCH +∠B=90°,∠BAE +∠B=90°,∴∠BCH =∠BAE.又∵AE=BC ,∴△AGE ≌△CHB ,∴GE =BH ,AG =GF ,∴GE =BH =BG +GH =BG +CF.2. 解:(1)∵四边形ABCD 是正方形,BC =4,∴AB =AD =CD =BC =4,∠ADC =∠ABC=90°.∵在Rt △ABC 中,AC =AB 2+BC 2=4 2,∴AP =78AC =72 2, ∴S △ACP =12AP·CD=7 2.∵四边形ABCD 是正方形,∴AB =BC =DC ,∠ABC =∠BCD=∠ADC=90°.∵∠BCD =90°,CF ⊥CP ,∴∠1+∠DCF=∠2+∠DCF=90°,∴∠1=∠2,∵在△FBC 和△PDC 中,⎩⎪⎨⎪⎧∠FBC=∠3,BC =DC ,∠1=∠2,∴△FBC ≌△PDC(ASA),∴CF =CP ,∵CP -2FN =BM ,∴CF -FK =BM ,即CK =BM ,∵∠FBC =90°,BM ⊥CF ,∴∠1+∠NBC=∠4+∠NBC=90°,∴∠1=∠4,∵在△ABM 和△BCK 中,⎩⎪⎨⎪⎧AB =BC ,∠4=∠1,BM =CK ,∴△ABM ≌△BCK(SAS),∴∠7=∠6.∵BM ⊥CF ,NK =NF ,∴BF =BK ,∵BF =BK ,BM ⊥CF ,∴∠4=∠5,∴∠4+∠7=∠5+∠6,∵∠8=∠4+∠7,∴∠8=∠MBC,∴BC =解:方法二:如图②,延长BM 交AD 于点G ,过A 作AE⊥BG 于E先证△AEB≌△BNC(AAS),∴AE =BN ,又证△AEG≌△BNF(AAS),∴EG =NF ,再证四边形BCPG 为平行四边形,∴BG =CP ,∵CP -BM =2FN ,∴BG -BM =2EG ,∴MG =2EG ,∴点E 为MG 中点,∵AE ⊥MG ,EM =EG ,∴AM =AG ,∴∠3=∠4,∵∠2=∠3,∠1=∠4,∴∠1=∠2,∴BC =MC.3. 解:(1)∵∠EBG=20°,CB ⊥AE ,∴∠BEG =70o ,∠CBF =∠EBG=20°,∵四边形ABDE 是菱形,∴∠ABE =∠BEG=70°,∴∠ABG =50°,∵AB =BC ,∴∠FCB =25°,∴∠AFE =∠CBF+∠FCB=45°;(2)AE ,AF ,CF 之间的数量关系是AF 2+CF 2=2AE 2,证明如下:连接DF ,∵四边形ABDE 是菱形,∴AB =DB ,∠DBE =∠ABE,∴∠DBF =∠ABF,∵BF =BF ,∴△DBF ≌△ABF(SAS),∴DF =AF ,∠BDF =∠BAF,∵∠BCF =∠BAF,∴∠BCF =∠BDF,∵CB ⊥AE ,AE ∥DB ,∴DB ⊥CB ,∵CB =AB =BD ,∴△DBC 是等腰直角三角形,∴DC =2BD =2AE ,∵∠DPB =∠CPF,∴∠CFP =∠DBP=90°,∴DF 2+CF 2=DC 2,即有:AF 2+CF 2=2AE 2.类型3 倍长中线:三角形中有中线,延长中线等中线例3解:(1)设∠BEC =α,∠BDA =β,则∠C =180°-2α,∠A =180°-2β.∵在Rt △ABC 中,∠ABC =90°,∴∠A +∠C =90°,即180°-2α+180°-2β=90°,∴α+β=135°,∴∠EBD =45°.(2)证明:法一:如图①,延长BD 至点B′,使得DB′=DB ,连接FB′、GB′.在△GDB′和△CDB 中,⎩⎪⎨⎪⎧GD =CD ,∠GDB ′=∠CDB,B ′D =BD ,∴△GDB ′≌△CDB.∴GB ′=BC =BH ,∠GB ′D =∠CBD.∵FD ⊥BD ,BD =DB′,∴FB =FB′.∵∠FB ′G =45°-∠GB′D,∠HBF =90°-45°-∠CBD=45°-∠CBD,∴∠FB ′G =∠HBF.在△FHB 和△FGB′中,⎩⎪⎨⎪⎧HB =GB′,∠HBF =∠GB′F,BF =B′F,∴△FHB ≌△FGB ′,∴HF =GF.法二:如图②,延长FD 至点F ′,使得DF ′=DF ,连接BF ′.先证△DGF ≌△DCF ′,再证△BHF ≌△BCF ′,∴HF =GF .针对训练1. 证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC ,∠A =∠C .又∵∠1=∠2,∴△ABE ≌△CDG (ASA),∴AE =CG .∵G 为BC 中点,∴CG =12BC , ∴AE =CG =12BC =12AD ,∴E 是AD 中点.(2)如图,延长BE ,CD 交于点H.∵四边形ABCD 是平行四边形,∴AB 綊CD ,∴∠A =∠ADH,∠1=∠4,又∵∠1=∠2,∠3=∠2,∴∠1=∠2=∠3=∠4,∴FH =FB.由(1),E 是AD 中点,∴AE =DE ,∴△ABE ≌△DHE(AAS),∴AB =DH ,∴CD =AB =DH =DF +FH =DF +BF ,即CD =BF +DF.2. 证明:(1)在菱形ABCD 中,AB =BC =CD =AD ,∠ADF =∠ABE,∵∠DAE =∠BAF,∴∠DAE -∠EAF=∠BAF-∠EAF,即∠DAF=∠BAE.∴△DAF ≌△BAE ,∴BE =DF.又∵BC=CD ,∴CE =CF(2)如图,延长DG 交AB 于H ,连接EH ,∵G 为AF 中点,∴AG =GF.又∵∠DGF=∠AGH,∴△DGF ≌△HGA.∴DG =GH ,AH =DF.又∵AB=CD ,∴BH =CF.又∵AB∥CD,∠ABC =120°,∴∠C =60°.又∵CE =CF ,∴△CEF 为等边三角形,∴CF =EF ,∠CFE =60°,∴EF =BH ,∠DFE =∠ABC=120°.又∵BE=DF ,∴△EFD ≌△HBE ,∴HE =ED ,又∵HG=DG ,∴DG ⊥GE.3. 解:(1)MD=ME2)MD =3ME.理由如下:如图①,延长EM 交DA 于点F.∵BE ∥DA ,∴∠FAM =∠EBM.又∵AM=BM ,∠AMF =∠BME,∴△AMF ≌△BME ,∴AF =BE ,MF =ME.∵DA =DC ,∠ADC =60°,∴∠BED =∠ADC=60°,∠ACD =60°.∵∠ACB =90°,∴∠ECB =30°,∴∠EBC =30°,∴CE =BE ,∴AF =EC ,∴DF =DE ,∴DM ⊥EF ,DM 平分∠ADC,∴∠MDE =30°.在Rt △MDE 中,tan ∠MDE =ME MD =33. ∴MD =3ME.(3)如图②,延长EM 交DA 于点F ,∵BE ∥DA ,∴∠FAM =∠EBM,又∵AM=BM ,∠AMF =∠BME,∴△AMF ≌△BME ,∴AF =BE ,MF =ME.延长BE 交AC 于点N ,∴∠BNC =∠DAC.∵DA =DC ,∴∠DCA =∠DAC,∴∠BNC =∠DCA,∵∠ACB =90°,∴∠ECB =∠EBC,∴CE =BE ,∴AF =CE.∴DF =DE ,∴DM ⊥EF ,DM 平分∠ADC,∵∠ADC =α,∴∠MDE =α2. ∴在Rt △MDE 中,ME MD =tan ∠MDE =tan α2.4.解:(1)如图①,作EH ⊥BC 于点H .∵△ABC 是等边三角形,∴∠ACB =60°.∵CE 平分∠ACB ,∴∠ECH =12∠ACB =30°, ∵EC =4,∠ECH =30°,∴EH =2,HC =2 3.∵BC =6 3,∴BH =6 3-2 3=4 3.在Rt △BHE 中,BE 2=(4 3)2+22=52,∴BE =2 13.(2)如图②,延长DP 至M ,使DP =PM ,连接BM 、AM .在△PDE 和△PMB 中,⎩⎪⎨⎪⎧PD =PM ,∠EPD =∠BPM ,PE =PB ,∴△PDE ≌△PMB (SAS).∴BM =DE ,∠1=∠2.∴BM ∥DE .∴∠MBD +∠BDE =180°.∵CE 平分∠ACB ,DE =CD ,∴∠BDE =30°+30°=60°.∴∠MBD =120°.∵△ABC 是等边三角形,∴∠ABC =60°,∴∠3=60°.∵BM =DE ,DE =CD ,∴BM =CD .在△ABM 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠3=∠ACD ,BM =CD ,∴△ABM ≌△ACD (SAS).∴AD =AM ,∠4=∠5.∵PD =PM ,∴AP ⊥PD .∵∠4=∠5,∠BAD +∠5=60°,∴∠4+∠BAD =60°,即∠MAD =60°.∴∠PAD =12∠MAD =30°.∵在Rt △APD 中,tan30°=PD AP,∴AP =3PD .(3)第(2)问中的结论成立,理由如下:如图③,延长DP 至N ,使DP =PN ,连接BN 、AN ,取BE 、AC 交于点O.在△PDE 和△PNB 中,⎩⎪⎨⎪⎧PD =PN ,∠EPD =∠BPN,PE =PB ,∴△PDE ≌△PNB(SAS).∴BN =DE ,∠1=∠2.∵DE =CD ,∴BN =CD.∵∠AOB =∠EOC,∴∠1+∠3+∠BAO=∠2+∠4+∠DEC+∠DCE.∵∠BAO =60°,∠DEC =∠DCE=30°,∴∠1+∠3=∠2+∠4,∴∠3=∠4.在△ABN 和△ACD 中,⎩⎪⎨⎪⎧AB =AC ,∠3=∠4,BN =CD ,∴△ABN ≌△ACD(SAS).∴∠5=∠6,AN =AD.∵PD =PN ,∴AP ⊥PD.∵∠NAC +∠5=60°,∴∠NAC +∠6=60°,即∠NAD=60°.∴∠PAD =12∠NAD=30°, ∵在Rt △APD 中,tan ∠PAD =PD AP,∴AP =3PD.5. 解:(1)∵∠ADB =90°,∠BAD =30°,AD =6 3,∴cos ∠BAD =AD AB ,∴32=6 3AB,∴AB =12. 又∵AB =AC ,∴AC =12,∴PM 为△ABC 的中位线,∴PM =12AC =6.(2)证明:方法一:如图①,在截取ED 上截取EQ =PD ,∵∠ADB =90°,∴∠1+∠2=90°,又∵AD=AE ,∴∠2=∠3,又∵∠3+∠4=90°,∴∠1=∠4.在△BDP 和△CEQ 中,PD =QE ,∠1=∠4,BD =CE ,∴△BDP ≌△CEQ.∴BP =CQ ,∠DBP =∠QCE,又∵∠5=∠1+∠DBP,∠6=∠4+∠QCE,∴∠5=∠6,∴PC =CQ ,∴BP =CP.方法二:如图②,过点B 作EP 的垂线交EP 的延长线于点M ,过C 点作EP EP 于点N.∵∠ADB =90°,∴∠1+∠2=90°,又∵AD=AE ,∴∠2=∠3,又∵∠3+∠4=90°,∴∠1=∠4,在△BMD 和△CNE 中,∠1=∠4,∠BMD =∠CNE=90°,BD =CE ,∴△BMD ≌△CNE.∴BM =CN.在△BMP 和△CNP 中,∠5=∠6,∠BMP =∠CNP,BM =CN ,∴△BMP≌△CNP,∴BP =CP.方法三:如图③,过点B 作BM ∥CE 交EP 的延长线于点M .略证△BMP ≌△CEP ,∴BP =CP .(3)BF 2+FC 2=2AD 2.类型4 中位线:三角形中两中点,连接则成中位线例4: 解:(1)PM=PN;PM ⊥PN(2)△PMN 为等腰直角三角形,理由如下:由题意知△ABC 和△ADE 均为等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE=90°,∴∠BAD +∠DAC=∠CAE+∠DAC,∴∠BAD =∠CAE,∴△BAD ≌△CAE ,∴∠ABD =∠ACE,BD =CE.又∵M、P 、N 分别是DE 、CD 、BC 的中点,∴PM 是△CDE 的中位线,∴PM ∥CE 且PM =12CE ,∠MPD =∠ECD=∠ACD+∠ACE. 同理,PN ∥BD 且PN =12BD ,∠DBC =∠PNC, 又∵BD=CE ,∠ABD =∠ACE,∴PM =PN ,∴∠MPN =∠MPD+∠DPN=∠ECD +∠DCN+∠CNP=∠ACD+∠ACE+∠DCN+∠CBD=∠ACD+∠DCN+∠ABD+∠CBD=∠ACB+∠ABC=90°,∴PM ⊥PN ,∴△PMN 为等腰直角三角形;(3)△PMN 面积的最大值为492.提示:在旋转的过程中,由(2)中的结论知△PMN 为等腰直角三角形,S △PMN =12PN 2=18BD 2,当S △PMN 有最大值时,则BD 的值最大,由三角形三边关系可推断出当B 、A 、D 三点共线时,BD的值最大,其最大值为14,此时S △PMN =12PN 2=18BD 2=18×14×14=492.针对训练:1. 解:(1)证明:延长DA 交BE 于G 点.∵∠BAE +∠CAD =180°,即∠EAG +∠GAB +∠CAD =180°,∵∠GAB +∠BAC +∠CAD =180°,∴∠EAG =∠CAB .∵∠EAG =∠AED +∠ADE ,∴∠CAB =∠AED +∠ADE .(2)证明:如图①,过E 点作DA 延长线的垂线,垂足为H .∴∠AHE =∠ACB =90°,由(1)可知,∠EAH =∠BAC ,又∵AE =AB ,∴△AHE ≌△ACB ,∴EH =BC ,AH =AC .∵AC =AD ,∴AH =AD .∵∠EHA =∠FAD =90°,∴AF ∥EH .∵A 为DH 中点,∴AF 为△DHE 中位线,∴EH =2AF ,∴BC =2AF .(3)成立.证明如下:如图②,延长DA 至M 点,使AM =DA ,连接EM ,∵∠BAE +∠CAD =180°,∠CAD +∠CAM =180°,∴∠BAE =∠CAM ,∴∠BAE +∠CAC =∠CAM +∠EAC ,即∠BAC =∠CAM .∵AM =AD ,AD =AC ,∴AM =AC .又∵AB =AE ,∠BAC =∠EAM ,∴△BAC ≌△EAM ,∴BC =EM .∵F 、A 分别为DE 、DM 中点,∴AF 为△DEM 中位线,∴EM =2AF ,∴BC =2AF .2. 解:(1)证明:∵∠BAC+∠EAD=180°,∠BAE =90°,∴∠DAC =90°,在△ABE 与△ACD 中,AE =AD ,∠BAE =∠CAD=90°,AB =AC ,∴△ABE ≌△ACD(SAS),∴CD =BE , ∵在Rt △ABE 中,F 为BE 的中点,∴BE =2AF ,∴CD =2AF.(2)成立,证明:如图,延长EA 交BC 于G ,在AG 上截取AH =AD ,∵∠BAC +∠EAD=180°,∴∠EAB +∠DAC=180°,∵∠EAB +∠BAH=180°,∴∠DAC =∠BAH,在△ABH 与△ACD 中,AH =AD ,∠BAH =∠CAD,AB =AC ,∴△ABH ≌△ACD(SAS),∴BH =DC ,∵AD =AE ,AH =AD ,∴AE =AH ,∵EF =FB ,∴BH =2AF ,∴CD =2AF.3. 解:(1)证明:∵AB=AC ,∴∠ABD =∠ACD,∵AE =AD ,∴∠ADE =∠AED,∵∠BAD +∠ABD=∠ADE+∠EDC,∠EDC +∠ACD=∠AED ,∴∠BAD =2∠EDC,∵∠ABF =2∠EDC,∴∠BAD =∠ABF,∴△ABF 是等腰三角形;(2)方法一:如图①,延长CA 至点H ,使AG =AH ,连接BH ,∵点N 是BG 的中点,∴AN =12BH , ∵∠BAD =∠ABF,∠DAC =∠CBG,∴∠CAB =∠CBA,∴△ABC 是等边三角形.∴AB =BC =AC ,∠BAC =∠BCA=60°,∵GM =AB ,AB =AC ,∴CM =AG ,∴AH =CM ,在△BAH 和△BCM 中,⎩⎪⎨⎪⎧AB =BC ,∠BAH =∠BCM=120°,AH =CM ,∴△BAH ≌△BCM(SAS),∴BH =BM ,∴AN =12BM , 方法二:如图②,延长AN 至K ,使NK =AN ,连接KB ,同方法一,先证△ABC 是等边三角形,再证△ANG ≌△KNB (SAS),所以BK =AG =CM ,然后可以证得∠ABK =∠BCN =120°,最后证△ABK ≌△BCN (SAS),所以BM =AK =2AN .类型5 角的和差倍分例5:解:(1)如图,过点P 作PG⊥EF 于G.∵PE =PF =6,EF =6 3,∴FG =EG =3 3,∠FPG =∠EPG=12∠EPF. 在Rt △FPG 中,sin ∠FPG =FG PF =3 36=32. ∴∠FPG =60°,∴∠EPF =2∠FPG=120°.(2)如图,作PM ⊥AB 于M ,PN ⊥AD 于N .∵AC 为菱形ABCD 的对角线,∴∠DAC =∠BAC ,AM =AN ,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴NF =ME .又∵AP =10,∠PAM =12∠DAB =30°, ∴AM =AN =AP cos30°=10×32=5 3. ∴AE +AF =(AM +ME )+(AN -NF )=AM +AN =10 3.针对训练:1. 证明:如图,过D 作DE ⊥AB 于E ,过D 作DF ⊥AC 于F ,∵DA 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵∠B +∠ACD =180°,∠ACD +∠FCD =180°,∴∠B =∠FCD ,在△DFC 和△DEB 中,⎩⎪⎨⎪⎧∠F =∠DEB ,∠FCD =∠B ,DF =DB ,∴△DFC ≌△DEB ,∴DC =DB .2. 解:(1)∵AC=AB =4,且CD =1,∴AD =AC -CD =3.在Rt △ABD 中,∠BAD =90°,∴BD =AB 2+AD 2=5,∵S △ABD =12AB·AD=12AE·BD, ∴AE =2.4.(2)证明:如图,取BC 的中点M ,连接AM 交BD 于点N .∵∠BAC =90°,AB =AC ,点M 为BC 的中点,∴AM =BM =CM ,AM ⊥BC ,∠NAD =∠FCP =45°,∴∠AMF =∠BMN =90°.∵AE ⊥BD ,∴∠MAF +∠ANE =∠MBN +∠BNM =90°,又∠ANE =∠BNM ,∴∠MAF =∠MBN ,∴△AMF ≌△BMN ,∴MF =MN ,∴AM -MN =CM -MF ,即AN =CF .∵AP =CD ,∴AC -CD =AC -AP ,即AD =CP .∴△ADN ≌△CPF ,∴∠ADB =∠CPF .3. 解:(1)∵AB =BD ,∠BAD =45°,∴∠BDA =45°,即∠ABD =90°.∵四边形ABCD 是平行四边形,∴当E 、C 重合时,BF =12BD =12AB . ∵在Rt △ABF 中,AB 2+BF 2=AF 2,∴(2BF )2+BF 2=(5)2,∴BF =1,AB =2.在Rt △ABD 中,AD =AB 2+BD 2=2AB 2=2 2.(2)证明:如图,在AF 上截取AK =HD ,连接BK.∵∠AFD =∠ABF+∠2=∠FGD+∠3且∠ABF=∠FGD=90°,∴∠2=∠3.在△ABK 与△DBH 中,⎩⎪⎨⎪⎧AB =BD ,∠2=∠3,AK =HD ,∴△ABK ≌△DBH ,∴BK =BH ,∠6=∠5.∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠5=∠4=45°,∴∠6=∠5=45°,∴∠7=∠ABD-∠6=45°=∠5.在△BFK 与△BFH 中,⎩⎪⎨⎪⎧BK =BH ,∠7=∠5,BF =BF ,∴△BFK ≌△BFH.∴∠BFK =∠BFH,即∠AFB=∠HFB.4. 解:(1)证明:由折叠知∠EMN=∠ABC=90°,BE =EM ,∴∠EMB =∠EBM,∴∠EMN -∠EMB=∠ABC-∠EBM,即∠BMP=∠MBC.∵在正方形ABCD 中,AD ∥BC ,∴∠AMB =∠MBC,∴∠AMB =∠BMP,∴BM 是∠AMP 的平分线.(2)△PDM 的周长没有发生变化.证明如下:如图,过B 作BQ ⊥MP∵∠A =90°,且由(1)知BM 是∠AMP 的平分线,∴BA =BQ ,∵∠A =∠MQB =90°,∠AMB =∠BMP ,MB =MB ,∴△AMB ≌△QMB (AAS).∴MA =MQ .∵BA =BC ,∴BQ =BC ,又∵∠BQP =90°=∠C ,BP =BP ,∴Rt △BPC ≌Rt △BPQ (HL).∴PC =PQ ,∴△PDM 的周长=MD +MP +DP =MD +MQ +QP +PD=MD +MA +PC +PD =AD +DC =2AD .∴△PDM 的周长没有发生变化.类型6 旋转型全等问题:图中若有边相等,可用旋转做实验例6:解:(1)①∵四边形ADEF 是正方形,∴AD =AF ,AB =AC ,∵∠BAC =∠DAF=90°,∴∠BAD =∠CAF,∴△DAB ≌△FAC ,∴∠B =∠ACF,∴∠ACB +∠ACF=90°,即CF⊥BC;②∵△DAB ≌△FAC ,∴CF =BD ,∵BC =BD +CD ,∴BC =CF +CD.(2)结论①成立,结论②不成立.∵四边形ADEF 是正方形,∴AD =AF ,AB =AC.∵∠BAC =∠DAF=90°,∴∠BAD =∠CAF,∴△DAB ≌△FAC ,∴∠ABD =∠ACF,CF =BD ,∴∠BCF =∠ACF-∠ACB=∠ABD-∠ACB=90°,即CF⊥BC;∵BC=CD -BD ,∴BC =CD -CF.(3)如图,过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于N ,∵∠BAC =90°,AB =AC ,∴BC =2AB =4,AH =CH =12BC =2,∴CD =14BC =1,∴DH =3,同(2)证得△BAD ≌△CAF , ∴∠ABD =∠ACF =45°,∴∠BCF =∠ACB +∠ACF =90°,∴BC ⊥CF ,CF =BD =5.∵四边形ADEF 是正方形,∴AD =DE ,∠ADE =90°,∵BC ⊥CF ,EM ⊥BD ,EN ⊥CF ,∴四边形CMEN 是矩形,∴NE =CM ,EM =CN ,∵∠AHD =∠ADE =∠EMD =90°,∴∠ADH +∠EDM =∠EDM +∠DEM =90°,∴∠ADH =∠DEM ,∴△ADH ≌△DEM ,∴EM =DH =3,DM =AH =2,∴CN =EM =3,EN =CM =3,∵∠ABC =45°,∴∠BGC =45°,∴△BCG 是等腰直角三角形,∴CG =BC =4,∴GN =1,∴EG =GN 2+EN 2=10.针对训练:1. 解:(1)AC =AD +AB .证明如下:∵∠B +∠D =180°,∠B =90°,∴∠D =90°.∵∠DAB =120°,AC 平分∠DAB ,∴∠DAC =∠BAC =60°,∵∠B =90°,∴AB =12AC , 同理AD =12AC . ∴AC =AD +AB .(2)(1)中的结论成立,理由如下:如图①,以C 为顶点,AC 为一边作∠ACE=60°,∠ACE 的另一边交AB 的延长线于点E ,∵∠BAC =60°,∴△AEC 为等边三角形,∴AC =AE =CE ,∠E =60°,∵∠ABC +∠D=180°,∠DAB =120°,∴∠DCB =60°,∴∠DCA =∠ECB.在△DAC 和△BEC 中,⎩⎪⎨⎪⎧∠DAC=∠E,AC =CE ,∠DCA =∠BCE,∴△DAC ≌△BEC ,∴AD =BE ,∴AC =AE =AD +AB.(3)AD +AB =2AC.理由如下:如图②,过点C 作CE⊥AC 交AB 的延长线于点E∵∠ABC +∠D=180°,∠DAB =90°,∴∠DCB =90°,∵∠ACE =90°,∴∠DCA =∠BCE,又∵AC 平分∠DAB,∴∠CAB =45°,∴∠E =45°,∴AC =CE.∴△CDA ≌△CBE ,∴AD =BE ,∴AD +AB =AE.∵在Rt △ACE 中,∠CAB =45°,∴AE =AC cos45°=2AC , ∴AD +AB =2AC.2. 解:(1)证明:∵四边形ABCD 是正方形,∴∠B =∠D=∠BAD=90°,AB =AD ,∵△ABE 沿AE 翻折得到△AHE,∴△ABE ≌△AHE ,∴AH =AB =AD ,BE =EH ,∠AHE =∠AHF=∠B=∠D=90°.在Rt △AHF 和Rt △ADF 中,⎩⎪⎨⎪⎧AF =AF ,AH =AD , ∴Rt △AHF ≌Rt △ADF(HL),∴∠HAF =∠DAF,∴∠EAF =∠EAH+∠FAH=12∠BAH+12∠HAD=12∠BAD=45°,(2)以BM ,DN ,MN 为三边围成的三角形为直角三角形.证明如下:如图,过点A 作AH ⊥AN 并截取AH =AN ,连接BH 、HM ,∵∠1+∠BAN =90°,∠3+∠BAN =90°,∴∠1=∠3,在△ABH 和△ADN 中,⎩⎪⎨⎪⎧AB =AD ,∠1=∠3,AH =AN ,∴△ABH ≌△ADN (SAS),∴BH =DN ,∠HBA =∠NDA =135°,∵∠HAN =90°,∠MAN =45°,∴∠1+∠2=∠HAM =∠MAN =45°,在△AHM 和△ANM 中,⎩⎪⎨⎪⎧AH =AN ,∠HAM =∠MAN ,AM =AM ,∴△AHM ≌△ANM (SAS),∴HM =NM ,∴∠HBP =180°-∠HBA =180°-135°=45°,∴∠HBP +∠PBM =45°+45°=90°,∴△HBM 是直角三角形,∵HB =DN ,HM =MN ,∴以BM ,DN ,MN 为三边围成的三角形为直角三角形.3. 解:(1)如图①,将△PBC 绕点B 逆时针旋转90°得△P ′BA ,连接PP ′,则△AP ′B ≌△CPB , ∴P ′B =PB =2,P ′A =PC =1,∠1=∠2,∠AP ′B =∠BPC .∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =90°,∴∠2+∠3=90°,∴∠1+∠3=90°,即∠P ′BP =90°,∴∠BP ′P =45°.在Rt △P ′BP 中,由勾股定理,得PP ′2=4.∵P ′A =1,AP =5∴P ′A 2=1,AP 2=5,∴P ′A 2+PP ′2=AP 2,∴△P ′AP 是直角三角形,∴∠AP ′P =90°,∴∠AP ′B =45°+90°=135°,∴∠BPC =135°.(2)仿照【分析】中的思路,将△BPC 绕点B 逆时针旋转120°,得到了△BP′A,连接PP′,如图②. 则△PBC≌△P′BA,∴P ′B =PB =4,P ′A =PC =2,∠BPC =∠BP′A,∴△BPP ′为等腰三角形,∵∠ABC =120°,∴∠PBP ′=120°,∴∠BP ′P =30°,过点B 作BG⊥PP′于G ,则∠P′GB=90°,∴PP ′=2P ′G.∵P ′B =PB =4,∠BP ′P =30°,∴BG =2,∴P ′G =2 3.∴PP′=4 3,在△APP′中,∵PA=2 13,P′A=2,PP′=4 3,∴P′A2+P′P2=PA2,∴△PP′A是直角三角形,∴∠AP′P=90°,∴∠BPC=∠BP′A=∠PP′B+∠AP′P=30°+90°=120°.。

相关文档
最新文档