人教版小学数学六下数学广角鸽巢问题
小学数学人教版六年级下册《第一课数学广角(鸽巢问题)》课件

07
17
27
1
0
0
0
1
4
4
3
3
7
37
27
37
2
0
1
1
2
新知导入
把7本书平 均分成3份 7÷3=2…1,如果 每个抽屉放2本, 还剩1本,把剩下 的这1本放进任何 一个抽屉,该抽屉 里就有3本书了。
把8本书放进3 个抽屉里呢?
8÷3=2…2,把8 本书放进3个抽屉 里,总有一个抽屉 至少放进3本书。
数学人教版 六年级下
鸽巢问题
新知导入
我给大家表演一个“魔 术”。一副牌,取出大小 王,还剩52张牌,你们5人 每人随意抽一张,我知道 至少有2张牌是同花色的。
老师说得对不对呢?
新知导入
把4支铅笔放进3个笔筒中, 不管怎么放,总有一个笔 筒里至少有2支铅笔。
“总有”和“至 少”什么意思?
为什么呢?
新知导入
试一试: 把5支铅笔放到4个笔筒里呢? 把6支铅笔放到5个笔筒里呢? 你发现了什么规律?
首先通过平均分,余下1支,不管放在哪个笔筒里,一 定会出现“总有一个盒子里至少有2支铅笔”。
新知导入
抽屉原理一
只要物体数量是抽屉数量的1倍多,总有一个抽屉里至少放 进2个物体。
新知导入
1. 5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进2 只鸽子。为什么?
至少取5个球可以保证 取到两个颜色相同的球。
新知导入
小组讨论
鱼缸里有足够数量的金鱼5种, 最少捞出多少条,可以保证捞 到6条同种类的金鱼?
(6-1) × 5+1=26(条)
抽取问题
要保证摸出n个同色的球,摸出的球的数 量至少要比颜色数的(n-1)倍多“1”
六年级数学下册数学广角——鸽巢问题(含答案)人教版

六年级数学下册数学广角——鸽巢问题(含答案)人教版一、填空题1.六(1)班有50个学生,他们至少有(________)人会在同一个月过生日。
2.一副扑克牌54张,至少要抽取(________)张,才能保证其中至少有两张牌点数相同。
3.盒子里有同样大小的红、黄、蓝、白四种颜色的玻璃球各12个,要想摸出的球一定有2个是同色的,至少要摸出(________)个球;要想摸出的球一定有4个是同色的,至少要摸出(________)个球。
4.把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。
至少要取(______)个球,可以保证取到两个颜色相同的球;至少要取(________)个球,可以保证取到两种颜色的球。
5.有形状、长短都完全一样的红筷子、黑筷子、白筷子、黄筷子、紫筷子和花筷子各25根。
在黑暗中至少应摸出(________)根筷子,才能保证摸出的筷子至少有8双(每两根花筷子或两根同色的筷子为一双)。
6.从1至36个数中,最多可以取出(________)个数,使得这些数种没有两数的差是5的倍数。
7.一次测验共有10道问答题,每题的评分标准是:回答完全正确,得5分;回答不完全正确,得3分,回答完全错误或不回答,得0分。
至少(________)人参加这次测验,才能保证至少有3人得得分相同。
8.袋中有外形完全一样的红、黄、蓝三种颜色的小球各10个,每个小朋友只能从中摸出1个小球,至少有(________)个小朋友摸球,才能保证一定有两个人摸的球颜色一样。
9.有红、黄、蓝3种颜色的球各5个,放在同一个盒子里,至少取出(______)个,可以保证取到2个颜色相同的球。
10.10只鸽子飞回3个鸽舍,至少有(________)只鸽子要飞进同一个鸽舍里。
11.李亮练习打靶,5次共打了33环,那么至少有一次不低于(________)环。
12.把6串葡萄放在5个盘子里,总有一个盘子里至少放(________)串葡萄;如果把这6串葡萄放在4个盘子里,那么总有一个盘子里至少放(________)串葡萄。
六下(人教)第五单元数学广角——鸽巢问题(抽屉原理)(附答案)

第五单元数学广角——鸽巢问题(抽屉原理)一、最不利原则:为了保证能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能达到目标。
二、抽屉原理:形式1:把n+1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里;形式2:把m×n+1个苹果放到n个抽屉中,一定有m+1个苹果放在一个抽屉里。
模块一抽屉原理【例题1】把3个苹果放到两个抽屉中,有()种放法。
【练习1】把4支铅笔放进3个笔筒中,有()种放法。
【例题2】把8个桃子放到7个果盘里,一定有一个果盘里至少放进了()桃子。
【练习2】把7本书放进6个抽屉,不管怎么放,总有一个抽屉里至少放进()本书。
【例题3】五年级一班有28个学生,保证至少有几个同学在同一个月出生?【练习3】在任意25个人中,至少有几个人的星座相同?【例题4】把25个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有5个玻璃球?【练习4】把17本书最多放到()个空书架上,才能保证至少有一个书架上有5本书。
【例题5】平安路小学组织862名同学去参观甲、乙、丙3处景点。
规定每名同学至少参观一处,最多可以参观两处,至少有多少名同学参观的景点相同?【练习5】中国奥运代表团的173名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水6种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?【例题6】国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项。
那么至少有多少个学生,才能保证至少有4个人参加的活动完成相同?【练习6】桂苑小学六年级每名学生都订阅了《数学小灵通》、《小学生作文》、《英语天地》、《科学画报》这4种报刊中的2种,他们当中至少有34名学生订阅的报刊种类相同。
你知道桂苑小学六年级至少有多少名学生吗?【例题7】从1,2,3,……,21这些自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于4?【练习7】1至70这70个自然数中,最多可以取出多少个数,使得其中每两个数的差都不等于6?【例题8】从1,4,7,10,……37,40这14个自然数,至少任取多少个数才能保证其中至少有2个数的和是41?【练习8】从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50?【例题9】从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是6的倍数呢?【练习9】从1至99这99个自然数中任意取出一些数,要保证其中一定有两个数的和是5的倍数,至少要取多少个?【例题10】某省有4千万人口,每个人的头发根数不超过15万根,那么该省中至少有多少人的头发根数一样多?【练习10】49名同学共同参加体操表演,其中最小的8岁,最大的11岁。
人教版六年级下数学数学广角——鸽巢问题

人教版六年级下数学数学广角——鸽巢问题第十二周数学广角——鸽巢问题鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用。
鸽巣原理的最简单表达形式是:物体个数÷鸽巣个数=商……余数,至少个数=商+1.举例来说,如果有3个苹果放在2个盒子里,共有四种不同的放法,但无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。
类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子。
如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信。
摸2个同色球的计算方法是:要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1.物体数=颜色数×(至少数-1)+1.另外,可以使用极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。
在填空题中,可以通过运用鸽巣原理来解决问题。
例如,鱼岳三小六年级有30名学生是二月份出生的,那么六年级至少有3名学生的生日是在二月份的同一天。
又如,有3个同学一起练投篮,如果他们一共投进16个球,那么一定有1个同学至少投进了6个球。
把6只鸡放进5个鸡笼,至少有2只鸡要放进同1个鸡笼里。
某班有个小书架,40个同学可以任意借阅,小书架上至少要有14本书,才可以保证至少有1个同学能借到2本或2本以上的书。
在解决问题时,我们可以运用鸽巣原理来求解。
例如,六(1)班有50名同学,至少有6名同学是同一个月出生的。
书籍里混装着3本故事书和5本科技书,要保证一次一定能拿出2本科技书,一次至少要拿出4本书。
把16支铅笔最多放入3个铅笔盒里,可以保证至少有1个铅笔盒里的铅笔不少于6支。
在拓展应用中,我们可以通过鸽巣原理来解决更加复杂的问题。
例如,把27个球最多放在4个盒子里,可以保证至少有1个盒子里有7个球。
教师引导学生规范解答:2、假设先取5只,全是红的,不符合题意,要继续取;假设再取5只,5只有全是黄的,这时再取一只一定是蓝色的,这样取5×2+1=11(只)可以保证每种颜色至少有1只。
六年级下册数学教案-《数学广角—鸽巢问题》(人教版)

在今天的教学中,我引导学生们探索了《数学广角—鸽巢问题》。通过这节课的教学,我有一些深刻的体会和反思。
首先,我发现学生们对于鸽巢问题的理解存在一定难度。他们刚开始接触这个概念时,很难理解为什么一定会出现至少一个集合中有超过一个物品的情况。为此,我采用了生活中的实例和图示来进行讲解,帮助学生逐步建立起对鸽巢原理的认识。在今后的教学中,我还需要继续关注学生的理解程度,及时调整教学方法,以便让他们更好地掌握这个概念。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“鸽巢问题在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-举例:如给定10个学生和9个座位,证明至少有一个座位上会有两个学生。
2.教学难点
-抽象概念的理解:难点在于帮助学生理解抽象的鸽巢原理,并将其与具体问题联系起来。
-逻辑推理的运用:难点在于指导学生如何运用逻辑推理来证明鸽巢原理的正确性,这对于逻辑思维能力的培养至关重要。
-实际问题的转换:难点在于将实际问题转化为鸽巢问题,需要学生具备较强的观察力和问题转化能力。
3.学习通过画图、列举和逻辑推理等方法,解决涉及鸽巢原理的相关问题。
4.完成本册教材中《数学广角》模块的相关练习题,巩固鸽巢问题的解答技巧。
二、核心素养目标
《数学广角—鸽巢问题》核心素养目标:
1.培养学生逻辑推理与数学思维能力,通过鸽巢问题的学习,使学生能够运用逻辑推理解决实际问题,提高数学抽象和推理能力。
人教版六年级下册数学第五单元《数学广角》鸽巢问题

人教版六年级下册数学第五单元《数学广角 》
2)如果把158个苹果放进 3个抽屉里,不管怎么放, 总有一个抽屉里至少有几 个苹果?
精品课件
抽屉原理(二)
把 a 个 物 体 放 进 n 个 抽 屉,若a÷n=b……c
(c≠0 ,c<n )
则一定有一个抽屉至少 放了______ 个物体。 精品课件
比一比:两个抽屉原理有 何区别?
“原理1”和“原理2”的区别 是:原理1苹果多,抽屉少,数 量比较接近;原理2虽然也是 苹果多,抽屉少,但是数量相 差较大,苹果个数比抽屉个数 的几倍还多几。
2、从任意5双手套中任取6只,其中至少有2只 恰为一双手套 ,对吗?
3、从数1,2,。。。,10中任取6个数,其中 至少有2个数为奇偶性相同。
4、体育用品仓库里有许多足球、排球和篮球, 某班 50名同学来仓库拿球,规定每个人至少拿 1个球,至多拿2个球,问至少有几名同学所 拿的球种类是一致的?
精品课件
例:把一些铅笔放进3个文具盒中,保证其中 一个文具盒至少有4枝铅笔,原来至少有多少
枝铅笔?至少:只有一个文具盒有 4 枝,
其余都是(4-1)枝
3 +1
3
3
3
3×(4-1)+1=10(枝)
求总数=抽屉×(至少-1)+1
要分的份精数品课件 其中一个多1
鸽巢问题 (二)
人教版六年级数学下册《鸽巢问题》数学广角PPT精品课件
盒子里有同样大小的红球和蓝球各4个,要想摸 出的球一定有2个同色的,至少要摸出几个球?
至少要摸出3个球
只要摸出的球数比它们的颜色种数多1, 就能保证至少有两个球同色。
一天晚上,小红正要从自已放袜子的抽屉里 取袜子,突然灯熄了。她知道自己的抽屉里放有 白色与黄色的袜子各6只。小红至少要摸出多少只 袜子,才能保证拿出一双相同颜色的袜子?
9÷4=2……1 2+1=3
第五单元 数学广角--鸽巢问题 第3课
鸽巢问题
第3课时
人教版六年级下册数学课件
目
01 新课导入 02 新课讲解
录
03 课堂小结
CONTENTS
04 拓展延伸
第一部分 PART 01
新课导入
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here, or by copying your text, select paste in this box.
复习导入
5个人坐4把椅子,总有一把椅子上至少坐 2人,为什么?
把5个人分到“4个鸽巢”(代表4把 椅 子 ) 中 , 5÷4 = 1……1 , 所 以 一 定 有 “一个鸽巢”里至少有1+1=2(人),即 总有一把椅子上至少坐2人。
第二部分 PART 02
新课讲解
your content is entered here, or by copying your text, select paste in this box and choose to retain only text. your content is typed here, or by copying your text, select paste in this box.
2024年人教版数学六年级下册鸽巢问题教学设计推荐3篇
人教版数学六年级下册鸽巢问题教学设计推荐3篇〖人教版数学六年级下册鸽巢问题教学设计第【1】篇〗第五单元数学广角——鸽巢问题第一课时课题:鸽巢问题教学内容:教材第68-70页例1、例22,及“做一做”的第1题,及第71页练习十三的1-2题。
教学目标:1、知识与技能:理解“鸽巢问题”的特点,理解“鸽巢原理”的含义。
使学生学会用此原理解决简单的实际问题。
2、过程与方法:经历探究“鸽巢原理”的学习过程,体验观察、猜想、实验、推理等活动的学习方法,渗透数形结合的思想。
3、情感、态度和价值观:通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。
教学重难点:重点:引导学生把具体问题转化成“鸽巢问题”。
难点:找出“鸽巢问题”解决的窍门实行反复推理。
教学准备:课件。
教学过程:一.情境导入二、探究新知1.教学例1.(课件出例如题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。
为什么呢?“总有”和“至少”是什么意思?学生通过操作发现规律→理解关键词的含义→探究证明→理解“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,能够发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
方法二:用“分解法”证明。
把4分解成3个数。
由图可知,把4分解3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。
方法三:用“假设法”证明。
通过以上几种方法证明都能够发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。
(4)理解“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。
在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描绘就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。
六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(4)
六年级数学下册教案《5 数学广角—鸽巢问题》-人教版(4)一、教学目标1.知识与能力:–学生能够理解“鸽巢问题”的概念;–学生能够运用排除法解决“鸽巢问题”相关问题;–学生能够在实际生活中应用“鸽巢问题”解决问题。
2.过程与方法:–引导学生积极思考,提高解决问题的能力;–利用小组合作,培养学生的合作意识和团队精神;–结合情境讨论,激发学生学习兴趣。
3.情感态度与价值观:–培养学生细心观察问题、逻辑思维和创新能力;–培养学生团队合作精神,培养学生积极探究、创造的态度。
二、教学重难点1.教学重点:–学习掌握“鸽巢问题”的概念;–学生能够灵活应用排除法解决问题。
2.教学难点:–学生能够在实际问题中应用“鸽巢问题”解决问题。
三、教学准备1.教师准备:–教案、多媒体课件、草稿纸等。
2.学生准备:–铅笔、橡皮、教科书等。
四、教学过程1.导入(5分钟)–引导学生回顾上一堂课的内容,为本节课的学习做铺垫。
2.新课呈现(15分钟)–通过多媒体课件或教科书引入“鸽巢问题”的概念,呈现问题情境,激发学生兴趣。
3.讲解与示范(20分钟)–针对“鸽巢问题”展开讲解,解释相关概念,通过示范进行解题演示,引导学生理解解题思路。
4.练习与讨论(30分钟)–分组进行练习,让学生通过小组合作解决问题,在讨论中发现解题方法的不同之处,运用排除法思维解决问题。
5.拓展应用(15分钟)–老师引导学生思考真实生活中可能遇到的“鸽巢问题”,激发学生对数学的实际应用兴趣,提高解决问题的能力。
6.总结与作业布置(5分钟)–总结本节课的重点内容,布置相关作业,巩固学生对“鸽巢问题”的理解和应用能力。
五、教学板书•鸽巢问题–概念:一个有限的集合如果要被划分成许多个部分,但是部分的总数比集合的总数还要多,那么必然存在至少一个部分包含了2个以上的元素;–解题方法:排除法。
六、教学反思通过本节课的教学,学生对“鸽巢问题”有了更深入的理解。
但在教学过程中,发现部分学生在排除法应用上存在困难,需要在后续课程中加强相关训练。
人教版六年级下册数学《鸽巢问题》数学广角说课教学复习课件
答案:π 0 1
栏目 导引
第五章 三角函数
用“五点法”作三角函数的图象
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
用“五点法”作出下列函数的简图: (1)y=12+sin x,x∈[0,2π]; (2)y=1-cos x,x∈[0,2π].
栏目 导引
栏目 导引
第五章 三角函数
正、余弦函数曲线的简单应用
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
根据正弦曲线求满足 sin x≥- 23在[0,2π]上的 x 的取值 范围.
栏目 导引
第五章 三角函数
【解】 在同一坐标系内作出函数 y=sin x 与 y=- 23的图象,
栏目 导引
第五章 三角函数
利用三角函数图象解 sin x>a
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
(或 cos x>a)的三个步骤
(1)作出 y=a,y=sin x(或 y=cos x)的图象.
(2)确定 sin x=a(或 cos x=a)的 x 值.
课件
课件
课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解决问题
5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了 2只鸽子。为什么?
假如一个鸽舍里飞进一只鸽子,3个鸽舍最多 飞进3只鸽子,还剩下2只鸽子。所以,无论 怎么飞,至少有2只鸽子要飞进同一个笼子里。
3、把5本书进2个抽屉中,不管怎么放,总有一个抽屉 至少放进3本书。这是为什么?
5÷2=2……1
抽屉原理简介
狄利克雷 (1805~1859)
“抽屉原理”最先是由19世 纪的德国数学家狄里克雷 (Dirichlet)运用于解决数学问 题的,所以又称“狄里克雷原 理”,也称为“鸽巢原理”。 “抽屉原理”的应用是千变万 化的,用它可以解决许多有趣 的问题,并且常常能得到一些 令人惊异的结果。“抽屉原理” 在数论、集合论、组合论中都 得到了广泛的应用。
原理1: 把n+1个物体任意放进n个空 抽屉里(n是非0自然数),那么 一定有1个抽屉中至少放进了2个 物体。
解决问题 1、做一做:5个人坐4把椅子,总有一把椅子
上至少坐2人。为什么?
ቤተ መጻሕፍቲ ባይዱ
2、实验小学六(1)班第一小组一共13位同学, 一定至少有2名同学的生日在同一个月。
探究
如果放入的物体数比抽屉数多2 或者更多呢?至少数会是多少?
3、把7本书进2个抽屉中,不管怎么放,总有一个抽屉 至少放进多少本书?为什么?
7÷2=3……1
3、把9本书进2个抽屉中,不管怎么放,总有一个抽屉 至少放进多少本书?为什么?
9÷2=4……1
做一做:11只鸽子飞回4个鸽舍,至少有( 3 )只鸽子 要飞进同一个鸽舍。为什么? 我们先让一个鸽舍里飞进2只鸽子,4个鸽舍最多可飞进 8只鸽子,还剩下3只鸽子,无论怎么飞,所以至少有3只 鸽子要飞进同一个笼子里。
一副扑克牌(除去大小王)52张中有四种花色, 从中随意抽5张牌,无论怎么抽,为什么总有两 张牌是同一花色的?
四种花色
抽 牌
一副扑克牌(除去大小王)52张中有四种花色, 从中随意抽5张牌,至少两张牌是同一花色的。
把4枝笔放进3个笔筒里,可以怎么放?有几种不同 的放法?
至少放进2枝
把5枝笔放进4个笔筒里,不管怎么放, 总有一个笔筒里至少放进2枝笔,这是为 什么?
如果我们先让每个笔筒里放1枝笔,最多放4枝。 剩下的1枝还要放进其中的一个笔筒。所以不管 怎么放,总有一个笔筒里至少放进2枝笔。
11÷4=2……3
计算绝招 至少数=商数+1
试一试:
1、把5本书放进3个抽屉里,总有一个 2 本书。 抽屉里至少放_ 2、把6本书放进3个抽屉里,总有一个 2 本书。 抽屉里至少放_ 3、把7本书放进3个抽屉里,总有一个 3 本书。 抽屉里至少放_
做一做:
1.把100本书放进3个抽屉里,总有 34 一个抽屉里至少有 _本,为什么? 2.把101本书放进3个抽屉里,总有 一个抽屉里至少有34 _本,为什么? 3.把101本书放进7个抽屉里,总有 15 一个抽屉里至少有 _本,为什么?