分类讨论问题(经典题型)
小学奥数行程问题分类讨论

小学奥数行程问题分类讨论行程问题是小升初考试和小学四大杯赛四大题型之一计算、数论、几何、行程;具体题型变化多样,形成10多种题型,都有各自相对独特的解题方法;现根据四大杯赛的真题研究和主流教材将小题型总结如下,希望各位看过之后给予更加明确的分类;一、一般相遇追及问题;包括一人或者二人时同时、异时、地同地、异地、向同向、相向的时间和距离等条件混合出现的行程问题;在杯赛中大量出现,约占80%左右;建议熟练应用标准解法,即s=v×t结合标准画图基本功解答;由于只用到相遇追及的基本公式即可解决,并且要就题论题,所以无法展开,但这是考试中最常碰到的,希望高手做更为细致的分类;二、复杂相遇追及问题;1多人相遇追及问题;比一般相遇追及问题多了一个运动对象,即一般我们能碰到的是三人相遇追及问题;解题思路完全一样,只是相对复杂点,关键是标准画图的能力能否清楚表明三者的运动状态;2多次相遇追及问题;即两个人在一段路程中同时同地或者同时异地反复相遇和追及,俗称反复折腾型问题;分为标准型如已知两地距离和两者速度,求n次相遇或者追及点距特定地点的距离或者在规定时间内的相遇或追及次数和纯周期问题少见,如已知两者速度,求一个周期后,即两者都回到初始点时相遇、追及的次数;标准型解法固定,不能从路程入手,将会很繁,最好一开始就用求单位相遇、追及时间的方法,再求距离和次数就容易得多;如果用折线示意图只能大概有个感性认识,无法具体得出答案,除非是非考试时间仔细画标准尺寸图;一般用到的时间公式是只列举甲、乙从两端同时出发的情况,从同一端出发的情况少见,所以不赘述:单程相遇时间:t单程相遇=s/v甲+v乙单程追及时间:t单程追及=s/v甲-v乙第n次相遇时间:Tn= t单程相遇×2n-1第m次追及时间:Tm= t单程追及×2m-1限定时间内的相遇次数:N相遇次数= Tn+ t单程相遇/2 t单程相遇限定时间内的追及次数:M追及次数= Tm+ t单程追及/2 t单程追及注:是取整符号之后再选取甲或者乙来研究有关路程的关系,其中涉及到周期问题需要注意,不要把运动方向搞错了;简单例题:甲、乙两车同时从A地出发,在相距300千米的A、B两地之间不断往返行驶,已知甲车的速度是每小时30千米,乙车的速度是每小时20千米,问1第二次迎面相遇后又经过多长时间甲、乙追及相遇2相遇时距离中点多少千米350小时内,甲乙两车共迎面相遇多少次三、火车问题;特点无非是涉及到车长,相对容易;小题型分为:1火车vs点静止的,如电线杆和运动的,如人s火车=v火车±v人×t经过2火车vs线段静止的,如桥和运动的,如火车s火车+s桥=v火车×t经过和s火车1+s 火车2=v火车1±v火车2×t经过合并1和2来理解即s和=v相对×t经过把电线杆、人的水平长度想象为0即可;火车问题足见基本公式的应用广度,只要略记公式,火车问题一般不是问题;3坐在火车里;本身所在火车的车长就形同虚设了,注意的是相对速度的计算;电线杆、桥、隧道的速度为0弱智结论;四、流水行船问题;理解了相对速度,流水行船问题也就不难了;理解记住1个公式顺水船速=静水船速+水流速度就可以顺势理解和推导出其他公式逆水船速=静水船速-水流速度,静水船速=顺水船速+逆水船速÷2,水流速度=顺水船速-逆水船速÷2,对于流水问题也就够了;技巧性结论如下:1相遇追及;水流速度对于相遇追及的时间没有影响,即对无论是同向还是相向的两船的速度差不构成“威胁”,大胆使用为善;2流水落物;漂流物速度=水流速度,t1= t2t1:从落物到发现的时间段,t2:从发现到拾到的时间段与船速、水速、顺行逆行无关;此结论所带来的时间等式常常非常容易的解决流水落物问题,其本身也非常容易记忆;例题:一条河上有甲、乙两个码头,甲码头在乙码头的上游50千米处;一艘客船和一艘货船分别从甲、乙两码头同时出发向上游行驶,两船的静水速度相同;客船出发时有一物品从船上落入水中,10分钟后此物品距客船5千米;客船在行驶20千米后掉头追赶此物品,追上时恰好和货船相遇;求水流速度;五、间隔发车问题;空间理解稍显困难,证明过程对快速解题没有帮助;一旦掌握了3个基本公式,一般问题都可以迎刃而解;1在班车里;即柳卡问题;不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成;如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易;例题:A、B是公共汽车的两个车站,从A站到B站是上坡路;每天上午8点到11点从A、B两站每隔30分同时相向发出一辆公共汽车;已知从A站到B站单程需要105分钟,从B站到A站单程需要80分钟;问8:30、9:00从A站发车的司机分别能看到几辆从B 站开来的汽车2在班车外;联立3个基本公式好使;汽车间距=汽车速度+行人速度×相遇事件时间间隔------1汽车间距=汽车速度-行人速度×追及事件时间间隔------2汽车间距=汽车速度×汽车发车时间间隔------31、2合并理解,即汽车间距=相对速度×时间间隔分为2个小题型:1、一般间隔发车问题;用3个公式迅速作答;2、求到达目的地后相遇和追及的公共汽车的辆数;标准方法是:画图-尽可能多的列3个好使公式-结合s全程=v×t-结合植树问题数数;例题:小峰在骑自行车去小宝家聚会的路上注意到,每隔9分钟就有一辆公交车从后方超越小峰;小峰骑车到半路车坏了,于是只好坐出租车去小宝家;这时小峰又发现出租车也是每隔9分钟超越一辆公交车,已知出租车的速度是小峰骑车速度的5倍,如果这3种车辆在行驶过程中都保持匀速,那么公交车站每隔多少分钟发一辆车六、平均速度问题;相对容易的题型;大公式要牢牢记住:总路程=平均速度×总时间;用s=v×t写出相应的比要比直接写比例式好理解并且规范,形成行程问题的统一解决方案;七、环形问题;是一类有挑战性和难度的题型,分为“同一路径”、“不同路径”、“真实相遇”、“能否看到”等小题型;其中涉及到周期问题、几何位置问题审题不仔细容易漏掉多种位置可能、不等式问题针对“能否看到”问题,即问甲能否在线段的拐角处看到乙;仍旧属于就题论题范畴,不展开了;八、钟表问题;是环形问题的特定引申;基本关系式:v分针= 12v时针1总结记忆:时针每分钟走1/12格,°;分针每分钟走1格,6°;时针和分针“半”天共重合11次,成直线共11次,成直角共22次都在什么位置需要自己拿表画图总结;2基本解题思路:路程差思路;即格或角分针=格或角时针+格或角差格:x=x/12+开始时落后时针的格+终止时超过时针的格角:6x=x/2+开始时落后时针的角度+终止时超过时针的角度可以解决大部分时针问题的题型,包括重合、成直角、成直线、成任意角度、在哪两个格中间,和哪一个时刻形成多少角度;例题:在9点23分时,时针和分针的夹角是多少度从这一时刻开始,经过多少分钟,时针和分针第一次垂直3坏钟问题;所用到的解决方法已经不是行程问题了,变成比例问题了,有相应的比例公式;这里不做讨论了,我也讨论不好,都是考公务员的题型,有难度;九、自动扶梯问题;仍然用基本关系式s扶梯级数=v人速度±v扶梯速度×t上或下解决最漂亮;这里的路程单位全部是“级”,唯一要注意的是t上或下要表示成实际走的级数/人的速度;可以PK掉绝大部分自动扶梯问题;例题:商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下向上走,男孩由上向下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下;如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级十、十字路口问题;即在不同方向上的行程问题;没有特殊的解题技巧,只要老老实实把图画对,再通过几何分析就可以解决;十一、校车问题;就是这样一类题:队伍多,校车少,校车来回接送,队伍不断步行和坐车,最终同时到达目的地即到达目的地的最短时间,不要求证明分4种小题型:根据校车速度来回不同、班级速度不同班不同速、班数是否变化分类;1车速不变-班速不变-班数2个最常见2车速不变-班速不变-班数多个3车速不变-班速变-班数2个4车速变-班速不变-班数2个标准解法:画图-列3个式子:1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间;最后会得到几个路程段的比值,再根据所求代数即可;此类问题可以得到几个公式,但实话说公式无法记忆,因为相对复杂,只能临考时抱佛脚还管点儿用;孩子有兴趣推导一下倒可以,不要死记硬背;简单例题:甲班与乙班学生同时从学校出发去15千米外的公园游玩,甲、乙两班的步行速度都是每小时4千米;学校有一辆汽车,它的速度是每小时48千米,这辆汽车恰好能坐一个班的学生;为了使两班学生在最短时间内到达公园,那么甲班学生与乙班学生需要步行的距离是多少千米十二、保证往返类;简单例题:A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可以携带一个人24天的食物和水;如果不准将部分食物存放于途中,其中一个人最远可深入沙漠多少千米要求两人返回出发点这类问题其实属于智能应用题类;建议推导后记忆结论,以便考试快速作答;每人可以带够t天的食物,最远可以走的时间T1返回类;保证一个人走的最远,所有人都要活着回来1、两人:如果中途不放食物:T=2/3t;如果中途放食物:T=3/4t;2、多人:没搞明白,建议高手补充;2穿沙漠类保证一个人穿过沙漠不回来了,其他人都要活着回来共有n人包括穿沙漠者即多人助1人穿沙漠类;1、中途不放食物:T≤2n/n+1×t;T是穿沙漠需要的天数;2、中途放食物:T=1+1/3+1/5+1/7+…+1/2n-1×t还有几类不甚常见的杂题,没有典型性和代表性,在此不赘述;希望大家完善以上的题型分类,因为奥数好玩;概念行程问题是反映物体匀速运动的应用题;行程问题涉及的变化较多,有的涉及一个物体的运动,有的涉及两个物体的运动,有的涉及三个物体的运动;涉及两个物体运动的,又有"相向运动"相遇问题、"同向运动"追及问题和"相背运动"相离问题三种情况;但归纳起来,不管是"一个物体的运动"还是"多个物体的运动",不管是"相向运动"、"同向运动",还是"相背运动",他们的特点是一样的,具体地说,就是它们反映出来的数量关系是相同的,都可以归纳为:速度×时间=路程;折叠编辑本段详述要正确的解答有关"行程问题"的应用题,必须弄清物体运动的具体情况;如运动的方向相向,相背,同向,出发的时间同时,不同时,出发的地点同地,不同地,运动的路线封闭,不封闭,运动的结果相遇、相距多少、交错而过、追及;两个物体运动时,运动的方向与运动的速度有着很大关系,当两个物体"相向运动"或"相背运动"时,此时的运动速度都是"两个物体运动速度的和"简称速度和,当两个物体"同向运动"时,此时两个物体的追击的速度就变为了"两个物体运动速度的差"简称速度差;当物体运动有外作用力时,速度也会发生变化;如人在赛跑时顺风跑和逆风跑;船在河中顺水而下和逆水而上;此时人在顺风跑是运动的速度就应该等于人本身运动的速度加上风的速度,人在逆风跑时运动的速度就应该等于人本身的速度减去风的速度;我们再比较一下人顺风的速度和逆风的速度会发现,顺风速度与逆风速度之间相差着两个风的速度;同样比较"顺水而下"与"逆流而上",两个速度之间也相差着两个"水流的速度";折叠编辑本段公式折叠流水问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水问题;流水问题,是行程问题中的一种,因此行程问题中三个量速度、时间、路程的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速;1逆水速度=船速-水速;2这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程;水速,是指水在单位时间里流过的路程;顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程请注意单位名称统一;根据加减法互为逆运算的关系,由公式1可以得到:水速=顺水速度-船速,由公式2可以得到:水速=船速-逆水速度;船速=逆水速度+水速;这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量;另外,已知船的逆水速度和顺水速度,根据公式1和公式2,相加和相减就可以得到:船速=顺水速度+逆水速度÷2,水速=顺水速度-逆水速度÷2;时间速度=时间折叠火车过桥桥长+车长÷速度=时间桥长+车长÷时间=速度速度时间=桥长+车长折叠编辑本段例题折叠流水行船问题例:一只轮船从甲地开往乙地顺水而行,每小时行28 千米,到乙地后,又逆水航行,回到甲地;逆水比顺水多行2 小时,已知水速每小时4 千米;求甲乙两地相距多少千米分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间;已知顺水速度和水流速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用2小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程;列式为28-4×2=20 千米20×2=40千米40÷4×2=5小时28×5=140 千米;综合式:28-4×2×2÷4×2×28折叠环形上的相遇问题例:甲、乙二人同时从起点出发,在环形跑道上跑步,甲的速度是每秒跑4米,乙的速度是每秒跑米,甲跑__________圈后,乙可超过甲一圈;分析:甲乙速度不变,由于时间一定,速度与路程成正比例;甲、乙速度比为5:6,甲、乙所行路程比也为5:6;甲乙路程相差一份,这一份代表一圈;由此可得,甲走5份,就走了5圈;折叠电梯问题例:商场的自动扶梯以匀速由下往上行驶,两个孩子在行驶的扶梯上上下走动,女孩由下往上走,男孩由上往下走,结果女孩走了40级到达楼上,男孩走了80级到达楼下;如果男孩单位时间内走的扶梯级数是女孩的2倍,则当该扶梯静止时,可看到的扶梯梯级有多少级分析:因为男孩的速度是女孩的2倍,所以男孩走80级到达楼下与女孩走40级到达楼上所用时间相同,在这段时间中,自动扶梯向上运行了80-40÷2=20级所以扶梯可见部分有80-20=60级;折叠发车问题例:小敏走在街上,注意到:每隔6分钟有一辆30路公交车从身后超过她,每隔2分钟,马路对面30路公交车迎面驶来,假设小敏步行速度一定,30路车总站发生间隔时间一定,问30路公交车每隔多久发一班车分析:解:设30路公交车速度为X,小敏行速为Y,30路公交车每隔Z分钟发一班车,则追距=XZ,由已知得下方程组:XZ/X-Y=6XZ/X+Y=2解上方程组,得Y=X/2XZ=6X-Y=6X-X/2=3XZ=3答:30路车每隔3分钟发一班车;折叠接送问题例:某工厂每天早晨都派小汽车接专家上班.有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一段时间后遇到来接他的汽车,他上车后汽车立即调头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车设人和汽车都作匀速运动,他上车及调头时间不记分析:设专家从家中出发后走到M处如图1与小汽车相遇;由于正常接送必须从B→A→B,而题中接送是从B→M→B恰好提前10分钟;则小汽车从M→A→M刚好需10分钟;于是小汽车从M→A只需5分钟;这说明专家到M处遇到小汽车时再过5分钟,就是以前正常接送时在家的出发时间,故专家的行走时间再加上5分钟恰为比平时提前的1小时,从而专家行走了:60一5=55分钟;折叠追及问题例:甲、乙同时起跑,绕300米的环行跑道跑,甲每秒跑6米,乙每秒跑4米,第二次追上乙时,甲跑了几圈分析:甲第一次追上乙后,追及距离是环形跑道的周长300米;第一次追上后,两人又可以看作是同时同地起跑,因此第二次追及的问题,就转化为类似于求解第一次追及的问题;甲第一次追上乙的时间是:300÷2=150秒甲第一次追上乙跑了:6×150=900米这表明甲是在出发点上追上乙的,因此,第二次追上问题可以简化为把第一次追上时所跑的距离乘二即可,得甲第二次追上乙共跑了:900+900=1800米那么甲跑了1800÷300=6圈折叠相遇问题例:甲乙二人分别从A、B两地同时出发,并在两地间往返行走;第一次二人在距离B点400米处相遇,第二次二人又在距离B点100米处相遇,问两地相距多少米分析:1第一次二人在距离B点400米处相遇.说明第一次相遇时乙行400米.2甲、乙从出发到第二次相遇共行3个全程;从第一次相遇后时到第二次相遇他们共行2个全程;在这2个全程中甲行400+100=500米;说明甲在每个全程中行500/2=250米;3因此在第一次相遇时一个全程250+400=650米答:两地相距650米;折叠过桥问题例:某人步行的速度为每秒钟2米,一列火车从后面开来,越过他用了10秒钟,已知火车的长为90米,求列车的速度;分析:火车越过人时,车比人多行驶的路程是车长90米,追及时间是10秒,所以速度差是90÷10=9米/秒,因此车速是2+9=11米/秒;。
七年级数学绝对值分类讨论重点题型

七年级数学的绝对值,是一种让很多同学感到头疼的数学概念。
在七年级数学课程中,涉及到绝对值的分类讨论也是一个重要的内容,影响着同学们对数学的理解和学习。
今天,我们就来深入探讨七年级数学中关于绝对值分类讨论的重点题型,帮助同学们更好地掌握这一知识点。
1. 绝对值概念的理解我们需要对绝对值的概念进行深入理解。
在七年级数学中,绝对值代表着一个数距离零点的距离,它是一个非负数。
具体地,对于任意实数a,其绝对值记作|a|,如果a大于等于0,则|a|等于a;如果a小于0,则|a|等于-a。
2. 绝对值分类讨论的基本原理在七年级数学中,针对绝对值的讨论通常涉及到正数、负数以及零的情况。
我们需要明确地理解在各种情况下绝对值的计算方法和特点,从而能够准确地解决问题。
3. 绝对值分类讨论的重点题型在七年级数学中,绝对值分类讨论的重点题型包括但不限于以下几种: - 绝对值不等式的求解- 绝对值方程的解法- 含绝对值的复合运算- 实际问题中的应用4. 绝对值不等式的求解对于绝对值不等式的求解,我们需要分情况讨论。
当|a|小于b时,a 和-b之间的数都满足不等式;当|a|大于b时,求解得到两个区间,分别讨论各区间内的情况。
这种分类讨论的方法在解决绝对值不等式时非常重要。
5. 绝对值方程的解法解决绝对值方程时,我们同样需要进行分类讨论。
针对|a|=b和|a|=-b 两种情况,分别求解得到不同的结果。
同学们需要注意分类讨论方法的灵活运用,才能准确地解决绝对值方程的问题。
6. 含绝对值的复合运算在七年级数学中,我们还会遇到含绝对值的复合运算题型,可能涉及加减乘除等多种运算符号。
这时,同学们需要将复合运算的每一步分类讨论,确保在每一种情况下都能准确地应用绝对值的概念和性质。
7. 实际问题中的应用绝对值的分类讨论在解决实际问题时也非常重要。
同学们需要理解绝对值在表示距离、温度差、误差等方面的应用,从而能够准确地将数学知识应用到实际生活中去。
江苏中考数学复习--题型六分类讨论问题(word解析版)

二、选填重难点突破题型六分类讨论问题类型一直角三角形中的分类讨论1.(2015宿迁)在平面直角坐标系中,点A,B的坐标分别为(-3,0)、(3,0),点P在反比例函数y=的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个B. 4个C. 5个D. 6个2.已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为.类型二等腰三角形中的分类讨论1.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条2.在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC 所在直线的距离是 ( )A. 1B.1或C.1或D.或类型三相似三角形中的分类讨论1.(2014常州)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P 的个数是()A.1个B.2个C.3个D. 4个2.(2015凉山州)在ABCD中,M,N是AD边上的三等分点,连接BD,MC相交于O点,则S△MOD∶S△COB =.类型四圆中的分类讨论在平面直角坐标系xOy中,直线l经过点A(-3,0),点B(0,3),点P的坐标为(1,0),⊙P与y轴相切于点O,若将⊙P沿x轴向左平移,平移后得到⊙P′(点P的对应点为P′),当⊙P′与直线l相交时,横坐标为整数的点P′共有 ( )A. 1个B.2个C. 3个D.4个【答案】类型一直角三角形中的分类讨论1. D【解析】如果以AB为直径画圆与双曲线相交,交点有4个,这四个点与AB组成的三角形是直角三角形而且是以AB为斜边,如果以A,B为直角顶点,则双曲线上还有两个点使△ABP为直角三角形,故选D.2. 60或42【解析】如解图,作AD⊥BC于点D,则AD为BC边上的高,AD=12,分两种情况:①高AD在三角形内,如解图①所示:在Rt△ADC中,由勾股定理得:AC2=AD2+DC2,∴DC=,在Rt△ADB中,由勾股定理得:AB2=AD2+BD2,∴BD=,∴BC=BD+DC=16+9=25,所以,△ABC的周长为AB+AC+BC=20+15+25=60.②高AD在三角形外,如解图②所示:在Rt△ADC中,由勾股定理得:AC2=AD2+DC2,∴DC=,在Rt△ADB中,由勾股定理得:AB2=AD2+BD2,∴BD=,∴BC=BD-DC=16-9=7,所以,△ABC的周长为AB+AC+BC=20+15+7=42.故△ABC的周长为60或42.类型二等腰三角形中的分类讨论1.B【解析】如解图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故选B.2. D【解析】分两种情况:如解图①,延长AC,作PD⊥BC交点为D,PE⊥AC,交点为点E,∵CP∥AB,∴∠PCD=∠CBA=45°,∴四边形CDPE是正方形,则CD=DP=PE=EC,∵在等腰Rt△ABC中,AC=BC=1,∴AB=,∴AB=AP=;∴在Rt△AEP中,(1+EC)2+EP2=AP2,∴(1+DP)2+DP2=()2,解得,DP=或DP=(与题意不符,舍去);如解图②,延长BC,作PD⊥BC,交点为D,延长CA,作PE⊥CA,交点为E,同理可证,四边形CDPE是正方形,∴CD=DP=PE=EC,同理可得,在Rt△AEP中,(EC-1)2+EP2=AP2,∴(PD-1)2+PD2=()2,解得,PD=或(与题意不符,舍去).故选D.类型三相似三角形中的分类讨论1. C【解析】∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°-∠B=90°,∴∠PAD=∠PBC=90°,AB=8,。
(完整版)导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。
★已知函数ax x a x x f 2)2(2131)(23++-=(a 〉0),求函数的单调区间)2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a xax x f ln )2(2)(+--=(a 〉0)求函数的单调区间 222))(2(2)2()(x a x x x a x a x x f --=++-='★★★例3已知函数()()22211ax a f x x R x -+=∈+,其中a R ∈。
(Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。
解:(Ⅰ)当1a =时,曲线()y f x =在点()()2,2f 处的切线方程为032256=-+y x 。
(Ⅱ)由于0a ≠,所以()()12)1(222+-+='x x a x f ,由()'0f x =,得121,x x a a=-=。
这两个实根都在定()()()()()()22'2222122122111a x a x a x x ax a a f x x x ⎛⎫--+ ⎪+--+⎝⎭==++义域R 内,但不知它们之间 的大小。
因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。
(1)当0a >时,则12x x <.易得()f x 在区间1,a ⎛⎫-∞- ⎪⎝⎭,(),a +∞内为减函数,在区间1,a a ⎛⎫- ⎪⎝⎭为增函数。
故函数()f x 在11x a =-处取得极小值21f a a ⎛⎫-=- ⎪⎝⎭;函数()f x 在2x a =处取得极大值()1f a =。
人教版数学六上分类讨论题

人教版数学六上分类讨论题
人教版数学六年级上册分类讨论题包括以下几种类型:
1. 分情况讨论题:这类题目需要分不同的情况进行讨论,根据不同的情况得出不同的结论。
例题:某校六年级有120名学生,其中参加篮球比赛的有24人,参加乒乓球比赛的有18人,既参加篮球比赛又参加乒乓球比赛的有3人,参加这两
项比赛的学生共有多少人?
2. 分类计数原理题:这类题目需要使用分类计数原理进行计算,即各类事物独立地被考虑,各类事物之间无影响。
例题:用1、2、3、4四个数字可组成的四位数有()个。
3. 分类讨论应用题:这类题目需要先对题目中的条件进行分类讨论,再根据不同的情况得出不同的结果。
例题:甲、乙两地相距150千米,小明和小华同时从甲地出发向乙地前进,小明每小时行4千米,小华每小时行5千米,小明到达乙地后立即返回,途中与小华相遇,从出发到相遇一共经过多少时间?
通过以上分类讨论题的练习,可以帮助学生更好地理解分类讨论的思想,提高数学思维能力和解决问题的能力。
导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题含参数导数问题的分类讨论问题1 •求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式) 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论 1 1 ★已知函数f(x)x 3 (a 2)x 2 2ax (a>0),求函数的单调区间 3 2f (x) =x _(a 亠2)x 亠2a =(x _a)(x -2)2a★★例1已知函数f(x)二x (a U 2)lnx (a>0)求函数的单调区间x2x -(a 2)x 2a f (x)2 x(I)当a =1时,求曲线y = f x 在点2, f 2 处的切线方程; (n)当a=0时,求函数f x 的单调区间与极值。
解: (I)当a =1时,曲线y = f x 在点2,f 2处的切线方程为6x 25y-32 = 0。
2(n)由于a 式0,所以f ⑺/嗔切了 ,由f'(x)=O ,得x 1 =(x +1 )I 1 '■-2a x - a x2―—义域R 内,但不知它们之间(x 2+1)a 的取值分a 0和a ::: 0两种情况进行讨论。
函数f x 在x 2 =a 处取得极大值f a =1 o1 —(-一「:)内为增函数,在区间a1 」 1(a,)为减函数。
故函数 f x 在%处取得极小值aaX 2二a 处取得极大值f a = 1。
(x-2)(x-a)2x22ax -a 1 x 21x R ,其中a R 。
1, X 2 = a 。
这两个实根都在定 a2 22a x 1;-2x 2ax - a 1f x二2 2 (x 2+1)的大小。
因此,需对参数 (1)当 a 0 时,则 x 'x 2。
易得f x 在区间,a, •::内为减函数,在区间i l,aI a为增函数。
故函数1i 1 f x 在为处取得极小值f a [1 I a 」2--a ; (1) 当a ”:0时,则x 1 x 2。
应用题(分类讨论题型)专题

应用题(分类讨论题型)经典例题分析:例:甲乙两家商场平时以同样的价格出售相同的商品,“五一”期间两家商场都让利酬宾,其中甲商场按照原价八折出售,乙商场对累计购物超过200元后的价格部分打七折,设小明在同一商场累计购物X元,其中X>200.(1)根据题意,填写下表:(单位:元)(2)当X取何值时,小明在甲乙两个商场花费相同?当X取何值时,甲商场实际花费少?当X取何值时,乙商场实际花费少?强化训练:1.考虑下面两种移动电话的计费方式设每月通话时间为X分钟,其中X>150(1)根据题意,填写下表(2)当X取何值时,两种计费方式的费用相同?(3)当每月通话时间超过250分钟时,选用哪种计费方式费用较少?2.某校实行学案式教学,需印制若干份数学学案,甲乙印刷厂的收费方式不同,甲厂的收费方式是需要先收取制版费6元,然后按照印刷数量收取每份0.1元的制版费,乙厂的收费方式是没有制版费,只按照印刷数量收取每份0.12元的印刷费,现设需要印刷的份数为X份(1)根据题意,填写下表:(单位:元)(2)当X取何值时,两种收费方式的花费是一样的?(3)该校某年级每次需印制100-450(含100和450)份学案,选择哪种印刷方式比较合算?3.甲乙两商场以同样的价格出售同样的商品,并且各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累积购物超过50元后,超出50元的部分按95%收费。
回答下列问题:当你在同一商场累积购物超过100元时,在哪家商场的实际花费少?5.某旅行团计划今年暑假组织一个老年人旅游团去台湾旅游,预定宾馆住宿时,有住宿条件一样的甲乙两家宾馆供选择,其收费标准均为每人每天120元,并且各自推出不同的优惠方案,甲家是35人(含35人)以内的按标准收费,超过35人的,超出部分按九折收费,乙家是45人(含45人)以内的按标准收费,超过45人的,超出部分按8折收费。
高考数学导数问题常见的分类讨论

在高考中导数问题常见的分类讨论(一)热点透析由于导数内容对大学数学与中学数学的衔接具有重大的作用,所以自从导数进入高考后,立即得到普遍地重视,在全国各地的数学高考试卷中占有相当重的份额,许多试题放在较后的位置,且有一定的难度..分类讨论是中学数学的一种解题思想,如何正确地对某一问题进行正确地分类讨论,这就要求大家平时就要有一种全局的观点,同时要有不遗不漏的观点。
只有这样在解题时才能做到有的放矢。
下面我想通过对导数类题的解答的分析,来揭示如何水道渠成顺理推舟进行分类讨论。
(二)知识回顾 1. 函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 2. 函数的极值(1)判断f (x 0)是极值的方法一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程f ′(x )=0的根;③检查f ′(x )在方程f ′(x )=0的根的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 3. 函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下: ①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值. (三)疑难解释1. 可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.2. f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的充分条件.3. 对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件. 附件:当堂过手训练(快练五分钟,稳准建奇功!)1. 若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.答案 3解析 f ′(x )=2x 2+2x -x 2-a x +12=x 2+2x -ax +12.因为f (x )在x =1处取极值,所以1是f ′(x )=0的根,将x =1代入得a =3.2. 函数f (x )=x 3+ax -2在(1,+∞)上是增函数,则实数a 的取值范围是________.答案 [-3,+∞)解析 f ′(x )=3x 2+a ,f ′(x )在区间(1,+∞)上是增函数, 则f ′(x )=3x 2+a ≥0在(1,+∞)上恒成立,即a ≥-3x 2在(1,+∞)上恒成立.∴a ≥-3.3. 如图是y =f (x )导数的图象,对于下列四个判断:①f (x )在[-2,-1]上是增函数; ②x =-1是f (x )的极小值点;③f (x )在[-1,2]上是增函数,在[2,4]上是减函数; ④x =3是f (x )的极小值点.其中正确的判断是________.(填序号) 答案 ②③解析 ①∵f ′(x )在[-2,-1]上是小于等于0的, ∴f (x )在[-2,-1]上是减函数;②∵f ′(-1)=0且在x =0两侧的导数值为左负右正, ∴x =-1是f (x )的极小值点; ③对, ④不对,由于f ′(3)≠0.4. 设函数g (x )=x (x 2-1),则g (x )在区间[0,1]上的最小值为( )A .-1B .0C .-239D.33答案 C解析 g (x )=x 3-x ,由g ′(x )=3x 2-1=0,解得x 1=33,x 2=-33(舍去). 当x 变化时,g ′(x )与g (x )的变化情况如下表:x 0⎝ ⎛⎭⎪⎫0,3333 ⎝ ⎛⎭⎪⎫33,1 1 g ′(x )-0 +g (x )极小值所以当x =3时,g (x )有最小值g ⎛⎪⎫3=-23. 5. (2011·辽宁)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)答案 B解析 设m (x )=f (x )-(2x +4),∵m ′(x )=f ′(x )-2>0,∴m (x )在R 上是增函数.∵m (-1)=f (-1)-(-2+4)=0,∴m (x )>0的解集为{x |x >-1},即f (x )>2x +4的解集为(-1,+∞). 二、高频考点专题链接题型一. 需对导数为零的点与定义域或给定的区间的相对位置关系讨论的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 2
分类讨论问题
初中数学中的分类讨论问题是近年来中考命题的热点内容之一,要用分类讨论法解答的数学题目,往往具有较强的逻辑性、综合性和探索性,既能全面考查学生的数学能力又能考查学生的思维能力,分类讨论问题充满了数学辨证思想,它是逻辑划分思想在解决数学问题时的具体运用。
第一部分例题解析
1、代数部分
例1:化简:|x-1|+|x-2|
例2、代数式
a a
b b ab ab ||||||
++的所有可能的值有( ) A. 2个 B. 3个 C. 4个 D. 无数个
2、函数部分
例题1:一次函数y kx b x =+-≤≤,当31时,对应的y 值为19≤≤x ,则kb 的值是( )。
A. 14
B. -6
C. -4或21
D. -6或14
例题2:已知一次函数2+-=x y 与x 轴、y 轴的交点分别为A 、B ,试在x 轴上找一点P ,使△PAB 为等腰三角形。
3、几何部分
1.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( )
A .50°
B .80°
C .65°或50°
D .50°或80°
2.某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为( )
A .9cm
B .12cm
C .15cm
D .12cm 或15cm
4、综合类:
例1:正方形ABCD 的边长为10cm ,一动点P 从点A 出发,以2cm/秒的速度沿正方形的边逆时针匀速运动。
如图,回到A 点停止,求点P 运动t 秒时,P ,D 两点间的距离。
2 / 2
试题精练
1、已知直线AB 上一点C ,且有CA=3AB ,则线段CA 与线段CB 之比为
2、在同一平面上,∠AOB=70°,∠BOC=30°,射线OM 平分∠AOB ,ON 平分∠BOC ,求∠MON 的大小。
3、在△ABC 中,∠B =25°,AD 是BC 上的高,并且
AD BD DC 2=·,则∠BCA 的度数为_____________。
4、若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。
5、如图所示,在ABC △中,64AB AC P ==,,是AC 的中点,过P 点的直线交AB 于点Q ,若以A P Q 、、为顶点的三角形和以A B C 、、为顶点的三角形相似,则AQ 的长为( )
(A)3 (B)3或
43
(C)3或
34 (D)43
6、已知等腰△ABC 的周长为18㎝,BC=8㎝.若△ABC ≌△A ´B ´C ´,则△A ´B ´C ´中一定有一定有条边等于( )
A .7㎝
B .2㎝或7㎝
C .5㎝
D .2㎝或7㎝
7、A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/时,乙车速度为80千米/时,以过t 小时两车相距50千米,则t 的值是( )
A .2或2.5
B .2或10
C .10或12.5
D .2或12.5
8、如图2-4-2,正方形ABCD 的边长是2,BE=CE ,MN=1,线段MN 的两端在CD 、AD 上滑动.当DM= 时,△ABE 与以D 、M 、N 为项点的三角形相似.
C
B
图2-4-2
E N M
D C
B
A。