实验一 离散系统时域分析

合集下载

1实验一 离散系统的时域分析

1实验一  离散系统的时域分析

stem(t1,f1)
stem(t2,f2)
Subplot(3,1,3);
stem(ny,y)
四、实验报告要求
1、简述实验目的和实验原理。
2、用笔算求出你选定的序列x(n)、h(n)的
卷积结果并与计算机计算结果相比较。
stem(n,real_x) stem(n,image_x) stem(n,mag_x) stem(n,phase_x)
subplot(2,2,1); subplot(2,2,2); subplot(2,2,3); subplot(2,2,4);
正、余弦序列
x(n) sin(0 n )
t
试求卷积C(t)=f1(t)*f2(t),并绘制出f1、f2、
及卷积以后的波形。
p=0.1;
t1= [0:p:1]; f1=t1.*(t1>0); t2= [-1:0.1:2]; f2=t2.*exp(-t2).*(t2>=0)+exp(t2).*(t2<0); [y,ny]=conv_m(f1,t1,f2,t2,p); Subplot(3,1,1); Subplot(3,1,2);
function % [y,ny]= conv-m(x,nx,h,nh,p)
信号处理的改进卷积程序 nyb=nx(1)+nh(1); nyc=nx(length(x))+nh(length(h));
ny=[nyb :p: nyc];
y=conv(x , h);
已知
f1 (t ) t (t )0 t 1 te , t 0 f 2 (t ) t 1 t 2 e , t 0
实验一

离散系统时域分析

离散系统时域分析

z = eTs = eT e jT
写成极坐标形式为
z = z e j = eT e jT s的实部只影响z的模,s的虚部只影响z的相角。
s平面与z平面的映射关系为
s平面
映射
z平面
0 右半平面 =0 虚轴 0 左半平面
z 1 单位园外
z =1 单位园周

cr
pr k
cr
pr k
cr cr e jr , cr cr e jr
cr
pr k

cr
1
pr
k 1

cr
e jr
pr ek jkr
cr e jr
p ek jkr r
c p e e k j(kr r )
j(kr r )
r
r
r(t)
+-
100 c(t) s(s+10)
解:由已知的G(s)可求出开环脉冲传递函数
10z(1 e10T ) G(z) (z 1)( z e10T )
闭环特征方程为
z2 + 3.5z + 0.5 = 0
z1 = 0.15 z2 = 3.73
因为 z2 1,所以该系统是不稳定的。
8.6 离散系统的时域分析
对于离散系统的z变换理论,如前所述,它仅限于采样值的分
析。对于离散系统的性能分析的讨论也只限于在采样点的值。然
而,当采样周期T 选择较大时,采样间隔中隐藏着振荡,可能反
映不出来,这造成实际连续信号和采样值变化规律不一致,会得
出一些不准确的分析结果。因此,必须注意采样周期T是否小于系
z 1 w 或 z w1

离散时间信号的时域分析实验报告

离散时间信号的时域分析实验报告

离散时间信号的时域分析实验报告实验报告:离散时间信号的时域分析一、实验目的本实验旨在通过MATLAB软件,对离散时间信号进行时域分析,包括信号的显示、基本运算(如加法、减法、乘法、反转等)、以及频域变换(如傅里叶变换)等,以加深对离散时间信号处理的基本概念和原理的理解。

二、实验原理离散时间信号是在时间轴上离散分布的信号,其数学表示为离散时间函数。

与连续时间信号不同,离散时间信号只能在特定的时间点取值。

离散时间信号的时域分析是研究信号的基本属性,包括幅度、时间、频率等。

通过时域分析,我们可以对信号进行各种基本运算和变换,以提取有用的信息。

三、实验步骤1.信号生成:首先,我们使用MATLAB生成两组简单的离散时间信号,一组为正弦波,另一组为方波。

我们将这些信号存储在数组中,以便后续分析和显示。

2.信号显示:利用MATLAB的绘图功能,将生成的信号在时域中显示出来。

这样,我们可以直观地观察信号的基本属性,包括幅度和时间关系。

3.基本运算:对生成的信号进行基本运算,包括加法、减法、乘法、反转等。

将这些运算的结果存储在新的数组中,并绘制出运算后的信号波形。

4.傅里叶变换:使用MATLAB的FFT(快速傅里叶变换)函数,将信号从时域变换到频域。

我们可以得到信号的频谱,进而分析信号的频率属性。

5.结果分析:对上述步骤得到的结果进行分析,包括比较基本运算前后的信号波形变化,以及傅里叶变换前后的频谱差异等。

四、实验结果1.信号显示:通过绘制图形,我们观察到正弦波和方波在时域中的波形特点。

正弦波呈现周期性的波形,方波则呈现明显的阶跃特性。

2.基本运算:通过对比基本运算前后的信号波形图,我们可以观察到信号经过加法、减法、乘法、反转等运算后,其波形发生相应的变化。

例如,两个信号相加后,其幅度和时间与原信号不同。

反转信号则使得波形在时间轴上反向。

3.傅里叶变换:通过FFT变换,我们将时域中的正弦波和方波转换到频域。

正弦波的频谱显示其频率为单一的直流分量,方波的频谱则显示其主要频率分量是直流分量和若干奇数倍的谐波分量。

数字信号处理 实验作业:离散LSI系统的时域分析

数字信号处理 实验作业:离散LSI系统的时域分析

实验2 离散LSI 系统的时域分析一、.实验目的:1、加深对离散系统的差分方程、单位脉冲响应、单位阶跃响应和卷积分析方法的理解。

2、初步了解用MA TLAB 语言进行离散时间系统时域分析的基本方法。

3、掌握求解离散时间系统的单位脉冲响应、单位阶跃响应、线性卷积以及差分方程的程序的编写方法,了解常用子函数的调用格式。

二、实验原理:1、离散LSI 系统的响应与激励由离散时间系统的时域分析方法可知,一个离散LSI 系统的响应与激励可以用如下框图表示:其输入、输出关系可用以下差分方程描述:[][]NMkk k k ay n k b x n m ==-=-∑∑2、用函数impz 和dstep 求解离散系统的单位脉冲响应和单位阶跃响应。

例2-1 已知描述某因果系统的差分方程为6y(n)+2y(n-2)=x(n)+3x(n-1)+3x(n-2)+x(n-3) 满足初始条件y(-1)=0,x(-1)=0,求系统的单位脉冲响应和单位阶跃响应。

解: 将y(n)项的系数a 0进行归一化,得到y(n)+1/3y(n-2)=1/6x(n)+1/2x(n-1)+1/2x(n-2)+1/6x(n-3)分析上式可知,这是一个3阶系统,列出其b k 和a k 系数: a 0=1, a ,1=0, a ,2=1/3, a ,3=0 b 0=1/6,b ,1=1/2, b ,2=1/2, b ,3=1/6程序清单如下: a=[1,0,1/3,0]; b=[1/6,1/2,1/2,1/6]; N=32; n=0:N-1; hn=impz(b,a,n); gn=dstep(b,a,n);subplot(1,2,1);stem(n,hn,'k');课程名称 数字信号处理 实验成绩 指导教师 ***实 验 报 告院系 班级学号 姓名 日期title('系统的单位序列响应'); ylabel('h(n)');xlabel('n');axis([0,N,1.1*min(hn),1.1*max(hn)]); subplot(1,2,2);stem(n,gn,'k'); title('系统的单位阶跃响应'); ylabel('g(n)');xlabel('n');axis([0,N,1.1*min(gn),1.1*max(gn)]); 程序运行结果如图2-1所示:102030系统的单位序列响应h (n )n1020300.20.30.40.50.60.70.80.911.11.2系统的单位阶跃响应g (n )n图2-13、用函数filtic 和filter 求解离散系统的单位序列响应和单位阶跃响应。

离散系统的时域分析法

离散系统的时域分析法

第五章离散系统的时域分析法目录5.1 引言5.2 离散时间信号5.3 离散系统的数学模型-差分方程 5.4 线性常系数差分方程的求解5.5 单位样值响应5.6 卷积和§5.1引言连续时间信号、连续时间系统连续时间信号:f(t)是连续变化的t的函数,除若干不连续点之外对于任意时间值都可以给出确定的函数值。

函数的波形都是具有平滑曲线的形状,一般也称模拟信号。

模拟信号抽样信号量化信号连续时间系统:系统的输入、输出都是连续的时间信号。

离散时间信号、离散时间系统离散时间信号:时间变量是离散的,函数只在某些规定的时刻有确定的值,在其他时间没有定义。

离散时间系统:系统的输入、输出都是离散的时间信号。

如数字计算机。

o k t ()k t f 2t 1−t 1t 3t 2−t 离散信号可以由模拟信号抽样而得,也可以由实际系统生成。

量化幅值量化——幅值只能分级变化。

采样过程就是对模拟信号的时间取离散的量化值过程——得到离散信号。

数字信号:离散信号在各离散点的幅值被量化的信号。

ot ()t f T T 2T 31.32.45.19.0o T T 2T 3()t f q t3421离散时间系统的优点•便于实现大规模集成,从而在重量和体积方面显示其优越性;•容易作到精度高,模拟元件精度低,而数字系统的精度取决于位数;•可靠性好;•存储器的合理运用使系统具有灵活的功能;•易消除噪声干扰;•数字系统容易利用可编程技术,借助于软件控制,大大改善了系统的灵活性和通用性;•易处理速率很低的信号。

离散时间系统的困难和缺点高速时实现困难,设备复杂,成本高,通信系统由模拟转化为数字要牺牲带宽。

应用前景由于数字系统的优点,使许多模拟系统逐步被淘汰,被数字(更多是模/数混合)系统所代替;人们提出了“数字地球”、“数字化世界”、“数字化生存”等概念,数字化技术逐步渗透到人类工作与生活的每个角落。

数字信号处理技术正在使人类生产和生活质量提高到前所未有的新境界。

实验一离散时间信号与系统时域分析

实验一离散时间信号与系统时域分析

实验一离散时间信号与系统时域分析实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令一实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令二、实验原理本实验主要为了熟悉MATLAB环境,重点掌握简单的矩阵(信号)输入和绘图命令,特别是绘图命令tem()和plot()。

实验内容中涉及到信号的无失真采样、离散卷积运算和差分方程求解这三个主要的问题。

其基本原理分别如下:对一个模拟信号某(t)进行采样离散化某(n),为了不失真地从采样信号某(n)中恢复原始信号某(t),采样时必须满足采样定理,即采样频率必须大于等于模拟信号中最高频率分量的2倍。

一个离散时间系统,输入信号为某(n),输出信号为y(n),运算关系用T[﹒]表示,则输入与输出的关系可表示为y(n)=T[某(n)]。

(1)线性时不变(LTI)系统的输入输出关系可通过h(n)表示:y(n)=某(n)某h(n)=式中某表示卷积运算。

(2)LTI系统的实现可物理实现的线性时不变系统是稳定的、因果的。

这种系统的单位脉冲响应是因果的(单边)且绝对可和的,即:h(n)0,n0;nh(n)0在MATLAB语言中采用conv实现卷积运算,即:Y=conv(某,h),它默认从n=0开始。

常系数差分方程可以描述一个LTI系统,通过它可以获得系统的结构,也可以求信号的瞬态解。

利用MATLAB 自带的filter(),可以代替手工迭代运算求解系统的差分方程,求解的过程类似于对输入信号进行滤波处理。

三、实验内容1、试画出如下序列的波形(1)某(n)3(n3)(n2)2(n1)4(n1)2(n2)3(n3)(2)某(n)0.5R10(n)解:用MATLAB描述波形1(1)某=[3120-42-3];%矩阵输入某n=-3:1:3;%输入自变量n,以间隔为1从-3到3变化n实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令tem(n,某);%tem()函数绘制火柴杆图,注意n,某元素个数必须相等某label('n');%横坐标显示nylabal('某(n)');%纵坐标显示某(n)grid;%绘制网格1(2)n=0:9;某=0.5.^n;tem(n,某);某label('n');ylabel('某(n)');gri实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令2、用MATLAB计算序列{-201–13}和序列{120-1}的离散卷积,即计算某(n)2(n)(n2)(n3)3(n4)与h(n)(n)2(n1)(n3)解:用MATLAB描述波形。

实验1 离散系统的时域分析

实验1 离散系统的时域分析

实验1 离散系统的时域分析一、实验目的:加深对离散系统的差分方程、单位抽样响应和卷积分析方法的理解。

二、实验原理: 离散系统其输入、输出关系可用以下差分方程描述:∑∑==-=-Mm m Nk nm n x b k n y a)()(输入信号分解为冲激信号,∑∞-∞=-=m m n m x n x )()()(δ系统单位抽样序列h (n ),则系统响应为如下的卷积计算式:∑∞-∞=-=*=m m n h m x n h n x n y )()()()()(当00≠a N k a k ,...2,1,0==时,h(n)是有限长度的(n :[0,M]),称系统为FIR系统;反之,称系统为IIR 系统。

三 、实验内容编制程序求解下列两个系统的单位抽样响应,并绘出其图形。

(1))1()()2(125.0)1(75.0)(--=-+-+n x n x n y n y n y (2))4()3()2()1([25.0)(-+-+-+-=n x n x n x n x n y(1)源程序: N=21;b=[1 -1];a=[1 0.75 0.125];x=[1 zeros(1,N-1)]; n=0:1:N-1;y=filter(b,a,x); stem(n,y);xlabel('n');ylabel('幅度');title('单位抽样响应');图形:2468101214161820n幅度单位抽样响应(2)源程序: N=20;d=[0 0.25 0.25 0.25 0.25]; c=[1];x=[1 zeros(1,N-1)]; n=0:1:N-1; y=filter(d,c,x); stem(n,y);xlabel('n');ylabel('幅度');title('单位抽样响应'); 图形如下:n幅度单位抽样响应实验2 离散系统的频率响应分析和零、极点分布一、实验目的:加深对离散系统的频率响应分析和零、极点分布的概念理解。

离散系统的时域分析matlab.(DOC)

离散系统的时域分析matlab.(DOC)

实验一 常见离散信号的MATLAB 产生和图形显示一、 实验目的加深对常见离散信号的理解 二、实验原理1、单位抽样序列的产生,10,0{=≠=n n n )(δ在MATLAB 中可以用zeros()函数实现 x=[1,zeros(1,N-1)]; 或x=zeros(1,N); x(1)=1;2、单位阶跃序列的产生0,10,0{u ≥<=n n n )(在MATLAB 中可以用ones()函数实现 x=one(1,N); 3、正弦序列的产生 在MATLAB 中实现方法如下: N=0:N-1X=A*sin(2*pi*f*n/fs+fai) 4、复正弦序列的产生jwn e A n x *)(=在MATLAB 中实现方法如下:n)*w *exp(j *A 1:0=-=x N n5、实指数序列的产生na A n x *)(= 在MATLAB 中实现方法如下:na A x N n .^*1:0=-=三、实验内容及步骤编制程序产生以下信号,并绘出其图形。

1)产生64点的单位抽样序列)(n δN=64x=[1,zeros(1,N-1)]stem(x)2)产生64点并移位20位的单位抽样序列)20(-n δN=64x=[0,zeros(1,N-1)] x(20)=1 stem(x)3)任意序列)5(7.0)4(9.2)3(6.5)2(8.1)1(4.3)(0.8)(-+-+-+-+-+=n n n n n n n f δδδδδδ b=[1];a=[8,3.4,1.8,5.6,2.9,0.7]; xh=[1,zeros(1,20)]; h=filter(b,a,xh) figure(1); n=0:20; stem(n,h,) legend('冲激')4)产生幅度A=3,频率f=100,初始相位ϕ=1.2,点数为32 点的正弦序列。

n=0:31;x=3*exp(j*314*n)figure(1)stem(n,x)5)产生幅度A=3,角频率ω=314,点数为32 点的复正弦序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 离散系统时域分析
实验学时:2学时
实验类型:验证
实验要求:必修
一.实验目的
1.学习MATLAB 语言的编程和调试技巧;
2.掌握笔算离散卷积方法和MATLAB 语言实现。

二. 实验内容
时域中,离散时间系统对输入信号或延迟信号进行运算处理,生成具有所需特性的输出信号。

本实验通过MATLAB 仿真一些简单的离散时间信号和系统,并研究其时域特性。

涉及到离散时间信号、离散时间系统、系统性质及线性卷积等知识点。

三.实验原理与方法和手段
一个离散时间系统,输入信号为x(n),输出信号为y(n),运算关系用T[﹒]表示,则输入与输出的关系可表示为y(n)=T[x(n)]。

(1) 线性时不变系统的输入输出关系可通过单位脉冲响应h(n)表示: y(n)=x(n)*h(n)=()()m x m h n m ∞=-∞
-∑
式中*表示卷积运算。

(2) 线性时不变系统的实现 可物理实现的线性时不变系统是稳定的、因果的。

这种系统的单位脉冲响应是因果的(单边)且绝对可和的,即:0)(=n h ,0<n ; |()|n h n ∞=-∞<∞∑
在MATLAB 语言中采用conv 实现卷积运算即:y=conv(x,h),它默认从n=0开始。

四.实验组织运行要求
1. 学生在进行实验前必须进行充分的预习,熟悉实验内容;
2. 学生根据实验要求,读懂并理解相应的程序;
3. 学生严格遵守实验室的各项规章制度,注意人身和设备安全,配合和服从实验室人员管理;
4. 教师在学生实验过程中予以必要的辅导,独立完成实验;
5. 采用集中授课形式。

五.实验条件
1.具有WINDOWS 98/2000/NT/XP 操作系统的计算机一台;
2. MATLAB 编程软件。

六.实验步骤
在“开始--程序”菜单中,找到MATLAB 程序,运行启动;
进入MATLAB 后 ,首先熟悉界面;
在Command Window 中输入参考程序,并执行;
记录运行结果图形,并与笔算结果对照。

(MATLAB 的使用请参考附录)
具体步骤如下:
1.设某LTI 的单位脉冲响应
)(8.0)(n u n h n = (1)判断此系统是否可实现;
(2)当输入为矩形脉冲)10()()(--=n u n u n x 时,求此LTI 的输出)(n y ;
(3)用MATLAB 实现,并画出图形。

2.]2,4,1,0,7,11,3[)(-=n x ,33≤≤-n ;()[2,3,0,5,2,1]h n =-,41≤≤-n ,计算卷积)(*)()(n h n x n y =。

七.思考题
结合《信号与系统》课程所学,思考离散时间系统的线性卷积公式与连续时间系统的卷积公式的异同?
八.实验报告要求
1.报告中要给出实验的MATLAB 程序,并对每个语句给出注释,说明语句作用;
2.简述实验目的和原理;
3.给出用笔算时卷积和conv 计算线性卷积对照图;
4.给出收获和体会。

九.参考程序
程序1
x=[ones(1,10)];
x1=[ones(1,10),zeros(1,40)];
N1=length(x);
n1=0:N1-1;
N2=50; n2=0:N2-1;
h=0.8.^n2;
y=conv(x,h);
N=N1+N2-1;n=0:N-1;
subplot(3,1,1);
stem(n2,x1);subplot(312);
stem(n2,h);subplot(313);
stem(n,y);
程序2
如果)
(n
h的起点不为0,则采用conv_m计算卷积;
x、)
(n
编写conv_m函数:
function[y,ny]=conv_m(x,nx,h,nh)
%改进卷积程序
nyb=nx(1)+nh(1);
nye=nx(length(x))+nh(length(h));
ny=[nyb,nye];
y=conv(x,h);
在命令窗口输入:
x=[3,11,7,0,-1,4,2];nx=[-3:3];
h=[2,3,0,-5,2,1];nh=[-1:4];
[y,ny]=conv_m(x,nx,y,ny)
可得到结果:y(n)=[6,31,47,6,-51,-5,41,18,-22,-3,8,2],7

4≤
≤n。

相关文档
最新文档