离散时间系统的时域特性分析实验报告
系统的时域实验报告

系统的时域实验报告系统的时域实验报告一、引言时域实验是系统动态特性研究中的重要手段之一。
通过对系统的输入和输出信号进行时域分析,可以揭示系统的动态响应规律,并对系统进行性能评估和优化设计。
本实验旨在通过对某一系统的时域实验研究,探索系统的动态特性和性能指标。
二、实验目的1. 了解时域分析的基本原理和方法;2. 掌握系统的时域响应测量技术;3. 研究系统的动态特性和性能指标。
三、实验装置与方法1. 实验装置:系统输入信号发生器、系统输出信号采集器、计算机数据处理软件等;2. 实验方法:根据实验要求,设置系统的输入信号,采集系统的输出信号,并通过计算机软件进行数据处理和分析。
四、实验步骤1. 系统建模:根据实际情况,对系统进行数学建模,得到系统的传递函数或状态空间模型;2. 实验准备:将系统输入信号发生器与系统输出信号采集器连接,设置合适的参数;3. 实验测量:根据实验要求,设置不同的输入信号,采集系统的输出信号;4. 数据处理:将采集到的数据导入计算机软件中,进行时域分析和性能指标计算;5. 结果分析:根据实验结果,分析系统的动态特性和性能指标,得出结论。
五、实验结果与分析根据实验所得数据,通过计算机软件进行时域分析和性能指标计算,得到系统的动态响应曲线和相关参数。
通过对曲线的观察和分析,可以得出以下结论:1. 系统的时间常数:通过观察系统的动态响应曲线,可以确定系统的时间常数,即系统从初始状态到达稳定状态所需的时间。
时间常数越小,系统的响应速度越快。
2. 系统的超调量:超调量是指系统响应的最大偏离量与稳态值之间的差值。
通过观察系统的动态响应曲线,可以测量出系统的超调量。
超调量越小,系统的稳定性越好。
3. 系统的峰值时间:峰值时间是指系统响应曲线达到最大值所需的时间。
通过观察系统的动态响应曲线,可以测量出系统的峰值时间。
峰值时间越小,系统的响应速度越快。
4. 系统的上升时间:上升时间是指系统响应曲线从初始状态到达稳定状态所需的时间。
离散时间系统时域特性分析实验总结报告(信号及系统)

南昌大学实验报告(信号与系统)学生姓名:学号:专业班级:通信实验类型:□验证□综合□设计□创新实验日期:2012.5.17 实验成绩:离散时间系统的时域特性分析一、实验项目名称: 离散时间系统的时域特性分析二、实验目的:线性时不变离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应序列可以刻画其时域特性。
本实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应系统的线性和时不变特性的理解。
三、实验基本原理一个离散时间系统是将输入序列变换成输出序列的一种运算。
若以T[·]表示这种运算,则一个离散时间系统可由图1-1来表示,即x(n) T[·] y(n)图1-1离散时间系统离散时间系统最重要的,最常用的是“线性时不变系统”。
1.线性系统4. 实验用matlab语言工具函数简介(1)产生N个元素矢量函数x=zeros(1,N)(2)计算系统的单位冲激响应h(n)的两种函数y=impz(b,a,N)功能:计算系统的激励响应序列的前N个取样点y=filter(b,a,x)功能:系统对输入进行滤波,如果输入为单位冲激序列δ(n),则输出y即为系统的单位冲激响应h(n).四、实验说明例1.1产生一个N=100的单位冲激序列。
>> N=100;>> u=[1 zeros(1,N-1)];>> Stem(0:N-1,u)>>例1.2产生一个长度为N=-100的单位阶跃响应>> N=100;>> s=[ones(1,N)];>> Stem(0:99,s);>> axis([0 100 0 2])例1.3产生一个正弦序列>> n=0:40;>> f=0.1;>> phase=0;>> A=1.5;>> arg=2*pi*f*n-phase; >> x=A*cos(arg);>> stem(n,x);>> axis([0 40 -2 2]); >> grid例1.4产生一个复指数序列>> c=-(1/12)+(pi/6)*i; >> k=2;>> n=0:40;>> x=k*exp(c*n);>> subplot(2,1,1);>> stem(n,imag(x)); >> subplot(2,1,2);>> stem(n,imag(x)); >> xlabel('时间序列n'); >> ylabel('信号幅度'); >> title('虚部');例1.5假设系统为y(n)-0.4y(n-1)+0.75y(n-2)=2.2403x(n)+2.4908x(n-1)+2.2403x(n-2),输入三个不同的序列x1(n),x2(n)和x9n)=ax1(n)+bx2(n),求y1(n),y2(n)和y(n),并判断此系统是否为线性系统。
系统时域分析实验报告

系统时域分析实验报告系统时域分析实验报告一、引言时域分析是电子工程中的重要内容之一,它通过对系统在时间上的响应进行观察和分析,可以帮助我们了解系统的动态特性。
本实验旨在通过对不同系统的时域分析,探讨系统的稳定性、阶数、零极点等特性。
二、实验目的1. 了解时域分析的基本概念和方法;2. 掌握系统的稳定性判断方法;3. 学习如何通过时域分析确定系统的阶数;4. 理解系统的零极点对系统响应的影响。
三、实验原理1. 系统的稳定性判断系统的稳定性是指当输入信号有限时,系统输出是否有界。
常用的判断方法有零极点判断法和频率响应判断法。
2. 系统的阶数确定系统的阶数是指系统传递函数中最高次幂的阶数。
通过观察系统的单位阶跃响应或单位冲激响应,可以确定系统的阶数。
3. 零极点对系统响应的影响系统的零点和极点决定了系统的传递特性。
零点是使系统增益为零的点,极点是使系统增益无穷大的点。
零点和极点的位置和数量决定了系统的稳定性、阶数和频率响应。
四、实验步骤1. 确定实验所用系统的传递函数;2. 绘制系统的单位阶跃响应曲线;3. 通过观察单位阶跃响应曲线,判断系统的稳定性;4. 根据单位阶跃响应曲线的特点,确定系统的阶数;5. 分析系统的零极点位置和数量对系统响应的影响。
五、实验结果与分析以某一系统为例,实验得到其单位阶跃响应曲线如下图所示。
[插入实验结果图]通过观察单位阶跃响应曲线,我们可以看到系统的输出在一定时间后趋于稳定,且没有出现振荡现象。
因此,可以判断该系统是稳定的。
根据单位阶跃响应曲线的特点,我们可以看到系统的输出在一定时间后达到了稳态值,并且没有超过该稳态值。
根据阶跃响应曲线的形状,我们可以判断该系统的阶数为一阶。
通过对系统的传递函数进行分析,我们可以确定系统的零点和极点的位置和数量。
进一步分析可以得出,系统的零点和极点的位置和数量对系统的稳定性、阶数和频率响应都有重要影响。
六、实验总结通过本次实验,我们了解了时域分析的基本概念和方法,掌握了系统的稳定性判断方法和阶数确定方法。
数字信号处理 实验作业:离散LSI系统的时域分析

实验2 离散LSI 系统的时域分析一、.实验目的:1、加深对离散系统的差分方程、单位脉冲响应、单位阶跃响应和卷积分析方法的理解。
2、初步了解用MA TLAB 语言进行离散时间系统时域分析的基本方法。
3、掌握求解离散时间系统的单位脉冲响应、单位阶跃响应、线性卷积以及差分方程的程序的编写方法,了解常用子函数的调用格式。
二、实验原理:1、离散LSI 系统的响应与激励由离散时间系统的时域分析方法可知,一个离散LSI 系统的响应与激励可以用如下框图表示:其输入、输出关系可用以下差分方程描述:[][]NMkk k k ay n k b x n m ==-=-∑∑2、用函数impz 和dstep 求解离散系统的单位脉冲响应和单位阶跃响应。
例2-1 已知描述某因果系统的差分方程为6y(n)+2y(n-2)=x(n)+3x(n-1)+3x(n-2)+x(n-3) 满足初始条件y(-1)=0,x(-1)=0,求系统的单位脉冲响应和单位阶跃响应。
解: 将y(n)项的系数a 0进行归一化,得到y(n)+1/3y(n-2)=1/6x(n)+1/2x(n-1)+1/2x(n-2)+1/6x(n-3)分析上式可知,这是一个3阶系统,列出其b k 和a k 系数: a 0=1, a ,1=0, a ,2=1/3, a ,3=0 b 0=1/6,b ,1=1/2, b ,2=1/2, b ,3=1/6程序清单如下: a=[1,0,1/3,0]; b=[1/6,1/2,1/2,1/6]; N=32; n=0:N-1; hn=impz(b,a,n); gn=dstep(b,a,n);subplot(1,2,1);stem(n,hn,'k');课程名称 数字信号处理 实验成绩 指导教师 ***实 验 报 告院系 班级学号 姓名 日期title('系统的单位序列响应'); ylabel('h(n)');xlabel('n');axis([0,N,1.1*min(hn),1.1*max(hn)]); subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n');axis([0,N,1.1*min(gn),1.1*max(gn)]); 程序运行结果如图2-1所示:102030系统的单位序列响应h (n )n1020300.20.30.40.50.60.70.80.911.11.2系统的单位阶跃响应g (n )n图2-13、用函数filtic 和filter 求解离散系统的单位序列响应和单位阶跃响应。
实验二离散时间系统的时域分析

武汉工程大学信号分析与处理实验一专业:通信02班学生姓名:李瑶华学号:1304200113完成时间:2021年7月27日实验二: 离散时间系统的时域分析一、实验目的1.在时域中仿真离散时间系统,进而理解离散时间系统对输入信号或延迟信号进行简单运算处理,生成具有所需特性的输出信号的方法。
2.仿真并理解线性与非线性、时变与时不变等离散时间系统。
3.掌握线性时不变系统的冲激响应的计算,并用计算机仿真实现。
4.仿真并理解线性时不变系统的级联、验证线性时不变系统的稳定特性。
二、实验设备计算机,MATLAB 语言环境。
三、实验基础理论1.系统的线性性质线性性质表现为系统满足线性叠加原理:若某一输入是由N 个信号的加权和组成的,则输出就是系统对这N 个信号中每一个的响应的相应加权和组成的。
设)(1n x 和)(2n x 分别作为系统的输入序列,其输出分别用)(1n y 和)(2n y 表示,即)]([)(,)]([)(2211n x T n y n x T n y ==若满足)()()]()([22112211n y a n y a n x a n x a T +=+则该系统服从线性叠加原理,或者称该系统为线性系统。
2.系统的时不变特性若系统的变换关系不随时间变化而变化,或者说系统的输出随输入的移位而相应移位但形状不变,则称该系统为时不变系统(或称为移不变系统)。
对时不变系统,若)]([)(n x T n y =,则)()]([m n y m n x T -=- 3.系统的因果性系统的因果性即系统的可实现性。
如果系统时刻的输出取决于时刻及时刻以前的输入,而和时刻以后的输入无关,则该系统是可实现的,是因果系统。
系统具有因果性的充分必要条件为0,0)(<=n n h4.系统的稳定性稳定系统是指有界输入产生有界输出(BIBO )的系统。
如果对于输入序列,存在一个不变的正有限值,对于所有值满足∞<≤M n x |)(|则称该输入序列是有界的。
离散时间系统的时域分析实验报告

3. clf; h=[-6 5 2 3 -2 0 1 0 5 -3 4 2 -1 -3 2]; %冲激 x=[2 4 -1 3 -5 2 0 -1 2 -1]; %输入序列 y=conv(h,x); n=0:23; subplot(2,1,1); stem(n,y);
4. clf; n=0:301; x=cos((0.5*pi/600)*n.*n+0*n); %计算输出序列 num1=[0.5 0.27 0.77]; y1=filter(num1,1,x);%系统#1 的输出 den2=[1 -0.35 0.46]; num2=[0.45 0.5 0.45]; y2=filter(num2,den2,x);%系统#2 的输出 %画出输入序列 subplot(3,1,1); plot(n,x); axis([0 300 -2 2]); ylabel('振幅'); title('系统的输入'); grid;
四、实验结果与分析
图一 图二
2
图三
图四
五、实验小结
通过这次实验,我熟悉 MATLAB 中产生信号和绘制信号的基本命令,学会 通过 MATLAB 仿真一些简单的离散时间系统,并研究了它们的时域特性。
经过了两次实验课,对于 MATLAB 的一些命令语句的格式熟悉多了。在完 成实验时比第一次更顺利了些。
subplot(3,1,3) d=d(2:42); stem(n,d);
2. clf; n=0:40; D=10; a=3.0; b=-2; x=a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n); xd=[zeros(1,D) x]; nd=0:length(xd)-1; y=(n.*x)+[0 x(1:40)]; yd=(nd.*xd)+[0 xd(1:length(xd)-1)]; d=y-yd(1+D:41+D);
时域离散信号实验报告(3篇)

第1篇一、实验目的1. 理解时域离散信号的基本概念和特性。
2. 掌握时域离散信号的表示方法。
3. 熟悉常用时域离散信号的产生方法。
4. 掌握时域离散信号的基本运算方法。
5. 通过MATLAB软件进行时域离散信号的仿真分析。
二、实验原理时域离散信号是指在时间轴上取离散值的一类信号。
这类信号在时间上不连续,但在数值上可以取到任意值。
时域离散信号在数字信号处理领域有着广泛的应用,如通信、图像处理、语音处理等。
时域离散信号的基本表示方法有:1. 序列表示法:用数学符号表示离散信号,如 \( x[n] \) 表示离散时间信号。
2. 图形表示法:用图形表示离散信号,如用折线图表示序列。
3. 时域波形图表示法:用波形图表示离散信号,如用MATLAB软件生成的波形图。
常用时域离散信号的产生方法包括:1. 单位阶跃信号:表示信号在某个时刻发生突变。
2. 单位冲激信号:表示信号在某个时刻发生瞬时脉冲。
3. 正弦信号:表示信号在时间上呈现正弦波形。
4. 矩形脉冲信号:表示信号在时间上呈现矩形波形。
时域离散信号的基本运算方法包括:1. 加法:将两个离散信号相加。
2. 乘法:将两个离散信号相乘。
3. 卷积:将一个离散信号与另一个离散信号的移位序列进行乘法运算。
4. 反褶:将离散信号沿时间轴翻转。
三、实验内容1. 实验一:时域离散信号的表示方法(1)使用序列表示法表示以下信号:- 单位阶跃信号:\( u[n] \)- 单位冲激信号:\( \delta[n] \)- 正弦信号:\( \sin(2\pi f_0 n) \)- 矩形脉冲信号:\( \text{rect}(n) \)(2)使用图形表示法绘制以上信号。
2. 实验二:时域离散信号的产生方法(1)使用MATLAB软件生成以下信号:- 单位阶跃信号- 单位冲激信号- 正弦信号(频率为1Hz)- 矩形脉冲信号(宽度为2)(2)观察并分析信号的波形。
3. 实验三:时域离散信号的基本运算(1)使用MATLAB软件对以下信号进行加法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(2)使用MATLAB软件对以下信号进行乘法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(3)使用MATLAB软件对以下信号进行卷积运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(4)使用MATLAB软件对以下信号进行反褶运算:- \( u[n] \)4. 实验四:时域离散信号的仿真分析(1)使用MATLAB软件对以下系统进行时域分析:- 系统函数:\( H(z) = \frac{1}{1 - 0.5z^{-1}} \)(2)观察并分析系统的单位冲激响应。
数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号、系统与信号处理实验报告实验一、离散时间系统的时域特性分析
姓名:
学号:
班级:
专业:
一.实验目的
线性时不变(LTI)离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应列可以刻画时域特性。
本次实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应和系统的线性和时不变性的理解。
二.基本原理
一个离散时间系统是将输入序列变换成输出序列的一种运算。
离散时间系统中最重要、最常用的是“线性时不变系统”。
1.线性系统
满足叠加原理的系统称为线性系统,即若某一输入是由N个信号的加权和组成的,则输出就是系统对这几个信号中每一个输入的响应的加权和。
即
那么当且仅当系统同时满足
和
时,系统是线性的。
在证明一个系统是线性系统时,必须证明此系统同时满足可加性和比例性,而且信号以及任何比例系数都可以是复数。
2.时不变系统
系统的运算关系在整个运算过程中不随时间(也即序列的先后)而变化,这种系统称为时不变系统(或称移不变系统)。
若输入的输出为,则将输入序列移动任意位后,其输出序列除了跟着位移外,数值应该保持不变,即
则
满足以上关系的系统称为时不变系统。
3.常系数线性差分方程
线性时不变离散系统的输入、输出关系可用以下常系数线性差分方程描述:
当输入为单位冲激序列时,输出即为系统的单位冲激响应。
当时,是
有限长度的,称系统为有限长单位冲激响应(FIR)系统;反之,则称系统为无限长单位冲激响应(IIR)系统。
三.实验内容及实验结果
1.实验内容
考虑如下差分方程描述的两个离散时间系统:
系统1:
系统2:
输入:
(1)编程求上述两个系统的输出,并画出系统的输入与输出波形。
(2)编程求上述两个系统的冲激响应序列,并画出波形。
(3)若系统的初始状态为零,判断系统2是否为时不变的?是否为线性的?
2.实验结果
(1)编程求上述两个系统的输出和冲激响应序列,并画出系统的输入、输出与冲激响应波形。
clf;
n=0:300;
x=cos((20*pi*n)/256)+cos((200*pi*n)/256);
num1=[0.5 0.27 0.77];
den1=[1];
num2=[0.45 0.5 0.45];
den2=[1 -0.53 0.46];
y1=filter(num1,den1,x);
y2=filter(num2,den2,x);
subplot(3,1,1);
stem(n,x);
xlabel('时间信号');
ylabel('信号幅度');
title('输入信号');
subplot(3,1,2);
stem(y1);
xlabel('时间信号n');
ylabel('信号幅度');
title('输出信号');
subplot(3,1,3);
stem(y2);
xlabel('时间序号n ');
ylabel('信号幅度');
title('冲激响应序列');
(2)
N=40;
num1=[0.5 0.27 0.77];
den1=[1];
num2=[0.45 0.5 0.45];
den2=[1 -0.53 0.46];
y1=impz(num1,den1,N);
y2=impz(num2,den2,N);
subplot(2,1,1);
stem(y1);
xlabel('时间信号n ');
ylabel('信号幅度');
title('³冲激响应');
subplot(2,1,2);
stem(y2);
xlabel('时间信号n ');
ylabel('信号幅度');
title('³冲激响应');
1.应用叠加原理验证系统2是否为线性系统:
clear all
clc
n = 0 : 1 : 299;
x1 = cos(20 * pi * n / 256);
x2 = cos(200 * pi * n / 256);
x = x1 + x2;
num = [0.45 0.5 0.45];
den = [1 -0.53 0.46];
y1 = filter(num, den, x1);
y2 = filter(num, den, x2);
y= filter(num, den, x);
yt = y1 + y2;
figure
subplot(2, 1, 1);
stem(n, y, 'g');
xlabel('时间信号n');
ylabel('信号幅度');
axis([0 100 -2 2]);
grid;
subplot(2, 1, 2);
stem(n, yt, 'r');
xlabel('时间信号n');
ylabel('信号幅度');
axis([0 100 -2 2]);
grid;
2.应用时延差值来判断系统2是否为时不变系统。
clear all
clc
n = 0 : 299;
D = 10;
x = cos(20 * pi * n / 256) + cos(200 * pi * n / 256);
xd = [zeros(1, D) x]; %生成新序列xd = x(n - D),延时D个单位num = [0.45 0.5 0.45];
den = [1 -0.53 0.46];
ic = [0 0]; %初始化
y = filter(num, den, x, ic);
yd = filter(num, den, xd, ic);
N = length(y);
d = y-yd(1+D : N+D);
figure
subplot(3, 1, 1);
stem(n, y);
ylabel('信号幅度');
title('输出y[n]');
grid;
subplot(3, 1, 2);
stem(n, yd(1 : length(yd) - D));
ylabel('信号幅度');
title('由于输入延时而产生的输出yd[n]');
grid;
subplot(3, 1, 3);
stem(n, d);
xlabel('时间序号n');
ylabel('信号幅度');
title('差值信号');
grid;
实验总结
通过本次实验,我对于利用matlab来求解关于离散时间系统的方法有了初步的掌握。
不仅如此,我清楚的认识到了线性时不变系统的性质:线性性和时不变性。
在学会使用matlab展现系统的性质后,我对以后学习离散时间系统有了更多的信心。