二次根式,勾股定理,平行四边形综合练习题

合集下载

人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练试题(含详细解析)

人教版八年级数学下册第十七章-勾股定理综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一个直角三角形两直角边边长分别为6和8,则斜边边长为()A.10B.C.15D.10或2、如图,在△ABC中,BC=C=45°,若D是AC的三等分点(AD>CD),且AB=BD,则AB的长为()A.2B C D.5 23、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m4、已知直角三角形的斜边长为5cm ,周长为12cm ,则这个三角形的面积( )A .24cmB .25cmC .26cmD .212cm5、下列各组数中,是勾股数的是( )A .0.3,0.4,0.5B .52,6,132 C 2 D .9,12,156、如图,数轴上点A 所表示的数是( )A B C D 17、如图,在Rt △ABC 中,AB =6,BC =8,AD 为∠BAC 的平分线,将△ADC 沿直线AD 翻折得△ADE ,则DE 的长为( )A .4B .5C .6D .78、如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要( )A .8 cmB .10 cmC .12 cmD .15 cm9、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .2、3、4 BC .5、12、13D .30、50、6010、满足下列条件的△ABC ,不是直角三角形的是( )A .∠A :∠B :∠C =5:12:13B .a :b :c =3:4:5C .∠C =∠A ﹣∠BD .b 2=a 2﹣c 2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么_____.2、△ABC 的三条边长a 、b 、c 满足8c =60b -=,则△ABC ____直角三角形(填“是”或“不是”)3、已知:点A 的坐标为()3,4,点B 坐标为()1,1-,那么点A 和点B 两点间的距离是______.4、如图,已知△ABO 为等腰三角形,且OA =AB =5,B (﹣6,0),则点A 的坐标为_____.5、如图,△ABC 是边长为12的等边三角形,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 的运动过程中,当DF 的长度最小时,CE 的长度为______.三、解答题(5小题,每小题10分,共计50分)1、(阅读理解)我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b ,斜边长为c .图中大正方形的面积可表示为()2a b +,也可表示为2142c ab +⨯,即()22142a b c ab +=+⨯=,所以222+=a b c . (尝试探究)美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE ,其中BCA ADE △△≌,90C D ∠=∠=︒,根据拼图证明勾股定理.(定理应用)在Rt ABC △中,90C ∠=︒,A ∠、B 、C ∠所对的边长分别为a 、b 、c .求证:222244a c a b c b +=-.2、如图,正方形网格中,每个小正方形的边长为1,求网格上的三角形ABC 的面积和周长.3、如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =5,点D 是边AB 上的一个动点,连接CD ,过C 点在上方作CE ⊥CD ,且CE =CD ,点P 是DE 的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.4、如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做“格点”,以格点为顶点分别按下列要求画三角形:(1)在图①中画出一个钝角三角形,使它的面积为4,并求出该三角形的三边长;(2)在图②中画出一个面积为10的正方形.5、如图,在4×4的正方形网格中,每个小正方形的边长均为1.(1(2)此三角形的面积是.---------参考答案-----------一、单选题1、A【分析】已知两直角边边长分别为6和8,利用勾股定理求斜边即可.【详解】解: ∵一个直角三角形两直角边边长分别为6和8,斜边边长,∴斜边边长为10.故选A .【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确直角边或斜边,直接应用勾股定理,如果条件不明确时那条边是斜边,要注意讨论.2、B【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理AB 【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴(22222+2BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点,∴CD =13AC ,AD =AC -CD =1233AC AC AC -=,∴AE =DE =121233AC AC ⨯==CD ,∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理AB故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键.3、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗杆的高.【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.4、C【分析】设该直角三角形的两条直角边分别为a、b,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出2ab 的值,根据直角三角形的面积公式计算即可.【详解】解:设该直角三角形的两条直角边分别为a 、b ,根据题意可得:22251257a b a b ⎧+=⎨+=-=⎩①② 将②两边平方-①,得224ab =∴12ab = ∴该直角三角形的面积为2126ab cm = 故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键.5、D【分析】三个正整数,其中两个较小的数的平方和等于最大的数的平方,则这三个数就是勾股数,据此判断即可.【详解】解:A 、不是勾股数,因为0.3,0.4,0.5不是正整数,故此选项不符合题意;B 、不是勾股数,因为52,132不是正整数,故此选项不符合题意;CD 、是勾股数,因为222912=15+,故此选项符合题意;故选D .【点睛】本题考查勾股数的概念,勾股数是指:①三个数均为正整数;②其中两个较小的数的平方和等于最大的数的平方.6、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.7、B【分析】在Rt ABC∆中利用勾股定理求出AC长,利用折叠性质:得到ADE ADC∆∆≌,求出对应相等的边,设DE=x,在Rt BDE∆中利用勾股定理,列出关于x的方程,求解方程即可得到答案.【详解】解:∵AB=6,BC=8,∠ABC=90°,∴AC2222BC,6810∵AD为∠BAC的平分线,将△ADC沿直线AD翻折得△ADE,≌,∴∆∆ADE ADC∴A、B、E共线,AC=AE=10,DC=DE,∴BE=AE﹣AB=10﹣6=4,在Rt△BDE中,设DE=x,则BD=8﹣x,∵BD2+BE2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴DE=5,故选:B.【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键.8、B【分析】立体图形展开后,利用勾股定理求解.【详解】解:将长方体沿着AB边侧面展开,并连接'AB,如下图所示:由题意及图可知:'13138AB cm=,=+++=,''6AA cm两点之间,线段最短,故'AB的长即是细线最短的长度,''∆中,由勾股定理可知:'10Rt AAB===,AB cm故所用细线最短需要10cm.故选:B.【点睛】本题主要是考查了勾股定理求最短路径、两点之间线段最短以及立体图形的侧面展开图,因此,正确得到立体图形的侧面展开图,熟练运用勾股定理求边长,是解决此类问题的关键.9、C【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【详解】解:A、22+32≠42,不能构成直角三角形,故此选项不符合题意;B、2+22,不能构成直角三角形,故此选项不符合题意;C、52+122=132,能构成直角三角形,故此选项符合题意;D、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.10、A【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【详解】解:A、∵∠A:∠B:∠C=5:12:13,∴∠C=180°×1325=93.6°,不是直角三角形,故此选项正确;B、∵32+42=52,∴是直角三角形,故此选项不合题意;C、∵∠A﹣∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴∠A=90°,∴是直角三角形,故此选项不合题意;D、∵b2=a2﹣c2,∴a2=b2+c2,是直角三角形,故此选项不合题意;故选:A.【点睛】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.二、填空题1、222+=a b c【分析】利用勾股定理:两条直角边长的平方和等于斜边长的平方和,即可得到答案.【详解】解:在直角三角形中,由勾股定理可知:222+=a b c .故答案为:222+=a b c .【点睛】本题主要是考查了直角三角形的勾股定理,熟练掌握勾股定理的内容,注意区分好直角边和斜边,这是解决该类问题的关键.2、不是【分析】根据二次根式有意义的条件以及绝对值的非负性,得出,a b 的值,运用勾股定理逆定理验证即可.【详解】60b -=,∴40a -=,60b -=,∴4,6a b ==,则22246528+=≠,∴222a b c +≠,∴△ABC 不是直角三角形,故答案为:不是.【点睛】本题考查了二次根式有意义的条件,绝对值的非负性,勾股定理逆定理等知识点,根据题意得出,a b 的值是解本题的关键.3、5【分析】根据两点间距离公式求解即可.【详解】∵点A 的坐标为()3,4,点B 坐标为(1,1)-,∴点A 和点B 5=.故答案为:5.【点睛】本题考查两点间距离,若11(,)A x y ,22(,)B x y ,则两点间的距离是AB 距离公式是解题的关键.4、(﹣3,4)【分析】过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,根据AB =AO ,AC ⊥BO ,得OC =132OB =,在Rt △AOC 中,由勾股定理得:AC =4,即可求出点A 的坐标.【详解】解:如图,过点A 作AC x ⊥ 轴于点C ,AD y ⊥轴于点D ,∵B(﹣6,0),∴OB=6,∵AB=AO,AC⊥BO,∴OC=132OB=,在Rt△AOC中,由勾股定理得:AC4=,∴A(﹣3,4).故答案为:(﹣3,4)【点睛】本题主要考查了坐标与图形,等腰三角形的性质,勾股定理,熟练掌握相关知识点是解题的关键.5、【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD CG=以及FCD ECG,由旋转的性质可得出EC FC=,由此即可利用全等三角形的判定定理SAS证出ΔΔFCD ECG≅,进而即可得出DF GE=,再根据点G为AC的中点,求出AD和DE的长,由勾股定理可得出答案.【详解】取线段AC的中点G,连接EG,如图所示.ABC ∆为等边三角形,且AD 为ABC ∆的对称轴,162CD CG AB ∴===,60ACD ∠=︒, 60ECF =︒∠,FCD ECG .在ΔFCD 和ECG ∆中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩, ΔΔ()FCD ECG SAS ∴≅,DF GE ∴=.当//EG BC 时,EG 最小,此时E 为AD 的中点,12AB BC ==,6DC =,AD ∴==12DE AD ∴==CE ∴==故答案为【点睛】本题考查了勾股定理,旋转的性质,等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF GE =.三、解答题1、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得BAC AED ∠=∠,结合题意,根据直角三角形两锐角互余的性质,推导得90BAE ∠=︒;结合梯形、三角形面积计算公式,通过计算即可证明222+=a b c ;定理应用:根据提取公因式、平方差公式的性质分析,即可完成222244a c a b c b +=-证明.【详解】尝试探究:∵BCA ADE △△≌,∴BAC AED ∠=∠.∵90D ∠=︒∴90DAE AED ∠+∠=︒.∴90DAE BAC ∠+∠=︒.∵180BAC AED BAE ∠+∠+∠=︒.∴90BAE ∠=︒. ∵直角梯形的面积可以表示为()212a b +,也可以表示为211222ab c ⨯+, ∴()221112222a b ab c +=⨯+, 整理,得222+=a b c .定理应用:在Rt ABC △中,90C ∠=︒,∴222+=a b c ;∵2222a c a b +()222a c b =+.44c b -()()()2222222c b c b a c b =+-=+∴222244a c a b c b +=-.【点睛】本题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解.2、面积是7【分析】利用面积和差和勾股定理求解即可.【详解】解:△ABC 的面积=111441432247222⨯-⨯⨯-⨯⨯-⨯⨯=;由勾股定理得:ABBC =AC ==所以△ABC【点睛】本题考查了勾股定理,解题关键是熟练运用勾股定理求线段长.3、(1)AP =12DE ,理由见解析;(2)BD =56或4514【分析】(1)连接AE ,首先根据∠ACB =∠ECD =90°,得到∠ECA =∠DCB ,然后证明△BCD ≌△ACE (SAS ),根据全等三角形对应角相等得到∠EAC =∠B =45°,进一步得出∠EAD =90°,最后根据直角三角形斜边上的中线等于斜边的一半即可得出AP =12DE ;(2)分两种情况讨论:当Q 在线段AB 上时和当Q 在线段BA 延长线上时,连接AE ,EQ ,根据题意得出CQ 垂直平分DE ,进而根据垂直平分线的性质得到EQ =DQ ,设BD =AE =x ,在Rt △AEQ 中根据勾股定理列方程求解即可;【详解】解:(1)AP =12DE ,理由:连接AE ,如图,∵CA =CB ,∠ACB =90°,∴∠CAB =∠CBA =45°.∵∠ACB =∠ECD =90°,∴∠ECA =∠DCB .在△BCD 和△ACE 中,CE CD ECA DCB AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△BCD ≌△ACE (SAS ).∴∠EAC =∠B =45°.∴∠EAD=∠EAC+∠BAC=90°.又∵P为DE中点,∴AP=12DE.(2)情况(一),当Q在线段AB上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,EQ=DQ=AB﹣AQ﹣BD=3﹣x,由(1)知:∠EAB=90°,∴EA2+AQ2=EQ2.∴x2+22=(3﹣x)2,解得x=56,即BD=56;情况(二),当Q在线段BA延长线上时,连接AE,EQ,如图,∵CE⊥CD,且CE=CD,点P是DE的中点,∴CP⊥DE.即CQ垂直平分DE,∴EQ=DQ.设BD=AE=x,同理可得方程:x2+22=(7﹣x)2,解得x=45 14.综上:BD=56或4514.【点睛】此题考查了全等三角形的性质和判定,勾股定理的运用,垂直平分线的性质,直角三角形斜边中线的性质等知识,解题的关键是根据题意正确作出辅助线.4、 (1)三角形如图①所示,三边长分别为2、(2)正方形如图②所示.【分析】(1)画一个底边长是2,高为4的钝角三角形即可,然后利用勾股定理可以求出各边长.(2【详解】(1)如图①所示:很明显,12442EMFS=⨯⨯=,且FM=2,又由题意可得:EM=,EF=(2)如图②所示,由题意可得:AB=BC=CD=DA【点睛】本题考查的是勾股定理的综合应用,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5、(1)画图见解析;(2)5.5【分析】(1)利用勾股定理在网格中确定2222223110,2313,1417,AB AC BC再顺次连接,,A B C即可;(2)利用长方形的面积减去周围三个三角形的面积即可. 【详解】解:(1)如图,ABC即为所求作的三角形,其中:2222223110,2313,1417, AB AC BC(2)11134132314 5.5,222ABCS故答案为:5.5【点睛】本题考查的是网格中作三角形,勾股定理的应用,网格三角形的面积的计算,掌握“利用勾股定理求解网格三角形的边长”是解本题的关键.。

八年级二次根式综合练习题及答案解析

八年级二次根式综合练习题及答案解析

填空题1. 有意义的条件是 。

【答案】x ≥4【分析】二次根号内的数必须大于等于零,所以x-4≥0,解得x ≥42. 当__________【答案】-2≤x ≤21【分析】x+2≥0,1-2x ≥0解得x ≥-2,x ≤213. 11m +有意义,则m 的取值范围是 。

【答案】m ≤0且m ≠﹣1【分析】﹣m ≥0解得m ≤0,因为分母不能为零,所以m +1≠0解得m ≠﹣14. 当__________x 是二次根式。

【答案】x 为任意实数【分析】﹙1-x ﹚2是恒大于等于0的,不论x 的取值,都恒大于等于0,所以x 为任意实数5. 在实数范围内分解因式:429__________,2__________x x -=-+=。

【答案】﹙x 2+3﹚﹙x +3﹚﹙x -3﹚,﹙x -2﹚2【分析】运用两次平方差公式:x 4-9=﹙x 2+3﹚﹙x 2-3﹚=﹙x 2+3﹚﹙x +3﹚﹙x -3﹚,运用完全平方差公式:x 2-22x +2=﹙x -2﹚26. 2x =,则x 的取值范围是 。

【答案】x ≥0【分析】二次根式开根号以后得到的数是正数,所以2x ≥0,解得x ≥07. 2x =-,则x 的取值范围是 。

【答案】x ≤2【分析】二次根式开根号以后得到的数是正数,所以2-x ≥0,解得x ≤28. )1x 的结果是 。

【答案】1-x【分析】122+-x x =2)1(-x ,因为()21-x ≥0,x <1所以结果为1-x9. 当15x ≤5_____________x -=。

【答案】4【分析】因为x ≥1所以()21-x =1-x ,因为x <5所以x -5的绝对值为5-x ,x -1+5-x =410. 把的根号外的因式移到根号内等于 。

【答案】﹣a -【分析】通过a a 1-有意义可以知道a ≤0,a a 1-≤0,所以a a 1-=﹣⎪⎭⎫ ⎝⎛-⨯a a 12=﹣a -11. 11x =+成立的条件是 。

二次根式精选习题及答案

二次根式精选习题及答案

二次根式精选习题及答案二次根式是初中数学中较为重要且难度较大的一个知识点,它关系到许多数学题的解题方法。

今天,我们来精选一些二次根式的习题及答案,希望能对大家的学习有所帮助。

一、简化二次根式1、$\sqrt{20}$答案:$\sqrt{20}=\sqrt{4\times 5}=2\sqrt{5}$2、$\sqrt{80}$答案:$\sqrt{80}=\sqrt{16\times 5}=4\sqrt{5}$3、$\sqrt{48}$答案:$\sqrt{48}=\sqrt{16\times 3}=4\sqrt{3}$4、$\sqrt{45}$答案:$\sqrt{45}=\sqrt{9\times 5}=3\sqrt{5}$二、二次根式的运算1、$\sqrt{3}+\sqrt{12}$答案:$\sqrt{3}+\sqrt{12}=\sqrt{3}+2\sqrt{3}=3\sqrt{3}$2、$\sqrt{5}+\sqrt{20}-\sqrt{45}$答案:$\sqrt{5}+\sqrt{20}-\sqrt{45}=\sqrt{5}+2\sqrt{5}-3\sqrt{5}=-\sqrt{5}$3、$\sqrt{2}\times\sqrt{18}$答案:$\sqrt{2}\times\sqrt{18}=\sqrt{2\times 18}=6\sqrt{2}$4、$\frac{\sqrt{6}}{\sqrt{2}}$答案:$\frac{\sqrt{6}}{\sqrt{2}}=\sqrt{3}$三、解二次方程1、$x^2+4x-5=0$答案:将$x^2+4x-5=0$移项得$x^2+4x=5$,再加上4后可以写成$(x+2)^2=9$,从而得到$x=-5$或$x=1$。

2、$2x^2-8x+6=0$答案:将$2x^2-8x+6=0$两边同除以2,得到$x^2-4x+3=0$,然后写成$(x-1)(x-3)=0$,从而得到$x=1$或$x=3$。

(完整)八年级二次根式综合练习题及答案解析.docx

(完整)八年级二次根式综合练习题及答案解析.docx

填空题1. 使式子x 4 有意义的条件是。

【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。

【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。

m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。

【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。

【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。

【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。

2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。

【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。

1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。

2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题

2018-2019学年初中数学二次根式、勾股定理、平行四边形一次函数和数据的分析中考模拟考试测试题
①求y关于n的函数关系式;
②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?
(3)实际进货时,厂家对B型手机出厂价下调m(30<m<100)元,且限定商店最多购进B型手机80台.若商店保持两种手机的售价不变,请你根据以上信息及(2)中的条件,设计出使这110部手机销售总利润最大的进货方案.
24.某初中在“读书共享月”活动中.学生都从家中带了图书到学校给大家共享阅读.经过抽样调查得知,初一人均带了2册;初二人均带了3.5册:初三人均带了2.5册.已知各年级学生人数的扇形统计图如图所示,其中初三共有210名学生.请根据以上信息解答下列问题:
(1)扇形统计图中,初三年级学生数所对应的圆心角为°;
28.如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于 BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)根据条件与作图信息知四边形ABEF是
A.非特殊的平行四边形
B.矩形
C.菱形
D.正方形
(2)设AE与BF相交于点O,四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
22.随着”互联网+“时代的到来,利用网络呼叫专车的打车方式深受大众欢迎.据了解,在非高峰期时,某种专车所收取的费用y(元)与行驶里程x(km)的函数图象如图所示.请根据图象,回答下列问题:
(1)当x≥5时,求y与x之间的函数关系式;
(2)若王女士有一次在非高峰期乘坐这种专车外出,共付费47元,求王女士乘坐这种专车的行驶里程.
【详解】
∵EF∥BC,GH∥AB,
∴四边形HPFD、BEPG、AEPH、CFPG为平行四边形,
∴S△PEB=S△BGP,

二次根式勾股定理平行四边形

二次根式勾股定理平行四边形

数 学 前三章复习 试 题(试题范围:二次根式、勾股定理、平行四边形)一、选择题(共12小题,每小题4分,共48分)下面每小题给出的四个选项中, 有且只有一个是正确的, 请把正确选项前的代号填在答卷指定位置.1、 计算()24-- 38 的结果是( ).A.2 B.±2 C.-2或0 D.0.2、如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠= ,则AEF ∠=( ) A .110° B .115°C .120°D .130° 3、已知Rt △ABC 中,∠C=90°,若a+b=14cm,c=10cm , 则Rt △ABC 的面积是( )A.24cm 2B.36cm 2C.48cm 2D.60cm 24、下列各式不是最简二次根式的是( )A. 21a +B. 21x +C. 24bD. 0.1y5、 已知:如图,菱形ABCD 中,对角线AC 与BD相交于点O,OE ∥DC 交BC 于点E,AD=6cm,则OE 的长为( ).A.6 cmB.4 cmC.3 cmD.2 cm6、给出下列几组数:①6,7,8;②8,15,6;③n 2-1 ,2n ,n 2+1;④21+,21-,6 .其中能组成直角三角形三条边长的是( )A .①③B .②④C .①②D .③④7、 如图,正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,则∠FAB 等于( )A .22.5°B .45°C .30° D.135°第2题C AB1A 0-1-218、若0<x<1,则(x -1x )2+4 -(x+1x)2-4 等于( ) A. 2x B. - 2xC. -2xD. 2x 9、如图,在平行四边形ABCD 中(AB ≠BC),直 线EF 经过其对角线的交点O,且分别交AD 、BC 于点M 、N , 交BA 、DC 的延长线于点E 、F ,下列结论: ①AO=BO ;②OE=OF ;③△EAM ≌△CFN ; ④△EAO ≌△CNO ,其中正确的是( )A. ①②B. ②③C. ②④D.③④ 10、小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( ).A.2mB.2.5cmC.2.25mD.3m11、如图,数轴上的点A 所表示的数为x ,则x 2—10的立方根为( ) A .2-10 B .-2-10 C .2 D .-2 12、已知:如图,在正方形ABCD 外取一点E , 连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为;③EB ⊥ED ;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是( )A .①③④B .①②⑤C .③④⑤D .①③⑤二、填空题(共6小题,每小题4分,共24分)下列不需要写出解答过程,请将结果直接填写在答卷指定的位置.13、(-4)2的算术平方根是______,25的平方根是______.14、函数y= x+2x -1中自变量x 的取值范围是 。

专题02 二次根式综合(压轴33题10个考点)(解析版)

专题02二次根式综合(压轴33题10个考点)一.二次根式的定义(共1小题)1.若是整数,则正整数n的最小值是51.【答案】51.【解答】解:∵204=4×51,∴,∴,∵是整数,且n是整数,∴n的最小值为:51.故答案为:51.二.二次根式有意义的条件(共3小题)2.使式子有意义的x的取值范围是()A.x≥﹣1B.﹣1≤x≤2C.x≤2D.﹣1<x<2【答案】B【解答】解:根据题意,得,解得,﹣1≤x≤2;故选:B.3.已知|2004﹣a|+=a,则a﹣20042=2005.【答案】2005.【解答】解:∵有意义,∴a﹣2005≥0,解得:a≥2005,∴|2004﹣a|+=a﹣2004+=a,故=2004,∴a﹣2005=20042,∴a﹣20042=a﹣(a﹣2005)=a﹣a+2005=2005.故答案为:2005.4.已知,则x2022y2023=﹣.【答案】.【解答】解:∵,即,解得:,∴x=2,∴,∵x2022y2023=(xy)2022•y,将x=2,代入,∴x2022y2023=(xy)2022•y=[2×(﹣)]2022×(﹣)=(﹣1)2022×(﹣)=﹣.故答案为:.三.二次根式的性质与化简(共8小题)5.已知x<1,则化简的结果是()A.x﹣1B.x+1C.﹣x﹣1D.1﹣x【答案】D【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选:D.6.实数a,b表示的点在数轴上的位置如图,则将化简的结果是()A.4B.2a C.2b D.2a﹣2b【答案】A【解答】解:由数轴知:﹣2<a<﹣1,1<b<2,a<b,∴a+2>0,b﹣2<0,a﹣b<0.∴=|a+2|+|b﹣2|+|a﹣b|=a+2+2﹣b+b﹣a=4.故选:A.7.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.【答案】C【解答】解:由图中规律知,前(n﹣1)行的数据个数为2+4+6+…+2(n﹣1)=n(n ﹣1),所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数的被开方数是n(n﹣1)+n﹣3=n2﹣3,所以第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是.故选:C.8.已知T1===,T2===,T3===,…T n=,其中n为正整数.设S n=T1+T2+T3+…+T n,则S2021值是()A.2021B.2022C.2021D.2022【答案】A【解答】解:由T1、T2、T3…的规律可得,T1==1+(1﹣),T2==1+(﹣),T3==1+(﹣),……T2021==1+(﹣),所以S2021=T1+T2+T3+…+T2021=1+(1﹣)+1+(﹣)+1+(﹣)+…+1+(﹣)=(1+1+1+…+1)+(1﹣+﹣+﹣+…+﹣)=2021+(1﹣)=2021+=2021,故选:A.9.已知a≠0,b≠0且a<b,化简的结果是﹣a.【答案】﹣a.【解答】解:由题意:﹣a3b≥0,即ab≤0,∵a<b,∴a<0<b,所以原式=|a|=﹣a,故答案为:﹣a.10.已知|x+2|+|1﹣x|=9﹣﹣,则x+y的最小值为﹣3.【答案】﹣3.【解答】解:∵|x+2|+|1﹣x|=9﹣﹣,∴|x+2|+|x﹣1|+|y+1|+|y﹣5|=9,∵|x+2|+|x﹣1|可理解为在数轴上,数x的对应的点到﹣2和1两点的距离之和;|y+1|+|y ﹣5|可理解为在数轴上,数y的对应的点到﹣1和5两点的距离之和,∴当﹣2≤x≤1,|x+2|+|x﹣1|的最小值为3;当﹣1≤y≤5时,|y+1|+|y﹣5|的最小值为6,∴x的范围为﹣2≤x≤1,y的范围为﹣1≤y≤5,当x=﹣2,y=﹣1时,x+y的值最小,最小值为﹣3.故答案为﹣3.11.若,则m的取值范围是m≤4.【答案】见试题解答内容【解答】解:,得4﹣m≥0,解得m≤4,故答案为:m≤4.12.若x<2,化简|﹣x|的正确结果是2x+2或﹣4x+2.【答案】2x+2或﹣4x+2.【解答】解:当0≤x<2时,原式=|x﹣2|+3x=2﹣x+3x=2x+2;当x<0时,原式=|x﹣2|﹣3x=2﹣x﹣3x=﹣4x+2.故答案为:2x+2或﹣4x+2.四.二次根式的乘除法(共4小题)13.使式子成立的条件是()A.a≥5B.a>5C.0≤a≤5D.0≤a<5【答案】B【解答】解:由题意得:,解得:a>5.故选:B.14.“分母有理化”是我们常用的一种化简的方法,如:==7+ 4,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于﹣,设x=﹣,易知>,故x>0,由x2=(﹣)2=3++3﹣﹣2=2,解得x=,即﹣=.根据以上方法,化简+﹣后的结果为()A.5+3B.5+C.5﹣D.5﹣3【答案】D【解答】解:设x=﹣,且>,∴x<0,∴x2=6﹣3﹣2+6+3,∴x2=12﹣2×3=6,∴x=,∵=5﹣2,∴原式=5﹣2﹣=5﹣3,故选:D.15.若a,b为有理数且满足,则a+b=4.【答案】1.【解答】解:∵,∴=.∴a=3,b=1.∴a+b=3+1=4.故答案为:4.16.阅读下面的解题过程体会如何发现隐含条件并回答下面的问题化简:.解:隐含条件1﹣3x≥0,解得:.∴1﹣x>0.∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x.【启发应用】(1)按照上面的解法,试化简.【类比迁移】(2)实数a,b在数轴上的位置如图所示,化简:.(3)已知a,b,c为A B C的三边长.化简:.【答案】(1)1;(2)﹣a﹣2b;(3)2a+2b+2c.【解答】解:(1)隐含条件2﹣x≥0,解得:x≤2,∴x﹣3<0,∴原式=(3﹣x)﹣(2﹣x)=3﹣x﹣2+x=1;(2)观察数轴得隐含条件:a<0,b>0,|a|>|b|,∴a+b<0,b﹣a>0,∴原式=﹣a﹣a﹣b﹣b+a=﹣a﹣2b;(3)由三角形的三边关系可得隐含条件:a+b+c>0,a﹣b<c,b﹣a<c,c﹣b<a,∴a﹣b﹣c<0,b﹣a﹣c<0,c﹣b﹣a<0,∴原式=(a+b+c)+(﹣a+b+c)+(﹣b+a+c)+(﹣c+b+a)=a+b+c﹣a+b+c﹣b+a+c﹣c+b+a=2a+2b+2c.五.分母有理化(共1小题)17.阅读材料:我们已经知道,形如的无理数的化简要借助平方差公式:例如:.下面我们来看看完全平方公式在无理数化简中的作用.问题提出:该如何化简?建立模型:形如的化简,只要我们找到两个数a,b,使a+b=m,ab=n,这样=m,,那么便有:(a>b),问题解决:化简:,解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12,即=7,∴.模型应用1:利用上述解决问题的方法化简下列各式:(1);(2);模型应用2:(3)在Rt△ABC中,∠C=90°,AB=4﹣,AC=,那么BC边的长为多少?(结果化成最简).【答案】(1)1+;(2)2﹣;(3)2﹣2.【解答】解:(1)这里m=6,n=5,由于1+5=6,1×5=5,即12+()2=6,1×=,所以:===1+;(2)首先把化为,这里m=13,n=40,由于5+8=13,5×8=40,即()2+()2=13,×=,所以====﹣=2﹣;(3)在Rt△ABC中,由勾股定理得,AC2+BC2=AB2,所以,所以,.六.同类二次根式(共1小题)18.已知最简二次根式与是同类二次根式,则a的值为()A.16B.0C.2D.不确定【答案】B【解答】解:∵=3,而最简二次根式与是同类二次根式,∴a+2=2,解得a=0.故选:B.七.二次根式的加减法(共1小题)19.若,则x﹣x2的值为﹣6.【答案】﹣6.【解答】解:由题意得,x﹣2≥0.∴x≥2.∴1﹣x<0.∴.∴x﹣1+=x.∴.∴x=3.∴x﹣x2=3﹣9=﹣6.故答案为:﹣6.八.二次根式的混合运算(共4小题)20.已知,,则2y﹣3x的平方根为±4.【答案】±4.【解答】解:∵,∴96﹣x≥0,∴x≤96,∴100﹣x+96﹣x=200,解得x=﹣2,∵,∴m+23≥0,m﹣2≥0,2﹣m≥0,解得m=2,∴y=5,∴±=±=±4,故答案为:±4.21.计算的结果是+.【答案】+.【解答】解:原式=[(﹣)(+)]2022×(+)=(2﹣3)2022×(+)=+.故答案为:+.22.已知a=,b=.(1)求a+b的值;(2)设m是a小数部分,n是b整数部分,求代数式4m2+4mn+n2的值.【答案】(1)2;(2)20.【解答】解:(1)a===﹣2,b===+2.a+b=﹣2++2=2,(2)∵2<<3,∴0<﹣2<1,4<+2<5,∴m=﹣2,n=4,∴4m2+4mn+n2=(2m+n)2=(2﹣4+4)2=20.23.先阅读下面的材料,再解答下列问题.∵,∴.特别地,,∴.这种变形叫做将分母有理化.利用上述思路方法计算下列各式:(1);(2).【答案】(1)2020;(2)1.【解答】解:(1)===2021﹣1=2020;(2)====1.九.二次根式的化简求值(共8小题)24.已知,则代数式x2﹣2x﹣6的值是()A.B.﹣10C.﹣2D.【答案】C【解答】解:∵,∴x﹣1=,∴x2﹣2x﹣6=(x﹣1)2﹣7=()2﹣7=5﹣7=﹣2,故选:C.25.已知,,则a与b的关系是()A.a=b B.ab=1C.ab=﹣1D.a+b=0【答案】D【解答】解:a===3﹣=﹣(﹣3),A.a=﹣b,故本选项不符合题意;B.ab=(3﹣)×(﹣3)=﹣(﹣3)2=﹣(5﹣6+3)=﹣5+6﹣3=﹣8+6,故本选项不符合题意;C.ab=﹣8+6,故本选项不符合题意;D.a+b=3﹣+﹣3=0,故本选项符合题意.故选:D.26.若x2+y2=1,则++的值为()A.0B.1C.2D.3【答案】D【解答】解:∵x2+y2=1,∴﹣1≤x≤1,﹣1≤y≤1,∵==,x+1≥0,y﹣2<0,(x+1)(y﹣2)≥0,∴x+1=0,∴x=﹣1,∴y=0,∴++=2+1+0=3.故选:D.27.若a=2+,b=2﹣,则=8.【答案】8.【解答】解:∵a=2+,b=2﹣,∴a2=(2+√5)2=4+4+5=9+4,b2=(2﹣)2=4﹣4+5=9﹣4,ab=(2+)(2﹣)=4﹣5=﹣1.﹣===8.故答案为:8.28.若m=,则m3﹣m2﹣2017m+2015=4030.【答案】见试题解答内容【解答】解:∵m====,∴原式=m2(m﹣1)﹣2017m+2015=(+1)2×﹣2017(+1)+2015=(2017+2)﹣2017﹣2017+2015=2017+2×2016﹣2017﹣2017+2015=4032﹣2=403029.已知a=2+,b=,则a2﹣3ab+b2的值为11.【答案】11.【解答】解:当a=2+,b=时,a2﹣3ab+b2,=﹣+,=,=,=11.30.某同学在解决问题:已知,求2a2﹣8a+1的值.他是这样分析与求解的:先将a进行分母有理化,过程如下,,∴,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据上述分析过程,解决如下问题:(1)若,请将a进行分母有理化;(2)在(1)的条件下,求a2﹣2a的值;(3)在(1)的条件下,求2a3﹣4a2﹣1的值.【答案】(1);(2)1;(3).【解答】解:(1)a===;(2)∵,∴(a﹣1)2=2,(a﹣1)2=a2﹣2a+1,∴a2﹣2a+1=2,∴a2﹣2a=1;(3)根据(2)可知,a2﹣2a=1,∴2a3﹣4a2﹣1=2a(a2﹣2a)﹣1=2a﹣1,当a=时,原式=2()﹣1=2.31.小芳在解决问题:已知a=,求2a2﹣8a+1的值.他是这样分析与解的:a==2﹣,∴a=2﹣,∴(a﹣2)2=3,a2﹣4a+4=3,∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小芳的分析过程,解决如下问题:(1)计算:.(2)若a=.①化简a,求4a2﹣8a﹣1的值;②求a3﹣3a2+a+1的值.【答案】(1)9;(2)①a=+1,4a2﹣8a﹣1的值是3;②0.【解答】解:(1)=﹣1+++…+=﹣1+=﹣1+10=9;(2)①a====+1,∴a=+1,∴(a﹣1)2=()2=2,∴a2﹣2a+1=2,∴a2﹣2a=1,∴4a2﹣8a﹣1=4(a2﹣2a)﹣1=4×1﹣1=4﹣1=3;②由①知a2﹣2a=1,∴a3﹣3a2+a+1=a(a2﹣2a)﹣(a2﹣2a)﹣a+1=a×1﹣1﹣a+1=a﹣1﹣a+1=0.十.二次根式的应用(共2小题)32.俊俊和霞霞共同合作将一张长为,宽为1的矩形纸片进行裁剪(共裁剪三次),裁剪出来的图形刚好是4个等腰三角形(无纸张剩余).霞霞说:“有一个等腰三角形的腰长是1”;俊俊说:“有一个等腰三角形的腰长是﹣1”;那么另外两个等腰三角形的腰长可能是1或或2﹣.【答案】1或或2﹣.【解答】解:如图1方式裁剪,另两个等腰三角形腰长是或;如图2方式裁剪,另两个等腰三角形腰长都是1.故答案为:1或或2﹣.33.古希腊几何学家海伦通过证明发现:如果一个三角形的三边长分别为a,b,c.记,那么三角形的面积为,俗称海伦公式,若在△ABC中,AB=3,BC=6,AC=7,则用海伦公式求得△ABC的面积为.【答案】【解答】解:由题意可得:a=6,b=7,c=3,∴,∴===,故答案为:.。

郭家河40班试卷14

学校 班级 考号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ISBN:ZTGJH-8-2014-12 秘密启用前初 中 八 年 级 学 业 水 平 考 试 模 拟 试 卷数 学(二次根式,勾股定理,平行四边形,一次函数,数据的分析) (全卷共三个大题,满分120分,考试时间120分钟)一、选择题。

(每小题3分,共36分) 1. 如果代数式有意义,那么x 的取值范围是( )A .x ≥0B .x ≠1C .x >0D .x ≥0且x ≠12. 下列各组数中,以a 、b 、c 为边的三角形不是直角三角形的是( ) A 1.5,2,3a b c === B 7,24,25a b c === C 6,8,10a b c === D 3,4,5a b c ===3.如图,直线l 上有三个正方形a b c ,,,若a c ,的面积分别为5A.4 B.6 C . 16 D.554. 如图,在平行四边形ABCD 中,下列结论中错误的是( )5. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是边AD ,AB 的中点,EF 交AC 于点H ,则的值为( )..6. 0)y kx b k =+≠(的图象如图所示,当0y >时,x 的取值范围是( )A.0x <B.0x >C.2x <D.2x >7. 体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x 人,进3个球的有y 人,若(x ,y )恰好是两条直线的交点坐标,则这两条直线的解析式是A.y=x+9与y=3x+3B. y=-x+9与y=3x+3C. y=-x+9与y=-23x+223D. y=x+9与y=-23x+2239.已知:ΔABC 中,AB=4,AC=3,BC=7,则ΔABC 的面积是( ) A.6 B.5 C.1.57 D.2710. 矩形纸片ABCD 的边长AB=8,AD=4,将矩形纸片沿EF 折叠,使点A 与点C 重合,折叠后在某一面着色(如图),则着色部分的面积为( )形的是( )12.有一块直角三角形纸片,如图所示,两直角边AC =6cm,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题。

人教版八年级数学下册第十七章-勾股定理综合训练练习题(无超纲)

人教版八年级数学下册第十七章-勾股定理综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,5==,8AB ACBC=,D是线段BC上的动点(不含端点B、C).若线段AD长为正整数,则点D的个数共有()A.4个B.3个C.2个D.1个2、如图,在△ABC中,已知AB=AC=3,BC=4,若D,E是边BC的两个“黄金分割”点,则△ADE的面积为()A.10﹣B. 5 C D.20﹣3、如图,有一个长、宽、高分別为2m、3m、1m的长方体,现一只蚂蚁沿长方体表面从A点爬到B点,那么最短的路径是()A.3√2m B.√3m C.√2m D.2√5m4、如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是()A.3cm B.5cm C.6cm D.8cm5、如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的点B'处,点B C'=,则AM的长为()A的对应点为点A',3A.1.8 B.2 C.2.3 D6、如图,一圆柱高12cm,底面半径为3cm,一只蚂蚁从点A沿圆柱表面爬到点B处吃食物,要爬行的最短路程(π取3)是()A.15cm B.21cm C.24cm D7、下列是勾股数的一组是()A.6,8,10 B.2,3,4 C.1,2,3 D.5,7,118、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得5AC=米,在点C正上方找一点D (即DC BCCDB∠=︒,30⊥),测得60∠=︒,则景观池的长AB为()ADCA.5米B.6米C.8米D.10米9、下列条件中,能判断△ABC是直角三角形的是()cA.a:b:c=3:4:4 B.a=1,bC.∠A:∠B:∠C=3:4:5 D.a2:b2:c2=3:4:510、如图,一只蚂蚁沿着边长为4的正方体表面从点A出发,爬到点B,如果它运动的路径是最短的,则AC的长为()A.B.4 C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在△ABC中,∠ABC=97.5°,P、Q两点在AC边上,PB=2,BQ=,PQ M、N分别在边AB、BC上,∠=_______.(1)PBQ(2)当四边形PQNM的周长最小时,(MP+MN+NQ)2=_______.2、如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S,则移动的最短距离为 _____.3、如图,在ABC ∆中,90C ∠=︒,15B ∠=︒,3AC =,AB 的垂直平分线l 交BC 于点D ,连接AD ,则BC 的长为__________.4、如图,一个圆柱形工艺品高为16厘米,底面周长12厘米,现在需要从下底的A 处绕侧面一周,到上底B (A 的正上方)处镶嵌一条金丝,则金丝至少____厘米.5、如图,正方形OABC 的边OC 落在数轴上,OC =2,以O 为圆心,OB 长为半径作圆弧与数轴交于点D ,则点D 表示的数是 _______.三、解答题(5小题,每小题10分,共计50分)1、图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点,且每个小正方形的边长均为1.图中点A ,B ,C 均在格点上,请分别在给定的网格中画出格点M ,使点M 满足相应的要求.(1)在图①中画出格点M ,连结MA ,使MA =5.(2)在图②中画出格点M,连结MA,MB,MC,使MA=MB=MC.2、在△ABC中,AB、BC、AC这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.这种方法叫做构图法.(1)△ABC的面积为:;(2)若△DEF1的正方形网格中画出相应的△DEF,并利用构图法求出它的面积;(3)如图2,一个六边形的花坛被分割成7个部分,其中正方形PRBA,RQDC,QPFE的面积分别为13,10,17,且△PQR、△BCR、△DEQ、△AFP的面积相等,求六边形花坛ABCDEF的面积.3、如图,已知线段a,h.(1)尺规作图:作等腰ABC,使底边BC长为a,BC上的高为h.(2)若10a =,12h =,求ABC ∆的周长.4、如图,在△ABC 中,∠ACB =90°,AB =10cm ,BC =6cm ,若点P 从点A 出发,以每秒4厘米的速度沿折线A ﹣C ﹣B ﹣A 运动(运动一周回到点A 时停止运动),设运动时间为t 秒(>0).(1)点P 在AC 上运动时,是否存在点P ,使得PA =PB ?若存在,求出t 的值;若不存在,说明理由;(2)若点P 运动到BC 上某点时使△ACP 的面积为16cm 2,求此时t 的值.5、(阅读理解)我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b ,斜边长为c .图中大正方形的面积可表示为()2a b +,也可表示为2142c ab +⨯,即()22142a b c ab +=+⨯=,所以222+=a b c . (尝试探究)美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE ,其中BCA ADE △△≌,90C D ∠=∠=︒,根据拼图证明勾股定理.(定理应用)在Rt ABC △中,90C ∠=︒,A ∠、B 、C ∠所对的边长分别为a 、b 、c .求证:222244a c a b c b +=-.---------参考答案-----------一、单选题1、B【分析】首先过A作AE⊥BC,当D与E重合时,AD最短,首先利用等腰三角形的性质可得BE=EC,进而可得BE 的长,利用勾股定理计算出AE长,然后可得AD的取值范围,进而可得答案.【详解】解:如图:过A作AE⊥BC于E,∵在△ABC中,AB=AC=5,BC=8,∴当AE⊥BC,EB=EC=4,∴AE3,∵D是线段BC上的动点(不含端点B,C).若线段AD的长为正整数,∴3⩽AD<5,∴AD=3或AD=4,当AD =4时,在靠近点B 和点C 端各一个,故符合条件的点D 有3点.故选B .【点睛】本题主要考察了等腰三角形的性质,勾股定理的应用,解题的关键是熟练掌握等腰三角形的性质,勾股定理的计算.2、A【分析】过点A 作AF ⊥BC 于点F ,由题意易得2BF CF ==,再根据点D ,E 是边BC 的两个黄金分割点,可得2BE CD ===,根据勾股定理可得AF =28DE DF ==,然后根据三角形的面积计算公式进行求解.【详解】解:过点A 作AF ⊥BC 于点F ,如图所示:∵3AB AC ==,4BC =,∴2BF CF ==,∴在Rt △AFB 中,AF∵点D ,E 是边BC 的两个黄金分割点,∴2BE CD ===,∵4EF BE BF =-=,4DF CD CF =-=,∴DF =EF ,∴28DE DF ==,∴()1181022ADE S DE AF ==-△ 故选:A【点睛】 本题主要考查二次根式的运算、勾股定理及等腰三角形的性质与判定,熟练掌握二次根式的运算、勾股定理及等腰三角形的性质与判定是解题的关键.3、A【分析】将图形分三种情况展开,利用勾股定理求出两种情况下斜边的长进行比较,其值最小者即为正确答案..【详解】解:如图(1),AB =√(2+3)2+12=√26(m );如图(2),AB =√22+(1+3)2=√20=2√5(m );如图(3),AB =√32+(2+1)2=3√2(m ),∵3√2<2√5<√26,∴最短的路径是3√2m.故选:A.【点睛】本题主要考查了勾股定理的应用,两点之间线段最短,解题的关键在于能够把长方体展开,利用勾股定理求解.4、D【分析】当铅笔不垂直于底面放置时,利用勾股定理可求得铅笔露出笔筒部分的最小长度;考虑当铅笔垂直于笔筒底面放置时,铅笔在笔筒外面部分的长度是露出的最大长度;从而可确定答案.【详解】=,则铅笔在笔筒外部分的最小长度为:15(cm)18−15=3(cm);当铅笔垂直于笔筒底面放置时,铅笔在笔筒外面部分的长度为18−12=6(cm),即铅笔在笔筒外面最长不超过6cm,从而铅笔露出笔筒部分的长度不短于3cm,不超过6cm.所以前三项均符合题意,只有D选项不符合题意;故选:D【点睛】本题考查了勾股定理的实际应用,关键是把实际问题抽象成数学问题,分别考虑两种极端情况,问题即解决.5、B【分析】连接BM,MB′,由于CB′=3,则DB′=6,在Rt△ABM和Rt△MDB′中由勾股定理求得AM的值.【详解】解:连接BM,MB′,设AM=x,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵折叠,∴MB=MB′,∴AB2+AM2= MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2,故选:B.【点睛】本题考查了翻折的性质,对应边相等,利用了勾股定理建立方程求解.6、A【分析】根据题意可把立体图形转化为平面图形进行求解,如图,然后根据勾股定理可进行求解.【详解】解:如图,∵圆柱高12cm,底面半径为3cm,∴2312cm,392BC ACππ⨯====,∴在Rt△ACB中,由勾股定理得15cmAB=,∴蚂蚁从点A沿圆柱表面爬到点B处吃食物,要爬行的最短路程为15cm;故选A.【点睛】本题主要考查勾股定理,熟练掌握勾股定理求最短路径问题是解题的关键.7、A【分析】根据勾股数的定义逐项分析即可.【详解】解:A 、∵62+82=102,∴此选项符合题意;B 、∵22+32≠42,∴此选项不符合题意;C 、∵12+22≠32,∴此选项不符合题意;D 、∵52+72≠112,∴此选项不符合题意.故选:A .【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a ,b ,c 为正整数,且满足a 2+b 2=c 2,那么,a 、b 、c 叫做一组勾股数.8、D【分析】利用勾股定理求出CD 的长,进而求出BC 的长,AB BC AC =- 即可求解.【详解】解:∵DC BC ⊥,∴90DCB ∠=︒ ,∵30ADC ∠=︒,5AC =,∴210AD AC == ,∴CD =,∵60CDB ∠=︒,∴30B ∠=︒ ,∴2BD CD ==,∴15BC = ,∴15510m AB BC AC =-=-= ,故选:D .【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理.9、B【分析】根据勾股定理的逆定理,以及三角形的内角等于180︒逐项判断即可.【详解】A ,设3a x =,4b x ,4=c x ,此时()()()222344x x x +≠,故ABC 不能构成直角三角形,故不符合题意;B ,2221+=,故ABC 能构成直角三角形,故符合题意C ,::3:4:5A B C ∠∠∠=且180A B C ∠+∠+∠=︒,设3A x ∠=,4B x ∠=,5C x ∠=,则有12180x =︒,所以15x =︒,则75C ∠=︒,故ABC 不能构成直角三角形,故不符合题意;D ,设23a x =,24b x =,25c x =,则345x x x +≠,即222a b c +≠,故ABC 不能构成直角三角形,故不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,和三角形的内角和等知识,能熟记勾股定理的逆定理内容和三角形内角和等于180︒是解题关键.10、C【分析】将正方体展开,右边的正方形与前面正方形放在一个面上,此时AB 最短,根据三角形中位线,求出CN 的长,利用勾股定理求出AC 的长即可.【详解】解:将正方体展开,右边的正方形与前面正方形放在一个面上,展开图如图所示,此时AB 最短, ∵AN =MN ,CN ∥BM∴CN =12BM =2,在Rt △ACN 中,根据勾股定理得:AC故选:C . .【点睛】本题考查了平面展开-最短路径问题,涉及的知识有:三角形中位线,勾股定理,熟练求出CN 的长是解本题的关键.二、填空题1、45°【分析】作点P 关于AB 的对称点P ',点Q 关于BC 的对称点Q ',连接P Q ''交AB 于M ,交BC 于N ,此时四边形PQNM的周长最小,过点P 作PH BQ ⊥于H ,由勾股定理求出BH =PH BH =45PBQ ∠=︒,再求出150P BQ ∠''=︒,过点Q '作Q K P B '⊥'于K ,在Rt BKQ ∆'中,30KBQ ∠'=︒,BQ BQ '==则KQ '=BK =,在Rt △P Q K ''中,由勾股定理得222P Q ''=+【详解】解:(1)如图,作点P 关于AB 的对称点P ',点Q 关于BC 的对称点Q ',连接P Q ''交AB 于M ,交BC 于N ,此时四边形PQNM 的周长最小,过点P 作PH BQ ⊥于H ,22222PH PB BH PQ HQ ∴=-=-,22222)BH BH ∴-=-,解得:BH =2422PH ∴=-=,PH ∴=PH BH ∴==45PBQ ∴∠=︒,(2)ABP ABP ∠=∠',CBQ CBQ ∠=∠',2()2150P BQ ABC PBQ PBQ ABC PBQ ∴∠''=∠-∠+∠=∠-∠=︒,过点Q '作Q K P B '⊥'于K ,在Rt BKQ ∆'中,18015030KBQ ∠'=︒-︒=︒,BQ BQ '==12KQ BQ ∴'='=,BK在Rt △P Q K ''中,2KP BP BK '='+=KQ '=222(222P Q ∴''=+=+22()22MP MN NQ P Q ∴++=''=+【点睛】本题考查轴对称最短问题、勾股定理、含30角的直角三角形的性质、轴对称的性质等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,由直角三角形解决问题.2、10【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可得出AS 的长.【详解】解:如图所示,∵AB =12×16=8,BS =12BC =6,∴AS 10.故答案为:10.【点睛】本题考查的是平面展开一最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解答此题的关键.3、6+【分析】由线段垂直平分线的性质定理得AD=BD,从而有∠DAB=∠B=15゜,由三角形外角性质可得∠ADC=30゜,由含30度角的直角三角形的性质及勾股定理即可求得AD与CD的长,最后可求得BC的长.【详解】∵直线l是线段AB的垂直平分线∴AD=BD∴∠DAB=∠B=15゜∴∠ADC=∠DAB+∠B=30゜∵90AC=∠=︒,3C∴AD=2AC=6∴BD=AD=6由勾股定理得:CD==∴6=+=+BC BD CD故答案为:6+【点睛】本题考查了线段垂直平分线的性质定理,等腰三角形的性质,含30度角的直角三角形的性质及勾股定理,熟练运用这些知识是关键.4、20【分析】将圆柱的侧面展开,得到一个矩形,然后利用两点之间线段最短可得AB'的长即是金丝的最短路线长,然后由勾股定理求解即可.【详解】解:解:沿AB 剪开可得矩形,如图所示:∵圆柱的高为16厘米,底面圆的周长为12厘米,∴A B ''=AB =16厘米,AA '=12厘米,在Rt AA B ''△中,2222121620AB A A A B ''''=+=+=,即金丝的最短路线长是:20厘米.故答案为:20.【点睛】本题考查了平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.5、﹣【分析】根据勾股定理求出OB 的长,即OD 的长,再根据两点间的距离求出点D 对应的数.【详解】解:由勾股定理知:OB =∴OD =∴点D 表示的数为﹣故答案为:﹣【点睛】此题考查了正方形的性质,勾股定理和实数与数轴,得出OD 的长是解题的关键.三、解答题1、(1)见解析;(2)见解析【分析】(1)根据勾股定理解答;(2)连接AB、BC,分别作其垂直平分线,两平分线交点即为所求点M.【详解】解:如图,由勾股定理得5AM=;(2)如图,点M即为所求.【点睛】此题考查了网格中作图,勾股定理的应用,线段垂直平分线的性质,正确理解线段垂直平分线的性质是解题的关键.2、(1)3.5;(2)见解析,3;(3)62【分析】(1)根据网格特点,由长方形的面积减去长方形内除所求三角形以外三个三角形面积即可求解;(2)根据三边的长度,利用勾股定理在网格中画出相应的三角形,利用(1)中方法求解面积即可;(3)先利用正方形的面积求出PR、RQ、PQ,根据构图法求出△PQR的面积,将七个图形面积加起来即可求得该六边形的面积.【详解】解:(1)根据网格,S△ABC=3×3﹣12×2×1﹣12×2×3﹣12×1×3=9﹣1﹣3﹣32=3.5,故答案为:3.5;(22212,∴利用构图法画出相应的△DEF,如图所示,∴S△DEF=2×4﹣12×2×1﹣12×2×2﹣12×1×4=8﹣1﹣2﹣2=3;(3)∵正方形PRBA,RQDC,QPFE的面积分别为13,10,17,∴PRRQ QP构造△PQR,如图所示,∴S△PQR=3×4﹣12×3×1﹣12×2×3﹣12×1×4=12﹣32﹣3﹣2=112,∵△PQR、△BCR、△DEQ、△AFP的面积相等,∴该六边形的面积为13+10+17+4×112=62.【点睛】本题考查网格作图、勾股定理、二次根式的应用、正方形的面积公式、三角形的面积公式、长方形的面积公式,理解构图法的原理,借助网格法和割补法求解图形面积是解答的关键.3、(1)见解析;(2)36.【分析】(1)先在射线BP 上截取BC a =,再作BC 的垂直平分线l 交BC 于D ,然后在直线l 上截取DA h =,则ABC ∆满足条件;(2)先根据等腰三角形的性质得到5BD CD ==,再利用勾股定理计算出13AB =,然后计算ABC ∆的周长.【详解】解:(1)如图,ABC ∆为所作;(2)ABC ∆为等腰三角形,AD BC ⊥,152BD CD BC ∴===,在Rt ABD ∆中,13AB =,ABC ∴∆的周长为:13131036AB AC BC ++=++=.【点睛】本题考查等腰三角形的性质以及勾股定理,掌握等腰三角形的性质是解题的关键.4、(1)2516t =;(2)3t = 【分析】(1)如图所示,连接PB ,则4cm PB PA t ==,先由勾股定理求出8cm AC =,最后在直角△BCP 中利用勾股定理求解即可;(2)根据题意可得()48cm CP t =-,再由21=16cm 2ACP S AC CP =⋅△进行求解求解. 【详解】解:(1)假设存在,如图所示,连接PB ,由题意得:4cm PA t =,∴4cm PB PA t ==,∵∠ACB =90°,AB =10cm ,BC =6cm ,∴8cm AC ,∴()84cm PC AC PA t =-=-,∵222PB PC BC =+,∴()()2224846t t =-+, 解得2516t =, ∵2584216t =<÷=, ∴2516t =符合题意, ∴当2516t =时,存在点P ,使得PA =PB ;(2)由题意得:()48cm CP t =-, ∵21=16cm 2ACP S AC CP =⋅△, ∴()1848=162t ⨯-,∴3t =.【点睛】本题主要考查了勾股定理,解题的关键在于能够熟练掌握勾股定理.5、尝试探究:证明见解析;定理应用:证明见解析【分析】尝试探究:根据全等三角形性质,得BAC AED ∠=∠,结合题意,根据直角三角形两锐角互余的性质,推导得90BAE ∠=︒;结合梯形、三角形面积计算公式,通过计算即可证明222+=a b c ; 定理应用:根据提取公因式、平方差公式的性质分析,即可完成222244a c a b c b +=-证明.【详解】尝试探究:∵BCA ADE △△≌,∴BAC AED ∠=∠.∵90D ∠=︒∴90DAE AED ∠+∠=︒.∴90DAE BAC ∠+∠=︒.∵180BAC AED BAE ∠+∠+∠=︒.∴90BAE ∠=︒. ∵直角梯形的面积可以表示为()212a b +,也可以表示为211222ab c ⨯+, ∴()221112222a b ab c +=⨯+, 整理,得222+=a b c .定理应用:在Rt ABC △中,90C ∠=︒,∴222+=a b c ;∵2222a c a b +()222a c b =+.44c b -()()()2222222c b c b a c b =+-=+∴222244a c a b c b +=-.【点睛】本题考查了勾股定理、直角三角形、全等三角形、平方差公式的知识;解题的关键是熟练掌握全等三角形、直角三角形两锐角互余、平方差公式的性质,从而完成求解.。

勾股定理及二次根式综合复习(含答案)

勾股定理及⼆次根式综合复习(含答案)勾股定理及⼆次根式复习⼀、知识梳理:(⼀)勾股定理:1、勾股定理定义:如果直⾓三⾓形的两直⾓边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直⾓三⾓形两直⾓边的平⽅和等于斜边的平⽅勾:直⾓三⾓形较短的直⾓边股:直⾓三⾓形较长的直⾓边弦:斜边勾股定理的逆定理:如果三⾓形的三边长a ,b ,c 有下⾯关系:a 2+b 2=c 2,那么这个三⾓形是直⾓三⾓形。

2. 勾股数:满⾜a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

) *附:常见勾股数:3,4,5; 6,8,10; 9,12,15;5,12,13 3. 判断直⾓三⾓形:如果三⾓形的三边长a 、b 、c 满⾜a 2+b 2=c 2 ,那么这个三⾓形是直⾓三⾓形。

(经典直⾓三⾓形:勾三、股四、弦五)其他⽅法:(1)有⼀个⾓为90°的三⾓形是直⾓三⾓形;(2)有两个⾓互余的三⾓形是直⾓三⾓形。

⽤它判断三⾓形是否为直⾓三⾓形的⼀般步骤是:(1)确定最⼤边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直⾓的三⾓形;若a 2+b 2<c 2,则此三⾓形为钝⾓三⾓形(其中c 为最⼤边);若a 2+b 2>c 2,则此三⾓形为锐⾓三⾓形(其中c 为最⼤边)4.注意:(1)直⾓三⾓形斜边上的中线等于斜边的⼀半(2)在直⾓三⾓形中,如果⼀个锐⾓等于30°,那么它所对的直⾓边等于斜边的⼀半。

(3)在直⾓三⾓形中,如果⼀条直⾓边等于斜边的⼀半,那么这条直⾓边所对的⾓等于30°。

5. 勾股定理的作⽤:(1)已知直⾓三⾓形的两边求第三边;(2)已知直⾓三⾓形的⼀边,求另两边的关系;(3)⽤于证明线段平⽅关系的问题;(4)利⽤勾股定理,作出长为n 的线段. (⼆)⼆次根式:1.⼆次根式的概念:形如a (a≥0)的式⼦叫做⼆次根式(⼆次根式中,被开⽅数⼀定是⾮负数,否则就没有意义,并且根式a ≥0)2.最简⼆次根式:同时满⾜:①被开⽅数的因数是整数,因式是整式(分母中不含根号);②被开⽅数中不含能开得尽⽅的因数或因式.这样的⼆次根式叫做最简⼆次根式. 3. 同类⼆次根式:⼏个⼆次根式化成最简⼆次根式后,如果被开⽅数相同,这⼏个⼆次根式就叫同类⼆次根式. 4.⼆次根式的性质:①a a ≥≥00()②()a a a 20=≥()③a aa aaa a200==>=-<||()()()④ab a b a b=?≥≥(,)00⑤babaa b=>≥(,)005.分母有理化及有理化因式:把分母中的根号化去,叫做分母有理化;两个含有⼆次根式的代数式相乘,?若它们的积不含⼆次根式,则称这两个代数式互为有理化因式.6.⼆次根式的运算(1)因式的外移和内移:如果被开⽅数中有的因式能够开得尽⽅,那么,就可以⽤它的算术根代替⽽移到根号外⾯;如果被开⽅数是代数和的形式,那么先解因式,?变形为积的形式,再移因式到根号外⾯,反之也可以将根号外⾯的正因式平⽅后移到根号⾥⾯.(2)⼆次根式的加减法:先把⼆次根式化成最简⼆次根式再合并同类⼆次根式.(3)⼆次根式的乘除法:⼆次根式相乘(除),将被开⽅数相乘(除),所得的积(商)仍作积(商)的被开⽅数并将运算结果化为最简⼆次根式.(4)有理数的加法交换律、结合律,乘法交换律及结合律,?乘法对加法的分配律以及多项式的乘法公式,都适⽤于⼆次根式的运算.7.使分母不带根号(分母有理化)常⽤⽅法:①化去分母中的根号关键是确定与分母相乘后,其结果不再含根号的因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ACBD E 二次根式及勾股定理和平行四边形练习题一、选择题(每小题1分,共25分) 姓名: 分数: 1.下列二次根式中,的取值范围是26x -的是( ) =3 B. 3x ≥ C. X ≤3 D. X>32. 在ABCD 中,那么它的四个内角按一定顺序的度数比可能为( ) A 、3:4:5:6 B 、4:5:4:5 C 、2:3:3:2 D 、2:4:3:33.下列二次根式中,是最简二次根式的是( )A.xy 2B.2abC.21D.422x x y + 4.下列二次根式,不能与3合并的是( )A.48B.18C.311D.75-5.如图所示, 在ABCD 中,∠D=120°,∠CAD=32°.则∠ABC 、∠CAB 的度数分别为( ) °,120° °,28° °,120° °,32°6.下面的性质中,平行四边形不一定具有的是( )A.对角互补B.邻角互补C.对角相等D.对边相等.7. 如右图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm , 现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( ) (A )4 cm (B )5 cm (C )6 cm (D )10 cm 8.下列二次根式,不能与12合并的是( ) A.48 B.18 C.311 D.75- 9.下列运算正确的是( ) A.235=- B.312914= C.822-= D.()52522-=-10.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( )A .2,4,8 ,8,10 ,8,10 ,10,1211.如图,在平行四边形ABCD 中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD 的长为( )12.如图所示:是一段楼梯,高BC 是3m ,斜边AC 是5m ,如果在楼梯上铺地毯,那么至少需要地毯( )m m m m13.如图,在底面周长为12,高为8的圆柱体上有A,B 两点,则AB 之间的最短距离是( )A .10B .8C .5D .414.如果等边三角形的边长为3,那么连结各边中点所成的三角形的周长为( ).第5题图第7题图第13题图第12题图1A-1-21(A )9 (B )6 (C )3 (D )9215.如右上图,在周长为20cm 的▱ABCD 中,AB ≠AD,AC,BD 相交于点O,OE ⊥BD 交AD 于E,则△ABE 的周长为( ) cm cmcmcm16、把1xx -根号外的因数移到根号内,结果是( )A 、x B 、x -C 、x -- D 、x -17、下列根式8,12,3,21x +,33x ()x >0中是最简二次根式的有( )个。

A 、1B 、2C 、3D 、418、已知24n 是整数,正整数n 的最小值为( ) A 、0B 、1C 、6D 、3619、直角三角形的二边长分别为3和4,则第三边是( )A 、5 B 、7C 、5D 、5或720、若21x y -=-,2xy =,则代数式11x y -+()()的值等于( ) A 、222+ B 、222- C 、22 D 、221、下列命题中,其中正确命题的个数为( )个。

A 、1B 、2C 、3D 、4①Rt△ABC 中,已知两边长分别为3和4,则第三边为5; ②有一个内角等于其他两个内角和的三角形是直角三角形;③三角形的三边分别为a ,b ,c 若222a cb +=,则∠C=90° ④在△ABC 中,∠A:∠B:∠C=1:5:6,则△ABC 为直角三角形。

22、等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )64 23、三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )(A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.24、小刚准备测量河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( ).25、如图,数轴上的点A 所表示的数为x ,则x 2—10的立方根为( ) A .2-10 B .-2-10 C .2 D .-2二、填空题(每小题1分,共15分)26、在□ABCD 中,∠A=︒50,则∠B = 度,∠C = 度,∠D = 度.27、如果□ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD= cm 28、化简:=32 ; y x 329(x>0,y>0) = .29、计算243223--)(=30、如下图,某次的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在 离树杆底部4米处,那么这棵树折断之前的高度是______米. 31、在□ABCD 中,(1)若添加一个条件_____ __,则四边形ABCD 是矩形;(2)若添加一个条件 , 则四边形ABCD 是菱形.32、如下图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行_____米.第37题第30题 E F A DC B 第36题 第32题第33题 S3S2S1CB A D EF 33、如图,已知ABC ∆中,90ACB ∠=︒,以ABC ∆的各边为边在ABC ∆外作三个正方形,123,,S S S 分别表示这三个正方形的面积,1281,225S S ==,则3_____.S =34、对于任意不相等的两个数a ,b ,定义一种运算※如下:a※b=b a b a -+,如3※2=52323=-+. 那么12※4= 。

35、两条直角边长分别为 、,则斜边长为____ ___,面积为____ ___ .36、如图□ABCD 中AB=5,BC=9,BE ,CF 分别平分∠ABC ,∠BCD ,求EF=37、如图所示,在□ABCD 中,∠B=110°,延长AD 至F ,CD 至E ,连结EF ,则∠E+∠F=38、 计算:20102010)23()23(+-= 39、如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .40、如图9,四边形ABCD 是正方形,P 在CD 上,△ADP 旋转后能够与△ABP ′重合,若AB =3,DP =1,则PP ′=___.三、解答题(共80分)41、(5分)已知04412=+-+--b b b a ,求边长为a,b 的等腰三角形的周长。

42、(5分)已知x 为奇数,且1321,96962-+++--=--x x x xx x x 求的值。

43、计算或化简(18分)① ()()9827527128--- ②)65153(1021-⨯③ )2463)(2463(+- ④ )35)(15()25(2+++-⑤ 312÷(331-23) ⑥ mm m mm m 15462-+44、(5分)已知:)57(21+=x ,)57(21-=y 求代数式22y xy x +-值。

45、(5分)如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长•46、(5分)一游泳池长48米,小方和小朱进行游泳比赛,从同一处(A 点)出发,小方平均速度为3米/秒,小朱为3.1米/秒.但小朱一心想快,不看方向沿斜线(AC 方向)游,而小方直游(AB 方向),两人到达终点的位置相距14米.按各人的平均速度计算,谁先到达终点,为什么 (结果精确到14847、(5分)若x ,y 是实数,且2111+-+-<x x y ,求1|1|--y y 的值。

48、(5分)实数a ,b 在数轴上的位置如图所示,化简:(a+1)2+2(b-1)2 -|a -b|49、(5分)已知:a ,b 为实数,且22222+-+-=a a a b.求()222ab a b ---+-的值.51、(5分)如图,在正方形ABCD 中,边AB 上有一点M,其中AM=3BM,N 是AD 上一点,且AN=ND, 判断△MNC 是否是直角三角形,并说明理由。

52、(5分)已知如图,在四边形ABCD 中,∠A=600,∠B=∠D=900,BC=2,CD=3,求AB 的长。

53、(6分)如图所示,将一矩形纸片OABC 放在直角坐标系中,O 为原点,C 在x 轴上,OA=6,OC=10,在OA 上取一点E ,将△EOC 沿EC折叠,使点O 落在AB 边上的点D 处,求点E 的坐标。

54、(6分)台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图据气象观测,距某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C 移动,且台风中心风力不变,若城市所受风力达到或超过四级,则称为受台风影响.(1)该城市是否会受到这交台风的影响请说明理由.(2)若会受到台风影响,那么台风影响该城市持续时间有多少(3)该城市受到台风影响的最大风力为几级-3 -2 -1 0 1 2 3 4a b xNCDM BA51题图DC AB 53题图52题图y xOCEDA B。

相关文档
最新文档