重庆中考数学复习第25题专题练习
2022年重庆中考数学25题专题复习二次函数综合题平移基础类

2022级重庆中考数学25题专题复习二次函数综合题平移基础类1.如图,在平面直角坐标系中,已知点A(-2,-4),直线x=-2与x轴相交于点B,连接OA,抛物线y=-x2从点O沿OA方向平移,与直线x=-2交于点P,顶点M到点A时停止移动.(1)线段OA所在直线的函数解析式是______;(2)设平移后抛物线的顶点M的横坐标为m,问:当m为何值时,线段PA最长?并求出此时PA的长.(3)若平移后抛物线交y轴于点Q,是否存在点Q使得△OMQ为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.2.如图1,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+m也经过点A,其顶点为B,将该抛物线沿直线l平移使顶点B落在直线l的点D处,点D的横坐标n(n >1).(1)求点B的坐标;(2)平移后的抛物线可以表示为______(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a与n的函数关系式.②如图2,连接AC,CD,若∠ACD=90°,求a的值.3. 如图,在平面直角坐标系中,抛物线y =√33x 2-2√33x -√3与x 轴交于A 、B 两点(点A 在点B的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,求P 点坐标?(3)点G 是线段CE 的中点,将抛物线y =√33x 2-2√33x -√3沿x 轴正方向平移得到新抛物线y ′,y ′经过点D ,y ′的顶点为点F .在新抛物线y ′的对称轴上,是否存在点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.4. 如图,已知二次函数y =ax 2+bx +3(a ≠0)的图象经过点A (3,0),B (4,1),且与y轴交于点C ,连接AB 、AC 、BC . (1)求此二次函数的关系式;(2)判断△ABC 的形状;若△ABC 的外接圆记为⊙M ,请直接写出圆心M 的坐标; (3)若将抛物线沿射线BA 方向平移,平移后点A 、B 、C 的对应点分别记为点A 1、B 1、C 1,△A 1B 1C 1的外接圆记为⊙M 1,是否存在某个位置,使⊙M 1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.5.如图,已知抛物线C1:y=ax2+4ax+4a-5的顶点为D,与x轴相交于A、B两点(点A在点B的左边),且AB=6.(1)求抛物线C1的解析式及顶点D的坐标;x沿y轴向下平移m个单位(m>0),若平移后的直线与抛物线C1(2)将直线y=-13相交于点M、N(点M在点N的左边),且MN=√10,求m的值;(3)点P是x轴正半轴上一点,将抛物线C1绕点P旋转180°后得到抛物线C2,抛物线C2的顶点为C,与x轴相交于E、F两点(点E在F的左边),当以点D、C、F为顶点的三角形是直角三角形时,求点C的坐标.6.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3)(1)求此抛物线解析式;(2)在抛物线上存在点D,使点D到直线AC的距离是√10,求点D的坐标;(3)如图2,将原抛物线向左平移1个单位,得到新抛物线C1,若直线y=m与新抛物线C1交于P、Q两点,点M是新抛物线C1上一动点,连接PM,并将直线PM沿y=m 翻折交新抛物线C1于N,过Q作QS∥y轴,求证:QS必定平分MN.7.如图,抛物线C:y=ax2+bx+3与x轴的两个交点坐标为A(-3,0),B(-1,0).(Ⅰ)求抛物线C的解析式;(Ⅱ)设抛物线C的顶点为M,直线y=-2x+9与y轴交于点E,交直线OM于点F.现保持抛物线C的形状和开口方向,使顶点沿直线OM移动(O为坐标原点).在平移过程中,当抛物线与线段EF(含端点E、F)只有一个公共点时,求它的顶点横坐标的值或取值范围;(Ⅲ)将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于M,N两点.问在y轴的负半轴上是否存在点P,使△PMN的内心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.8.在平面直角坐标系中,抛物线C1:y=ax2+4x+4a(0<a<2).(1)探究与猜想:若A(1,y a)、B(0,y b)、C(-1,y c)三点均在C1上,连接BC,作AE∥BC交抛物线C1于E.①探究,取a=1,则点E的坐标为______.②猜想:当a值变化时,E点总在直线______上,验证你的猜想.(2)如图2,若a=1,将抛物线C1先向右平移3个单位,再向下平移4个单位得到抛物线C2,C2交x轴于M,交y轴于N,直线y=kx-9交抛物线C2于P,Q,当PM∥QN时,求k的值.9.在平面直角坐标系中,已知顶点为P的抛物线C1的解析式是y=a(x-3)2(a>0),且经过点(0,1).(1)求a的值;(2)如图1,将抛物线C1向下平移h(h>0)个单位长度得到抛物线C2,过点M(0,m2)(m>0)作直线l平行于x轴,与两抛物线从左到右分别相交于A、B、C、D四点,且A、C两点关于y轴对称.①点G在抛物线C1上,当m为何值时,四边形APCG是平行四边形?②如图2,若抛物线C1的对称轴与抛物线C2交于点Q,试证明:在M点的运动过程中,MC PQ =34恒成立.10.如图,已知抛物线y=12x2+bx+c与x轴交于A(-3,0),B两点,四边形ABCD是边长为4的正方形,且抛物线的顶点E落在过B的直线l上.(1)求顶点E的坐标;(2)将抛物线沿着射线EB方向平移,使顶点仍落在直线l上,且平移后的抛物线过点C,求平移后抛物线的解析式.11.如图1,抛物线C1:y=ax2-2x+3与x轴交于A、B两点(点A在点B左边),与y轴交于C点,B(1,0),第二象限内有一点P在抛物线C1上运动,OP交线段AC于点E.(1)求抛物线C1的解析式及点A坐标;(2)若PE:OE=2:3,求P点坐标;(3)如图2,将抛物线C1向右平移,使平移后的摊物线C2的顶点D在y轴上,P是抛物线C2在第二象限图象上的动点,作P关于y轴的对称点P′,连接PO并延长交抛物线C2于点Q,连接QP′并延长交y轴于点N,求证:ND=OD.12.在平面直角坐标系中,已知抛物线y=-1x2+bx+c(b,c为常数)的顶点为P,等腰直角2三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q,取BC的中点N,连接NP,BQ,试探究PQ是否存在最大值?若存在,求出该最大值;NP+BQ若不存在,请说明理由.13.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)经过点B,与x轴交于点A,C(点A在点C的左侧),A(-1,0),C(4,0),连接AB,BC,点M(0,-1)2为y轴负半轴上的一点,连接AM并延长交抛物线于点E,点D为线段AE上的一个动点,过点D作y轴的平行线与抛物线交于点F,与线段BC交于点N(1)求出抛物线的表达式及直线BC的表达式(2)在点D运动的过程中,点FN的值最大时,在线段BC上是否存在一点H,使得△FNH 与△ABC相似,如果存在,求出此时H点的坐标(3)当DF=4时,连接DC,四边形ABCD先向上平移一定单位长度后,使点D落在x 轴上,然后沿x轴向左平移n(1<n<4)个单位长度,用含n的表达式表示平移后的四边形与原四边形重叠部分的面积S(直接写出结果)14.如图所示,已知二次函数y=x2-3x+2的图象l1的顶点为点D,与x轴的交点为点A、E(点A位于点E的左侧),与y轴的交点为B.连接AB,将△ABO绕点A顺时针旋转90°后,点B落到点C的位置,得到△ACF.(1)如图①,求点C的坐标;(2)如图②,将二次函数y=x2-3x+2的图象l1沿y轴向下平移后,得到的二次函数y=ax2+bx+c的图象l2经过点C、顶点为D1、与y轴的交点为B1,连接DD1.①求二次函数y=ax2+bx+c的解析式;②点N为平移后得到的二次函数图象l2上的动点,点N的坐标为(n,m),且n>0.是否存在这样的点N,使△NBB1的面积是△NDD1面积的2倍,若存在,求点N的坐标;若不存在,请说明理由.15. 如图,在平面直角坐标系中,抛物线y =-√33x 2+bx +c 与x 轴交于B 、C 两点(点B 在点C的左侧),与y 轴交于点A ,抛物线的顶点为D ,B (-3,0),A (0,√3) ((1)求抛物线解析式及D 点坐标;(2)如图1,P 为线段OB 上(不与O 、B 重舍)一动点,过点P 作y 轴的平行线交线段AB 于点M ,交抛物线于点N ,点N 作NK ⊥BA 交BA 于点K ,当△MNK 与△MPB 的面积相等时,在X 轴上找一动点Q ,使得12CQ +QN 最小时,求点Q 的坐标及12CQ +QN 最小值;(3)如图2,在(2)的条件下,将△ODN 沿射线DN 平移,平移后的对应三角形为△O ′D ′N ′,将△AOC 绕点O 逆时针旋转到A 1OC 1的位置,且点C 1恰好落在AC 上,△A 1D ′N ′是否能为等腰三角形,若能求出N ′的坐标,若不能,请说明理由.16.在平面直角坐标系xOy中,抛物线M:y=ax2-4ax-5a(a<0)与x轴交于A、B两点(点A在点B的左侧),经过点A的直线l与抛物线M交于另一点D,且D点的横坐标为6.(1)求A、B两点的坐标及抛物线的对称轴.(2)若点E是直线L上方抛物线上的动点,且△ADE的面积的最大值为49,求a的值.(3)将抛物线平移到顶点与原点重合,过点F(0,-2)的直线与平移后的抛物线交于点G、H.若∠GOH=90°,△GOH的面积为4√2,求直线GH的解析式.第11页,共11页。
2024重庆中考复习第25题-二次函数综合题

2024重庆中考复习第25题-二次函数综合题2024年重庆中考复习第25题为一道关于二次函数的综合题。
由于题目没有具体给出,我将为您提供一道关于二次函数的综合题,并给出一个详细的解答,希望能对您的复习有所帮助。
题目:已知函数f(x) = ax^2 + bx + c,其中a、b、c均为实数,且a ≠ 0。
已知f(1) = 0,f(3) = 0,f(4) = 6、求函数f(x)的表达式。
解答:根据题目已知条件,我们可以列出以下方程组:1)f(1)=0:a(1)^2+b(1)+c=0a+b+c=0--(1)2)f(3)=0:a(3)^2+b(3)+c=09a+3b+c=0--(2)3)f(4)=6:a(4)^2+b(4)+c=616a+4b+c=6--(3)现在我们有一个包含三个未知数(a,b,c)的方程组。
我们可以通过解这个方程组来求出函数f(x)的表达式。
首先,我们可以通过方程(1)和方程(2)的消元法得到一个新的方程。
(2)-(1)得:9a+3b+c-(a+b+c)=08a+2b=04a+b=0--(4)然后,我们可以通过方程(4)和方程(3)的消元法得到另一个新的方程。
(4)×4得:16a+4b=0将这个方程代入到方程(3)中,得到:16a+4b+c=6将16a+4b=0代入到上式,得到:c=6现在我们已经得到了a、b和c的值。
将这些值代入到函数f(x) =ax^2 + bx + c中,即可得到函数f(x)的表达式。
将a=-1、b=4和c=6代入到函数f(x)中,得到:f(x)=-x^2+4x+6所以,函数f(x)的表达式为f(x)=-x^2+4x+6以上就是针对2024年重庆中考复习第25题的一道关于二次函数的综合题的解答。
希望能对您的复习有所帮助。
如果您有任何其他问题,请随时提问。
2021重庆中考数学阅读创新25题专题训练(含答案)

2021重庆中考数学阅读创新25题专题训练(含答案)2021重庆中考数学第25题专题训练二25.已知,我们把任意形如:t=abcba的五位自然数(其中c=a+b,1≤a≤9,1≤b≤8)称之为喜马拉雅数,例如:在自然数中,3+2=5,所以就是一个喜马拉雅数。
并规定:能被自然数n整除的最大的喜马拉雅数记为F(n),能被自然数n整除的最小的喜马拉雅数记为I(n)。
1)求证:任意一个喜马拉雅数都能被3整除;2)求F(3)+I(8)的值。
解析:1)各数位数字之和a+b+c+b+a=2a+2b+c=2a+2b+(a+b)=3(a+b)因为a、b是整数,所以a+b是整数,所以任意一个喜马拉雅数都能被3整除。
2)F(3)=。
ab(a+b)baa+1110b3a+2b=8881263a+139b因为喜马拉雅数能被8整除,所以3a+2b能被8整除。
1≤a≤9.0≤b≤8.1≤a+b≤9,所以3≤3a+2b≤27,所以3a+2b=8,16或24.可得:I(8)=,所以F(3)+I(8)=+=.25.一个正偶数k去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与19的商是一个整数,则称正偶数k为“魅力数”,把这个商叫做k的魅力系数,记这个商为F(k)。
如:722去掉个位数字是72,2的2倍与72的和是76,76÷19=4,4是整数,所以722是“魅力数”,722的魅力系数是4,记F(722)=4.1) 计算:F(304)+F(2052);2) 若m、n都是“魅力数”,其中m=3030+101a,n=400+10b+c(≤a≤9,0≤b≤9,0≤c≤9,a、b、c是整数),规定:G(m,n)=(a-c)/b。
当F(m)+F(n)=24时,求G(m,n)的值。
解析:1) F(304)=16,F(2052)=9,所以F(304)+F(2052)=25.2) 设“平衡数”N=mnpq。
由题可得:m+n=p+q,p=2n-1.所以N=1000m+100n+10p+q=1001m+101n+9p=1001m+119n-9.因为N能被11整除,所以1001m+119n-9能被11整除,所以m+n-9能被11整除。
重庆中考数学第25题专题练习

重庆中考第25题专题练习 姓名1、已知:抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式.(2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.2、如图,在平面直角坐标系中,抛物线n mx x y ++=2经过A (3,0),B (0,-3)两点,点P 是直线AB 上一动点,过点P 作x 轴的垂线交抛物线于点M ,设点P 的横坐标为t , (1)分别求直线AB 和这条抛物线的解析式(2)若点P 在第四象限,连结BM 、AM ,当线段PM 最长时,求ABM ∆的面积。
(3)是否存在这样的点P ,使得以点P 、M 、B 、O 为顶点的四边形为平行四边形?若存在,请直接写出点P 的横坐标;若不存在,请说明理由。
A CxyBO (第25题图)3、.如图,在平面直角坐标系xOy 中,已知抛物线顶点N 的坐标为(-1.-92),此抛物线交y 轴于B (0,-4),交x 轴于A 、C 两点且A 点在C 点左边.(1)求抛物线解析式及A 、C 两点的坐标.(2)如果点M 为第三象限内抛物线上一个动点且它的横坐标为m ,设△AMB 的面积为S ,求S 关于m 的函数关系式并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y=x 上的动点,判断有几个位置使得以点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.4、如图,抛物线1417452++-=x x y 与y 轴突于A 点,过点A 的直线y =kx +l 与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0)(l )来直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点产作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N ,设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并求出线段MN 的最大值。
重庆中考数学25题专题复习

重庆中考数学25题专题复习考点内容:(1)求函数解析式(二次函数解析式、一次函数解析式、反比例函数解析式); (2)抛物线的性质,平面几何性质;(3)求二次函数中的一些线段长度或某个多边形的面积; (4)求二次函数中某些动点坐标。
数学思想方法:(1)待定系数; (2) 数学结合 ; (3) 方程及方程组.例1.图1,抛物线2y ax bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 在x 轴上,点C 在y 轴的正半轴上,线段OA 、OC 的(OA <OC )是方程2540x x -+=的两个根,且抛物线的对称轴是直线52x =。
(1)求抛物线的解析式;(2)在线段BC 上是否存在一点D ,使得:2:1ACD ABD S S =△△,若存在,求出经过点D 的反比例函数的解析式;若不存在,说明理由。
(3)如图2,一个动点P 自OC 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线对称轴上的某点(设为点F ),最后运动到点C ,求点P 运动的最短路径长,并求此时F 点坐标。
例2.如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边OA与x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点O逆时针旋转90°,点B旋转到点C的位置,一条抛物线正好经过点O,C,A三点.(1)求该抛物线的解析式;(2)在x轴上方的抛物线上有一动点P,过点P作x轴的平行线交抛物线于点M,分别过点P,点M作x轴的垂线,交x轴于E,F两点,问:四边形PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果x轴上有一动点H,在抛物线上是否存在点N,使O(原点)、C、H、N四点构成以OC 为一边的平行四边形?若存在,求出N点的坐标;若不存在,请说明理由.。
重庆中考数学三轮冲刺第25题二次函数综合专题专训一

2021年重庆中考数学三轮冲刺第25题二次函数综合专题专训一1.综合与探究如图,抛物线y=ax2+bx−4与x轴交于A(−3,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线解析式:(2)抛物线对称轴上存在一点H,连接AH、CH,当|AH−CH|值最大时,求点H坐标:(3)若抛物线上存在一点P(m,n),mn>0,当S ABC=S ABP时,求点P坐标:(4)若点M是∠BAC平分线上的一点,点N是平面内一点,若以A、B、M、N为顶点的四边形是矩形,请直接写出点N坐标.2.如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.3.如图,二次函数y=−x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q,当四边形PBQC为菱形时,求点P的坐标(直接写出答案);4.如图,抛物线y=ax2−2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE//AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P 不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.6.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,OB=OC.点D 在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F 的坐标;(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.7.如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x 轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P 的横坐标为m(m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x 轴交于点Q,试判断四边形ADMQ的形状,并说明理由.8.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.9.如图,抛物线y=−x2+bx+c交X轴于点A,交y轴于点B,已知经过点A,B的直线的表达式为y=x+3 .图①图②(1)求抛物线的函数表达式及其顶点C的坐标;(2)如图①,点P(m,0)是线段AO上的一个动点,其中−3<m<0,作直线DP⊥x轴,交直线AB于D,交抛物线于E,作EF∥X轴,交直线AB于点F,四边形DEFG为矩形.设矩形DEFG的周长为L,写出L与m的函数关系式,并求m为何值时周长L最大;(3)如图②,在抛物线的对称轴上是否存在点Q,使点A,B,Q构成的三角形是以AB为腰的等腰三角形.若存在,直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.10.如图,抛物线y=ax2+bx+c经过点A(2,﹣3),且与x轴交点坐标为(﹣1,0),(3,0)(1)求抛物线的解析式;(2)在直线AB下方抛物线上找一点D,求出使得△ABD面积最大时点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.11.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线上的一个动点,求使△BPC为直角三角形的点P的坐标.(直接写出)12.综合与探究如图,已知抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C.其顶点为D,对称轴是直线l,且与x轴交于点H.(1)求点A,B,C,D的坐标;(2)若点P是该抛物线对称轴l上的﹣个动点,求△PBC周长的最小值;(3)若点E是线段AC上的一个动点(E与A.C不重合),过点E作x轴的垂线,与抛物线交于点F,与x轴交于点G.则在点E运动的过程中,是否存在EF=2EG?若存在,求出此时点E的坐标;若不存在,请说明理由.13.如图1,在平面直角坐标系xOy 中,直线l :y =34x +π与x 轴、y 轴分别交于点A 和点B (0,﹣1),抛物线y =12x 2+bx +c 经过点B ,且与直线l 的另一个交点为C (4,n ).(1)求n 的值和抛物线的解析式;(2)点D 在抛物线上,且点D 的横坐标为t (0<t <4).DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2).若矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3)M 是平面内一点,将△AOB 绕点M 沿逆时针方向旋转90°后,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的横坐标.14.如图,抛物线y=14x 2+ 14x+c 与x 轴的负半轴交于点A ,与y 轴交于点B ,连结AB ,点C(6,152)在抛物线上,直线AC 与y 轴交于点D.(1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连结PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点. ①求证:△APM ∽△AON ;②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).15.如图,抛物线y=x2﹣4x﹣5与x轴交于A,B两点(电B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.(1)求A,B,C三点的坐标及抛物线的对称轴.(2)如图1,点E(m,n)为抛物线上一点,且2<m<5,过点E作EF∥x轴,交抛物线的对称轴于点F,作EH⊥x轴于点H,求四边形EHDF周长的最大值.(3)如图2,点P为抛物线对称轴上一点,是否存在点P,使以点P,B,C为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.16.如图,抛物线y=13x2−13x−4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P 作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.。
重庆中考第18、25题专题

重庆中考第18、 25题专题BA 延长线上一点,连结EG ,交CA 的延长线于M ,将△AEG 绕点A 逆时针...旋转60°得到''G AE∆(点18-2、如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△MN A ',连接C A ',则C A '长度的最小值是_______.18-3、如图,矩形ABCD 中,AB=连接BD ,∠DBC 的角平分线BE 交DC 于点E ,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为△BC E '',当射线BE '和射线BC '都与线段AD 相交时,设交点分别F,G ,若△BFD 为等腰三角形,则线段DG 长为 。
E 第18题图 18题图18-5.如图,在正方形ABCD中,E为CD边上一点,以CE为对角线构造正方形CMEN,点N在正方形ABCD内部,连接AM,与CD边交于点F.若3CF ,2DF ,连接BN,则BN的长为 _________第25题专题25-1如图,已知,在正方形ABCD外取一点E,过连接AE,BE,DE,过点A做AE的垂线交DE于点P.已知如图,已知,在正方形ABCD外取一点E,过连接AE,BE,DE,过点A做AE的垂线交DE于点P.已知AE=AP=BE=1.(1)求证:三角形APD全等于三角形AEB(2)请判断DE于BE的位置关系,并证明(3)连接PC,求线段PC的长25-225--3、如图1,在正方形ABCD 中,点E 为边BC 上一点,将ABE ∆沿AE 翻折得AHE ∆,延长EH 交边CD 于F ,连接AF 。
(1)求证:45EAF ∠= ;(2)若4,AB F CD =为的中点,求tan BAE ∠的值;(3)如图2,射线AE 、AF 分别交正方形两个外角的平分线于M 、N ,连接MN ,若以BM 、DN 、MN为三边围成三角形,试猜想三角形的形状,并证明你的结论。
重庆中考数学第25题二次函数综合专题训练3

2021级重庆中考数学 第25题二次函数综合专题训练31.如图1,直线l :y =34x +m 与x 轴、y 轴分别交于点A 和点B (0,﹣1),抛物线y =12x 2+bx +c 经过点B ,与直线l 的另一个交点为C (4,n ). (1)求n 的值和抛物线的解析式;(2)点D 在抛物线上,DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2),设点D 的横坐标为t (0<t <4),矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3)将△AOB 绕平面内某点M 旋转90°或180°,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A 1的横坐标.2.如图,顶点为C 的抛物线y=ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,连接OC 、OA 、AB ,已知OA=OB=2,∠AOB=120°.(1)求这条抛物线的表达式;(2)过点C 作CE ⊥OB ,垂足为E ,点P 为y 轴上的动点,若以O 、C 、P 为顶点的三角形与△AOE 相似,求点P 的坐标;(3)若将2.的线段OE 绕点O 逆时针旋转得到OE′,旋转角为α(0°<α<120°),连接E′A 、E′B ,求E′A+12E′B 的最小值.3.如图,抛物线y=﹣x2+4x+5与x轴,y轴分别交于A,B,C三点.(1)请直接写出A,B,C三点坐标:A(_____,_____)、B(_____,______)、C(______,______)(2)若⊙M过A、B、C三点,求圆心M的坐标,并求⊙M的面积;(3)在2.的条件下,在抛物线上是否存在点N,使得由A,C,M,N四点构成的四边形为平行四边形?若存在,请求出点N的坐标,若不存在,请说明理由.4.如图①,直线L:y=mx+n(m < 0,n > 0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做L的关联抛物线,而L叫做P的关联直线.x2−x+4,则L表示的(1)若L:y=-x+2,则P表示的函数解析式为______;若P:y=−12函数解析式为_______.(2)如图②,若L:y=-3x+3,P的对称轴与CD相交于点E,点F在L上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(3)如图③,若L:y=mx+1,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=√5,求出L,P表示的函数解析式.65.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.(1)若直线y=mx+n经过B,C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=-1 上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标.6.如图,已知抛物线y=ax2+3ax−4a与x轴负半轴相交于点A,与y轴正半轴相交于点B,OB=OA,直线l过A、B两点,点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形F AEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由.(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求出点D的坐标;若不存在,说明理由.7.如图,已知抛物线的顶点坐标是(2,﹣1),且经过点A(5,8)(1)求该抛物线的解析式;(2)设该抛物线与y轴相交于点B,与x轴相交于C、D两点(点C在点D的左边),试求点B、C、D的坐标;(3)设点P是x轴任一点,连接AP、BP.试求当AP+BP取得最小值时点P的坐标.8.如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y =x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.9.如图,抛物线y=ax2+bx+c为x轴的一交点为A(﹣6,0),与y轴的交点为C(0,3),且经过点G(﹣2,3).(1)求抛物线的表达式.(2)点P是线段OA上一动点,过P作平行于y轴的直线与AC交于点Q,设△CPQ的面积为S,求S的最大值.(3)若点B是抛物线与x轴的另一定点,点D、M在线段AB上,点N在线段AC上,∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.x+π与x轴、y轴分别交于点A和点10.如图1,在平面直角坐标系xOy中,直线l:y=34x2+bx+c经过点B,且与直线l的另一个交点为C(4,n). B(0,﹣1),抛物线y=12(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.11.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM 周长的最小值;若不存在,请说明理由.12.如图,抛物线y=﹣x2﹣2x+3 的图象与x 轴交于A、B 两点(点A 在点B 的左边),与y轴交于点C,点D 为抛物线的顶点.(1)求点A、B、C 的坐标;(2)点M(m,0)为线段AB 上一点(点M 不与点A、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E,与抛物线交于点P,过点P 作PQ∥AB 交抛物线于点Q,过点Q 作QN⊥x 轴于点N,可得矩形PQNM.如图,点P 在点Q 左边,试用含m 的式子表示矩形PQNM 的周长;(3)当矩形PQNM 的周长最大时,m 的值是多少?并求出此时的△AEM 的面积;(4)在(3)的条件下,当矩形PMNQ 的周长最大时,连接DQ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G(点G 在点F 的上方).若FG=2√2DQ,求点F 的坐标.x2+bx+c经过点A(﹣2,0),点B(0,4).13.如图,抛物线y=−12(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.14.如图,已知抛物线经过点A(-1,0),B(4,0)C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,1),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边2形?15.如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN//y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.16.已知直线y=x+3交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)A点坐标,B点坐标,抛物线解析式;(2)点C(m,0)在线段OA上(点C不与A、O点重合),CD⊥OA交AB于点D,交抛物线于点E,若DE=√2AD,求m的值;(3)点M在抛物线上,点N在抛物线的对称轴上,在2.的条件下,是否存在以点D、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年重庆中考复习第25题专题练习1. 25.重庆旺旺苗圃去年销售的某种树苗每棵的售价y(元)与月份x之间满足一次函数关系y=-x+62而去年的月销售量P(棵)与月份x之间成一次函数关系,其中两个月的销售情况如下表:(1)求该种树苗在去年哪个月销售金额最大?最大是多少?(2)由于受干旱影响,今年1月份该种树苗的销售量比去年12月份下降了25%.若将今年1月份售出的树苗全部进行移栽,则移栽当年的存活率为(1-n%),且平均每棵树苗每年可吸碳1.6千克,随着该树苗对环境的适应及生长,第二年全部存活,且每棵树苗的吸碳能力增加0.5n%.这样,这批树苗第二年的吸碳总量为5980千克,求n的值.(保留一位小数)(参考数据:≈1.414,≈1.732,≈2.236,≈2.449)2.我市有一种可食用的野生菌,上市时,某经销公司按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格y(元)与存放天数x(天)之间的部分对应值如下表所示:但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存110天,同时,平均每天有3千克的野生菌损坏不能出售.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y与x的变化规律,并直接写出y与x之间的函数关系式;若存放x天后,将这批野生茵一次性出售,设这批野生菌的销售总额为P元,试求出P与x之间的函数关系式;(2)该公司将这批野生菌存放多少天后出售可获得最大利润w元并求出最大利润.(利润=销售总额-收购成本-各种费用)(3)该公司以最大利润将这批野生菌一次性出售的当天,再次按市场价格收购这种野生1180千克,存放入冷库中一段时间后一次性出售,其它条件不变,若要使两次的总盈利不低于4.5万元,请你确定此时市场的最低价格应为多少元?(结果精确到个位,参考数据:)3.重百电器商场某畅销品牌电视机今年上半年(1-6月份)每台的售价y (元)与月份x 之间满足函数关系y=-50x+3500,上半年的月销售量p (台)与月份x 之间成一次函数关系,其中两个月的销售情况如表:(1)求该品牌电视机在今年上半年哪个月的销售金额最大?最大是多少?(2)受国际经济形势的影响,从7月份开始全国经济出现通货膨胀,商品价格普遍上涨.今年7月份该品牌电视机的售价比6月份上涨了m%,但7月的销售量比6月份下降了2m%.商场为了促进销量,8月份决定对该品牌电视机实行九折优惠促销.受此政策的刺激,该品牌电视机销售量比7月份增加了220台,且总销售额比6月份增加了15.5%,求m 的值.4.25.我市“上品”房地产开发公司于2010年5月份完工一商品房小区,6月初开始销售,其中6月的销售单价为20.7/m 万元,7月的销售单价为20.72/m 万元,且每月销售价格1y (单位:2/m 万元)与月份(611,x x x ≤≤为整数)之间满足一次函数关系:每月的销售面积为2y (单位:2m ),其中x x x y ,116(2600020002≤≤+-=为整数).(1)求1y 与月份x 的函数关系式; (2)6~11月中,哪一个月的销售额最高?最高销售额为多少万元?(3)2010年11月时,因会受到即将实行的“国八条”和房产税政策的影响,该公司销售部预计12月份的销售面积会在11月销售面积基础上减少%20a ,于是决定将12月份的销售价格在11月的基础上增加%a ,该计划顺利完成.为了尽快收回资金,2011年1月公司进行降价促销,该月销售额为)6001500(a +万元.这样12月、1月的销售额共为4.4618万元,请根据以上条件求出a 的值为多少?5、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数).5.831 5.9166.083 6.164)6.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y 与周数x 的变化情况满足二次函数y =- 120x 2+bx +c .(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y 与x的函数关系式,并求出5月份y 与x 的函数关系式;(2)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m = 14x +1.2,5月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为m =- 15x +2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a %,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8 a %.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.7.为推进节能减排,发展低碳经济,深化“宜居重庆”的建设,我市某“用电大户”用480万元购得“变频调速技术”后,进一步投入资金1520万元购买配套设备,以提高用电效率达到节约用电的目的.已知该“用电大户”生产的产品“草甘磷”每件成本费为40元.经过市场调研发现:该产品的销售单价,需定在100元到300元之间较为合理.当销售单价定为100元时,年销售量为20万件;当销售单价超过100元,但不超过200元时,每件新产品的销售价格每增加10元,年销售量将减少0.8万件;当销售单价超过200元,但不超过300元时,每件产品的销售价格在200元的基础上每增加10元,年销售量将减少1万件.设销售单价为x元),年销售量为y万件),年获利为w万元).(年获利=年销售额-生产成本-节电投资)(1)直接写出y与x间的函数关系式;(2)求第一年的年获利w与x函数关系式,并说明投资的第一年,该“用电大户”是盈利还是亏损?若盈利,最大利润是多少?若亏损,最少亏损是多少?(3)若该“用电大户”把“草甘磷”的销售单价定在超过100元,但不超过200元的范围内,并希望到第二年底,除去第一年的最大盈利(或最小亏损)后,两年的总盈利为1842万元,请你确定此时销售单价.在此情况下,要使产品销售量最大,销售单价应定为多少元?8、我市某柑橘销售合作社2006年从果农处共收购并销售了400吨柑橘,平均收购价为0.8元/千克,平均售出价为1.2元/千克.2007年适当提高了收购价,同时,为适应市场需求,用2006年销售柑橘赚得的年利润的50%作为投资,购买了一些柑橘精包装的加工设备和材料,柑橘精加工后,销售价提高部分没有超过原销售价的一半.由于对柑橘的精选,2007年的购销量有所减少.经过前期市场调查表明,同2006年相比,每吨平均收购价增加的百分数:每吨平均销售价增加的百分数:年购销量减少的百分数=2.5:5:1.(年利润=(销售价-收购价)×年销售量)(1)该柑橘销售合作社2006年的年利润为多少?(2)若该销售合作社预计2007年所获的年利润,除收回购买柑橘精包装的加工设备和材料的投资外,还赚了20.8万元的利润,问2007年他们购销量减少的百分数为多少?9、一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x (元)取整数,且要求售价一定高于成本价,用y (元)表示该店日销售利润、(日销售利润=每天的销售额-套餐成本-每天固定支出) (1)当每份套餐售价不超过10元时,请写出y 与x 的函数关系式及自变量的取值范围;(2)当每份售价超过10元时,该店既要吸引顾客,使每天销售量较大,又要有最高的日销售利润.按此要求,每份套餐的售价应定为多少元?此时日销售利润为多少?(3)新年即将到来,该快餐店准备为某福利院30个小朋友送去新年的礼物,已知购买一份礼物需要20元,于是快餐店统一将套餐的售价定为10元以上,并且每卖出一份快餐就捐出2元作为为福利院小朋友购买礼物的经费,则快餐店在售价不超过14元的情况下至少将套餐定为多少钱一份,可使日销售利润(不包含已捐出的钱)达到900元?并通过分析判断此时所集经费是否能够为福利院每个小朋友都购买一份礼物.(其中 ≈4.36,10、某农户进行某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y (元)与销售月份x (月)满足关系式238y x =-+(112x ≤≤,x 取正整数),而其每千克成本p (元)与销售月份x (月)满足的函数关系如图所示. (1)试确定p 与销售月份x 的函数关系式;(2)“五·一”节之前,几月份出售这种水产品每千克的利润最大?最大利润是多少? (3)若第九月份的销售量要在第八月份的基础上增加a %,第九月份的售价要在历年九月份市场行情售价基础上增加0.2a %,才能满足第八月份、第九月份这两个月的销售额持平,求a 的值。
(保留2个37 6.082≈38 6.164≈)1710p (元) x1 2 3 4 5 6 7 8 9 10 11 12 2p x bx c =++ O11.大学生李某毕业响应国家“自主创业”的号召,在我市沙坪坝学校密集的沙南街路段投资开办了一个学生文具店。
该店在开学前8月31日购进一种今年新上市的文具袋9月份(9月1日至9月30日)进行30天的试销售,购进价格为20元/个。
销售结束后得知日销售量y (个)与销售时间x (天)之间有如下关系:y=-2x+80(1≤x ≤30,x 取正整数);又知销售价格z (元/个)与销售时间x (天,x 取正整数)之间的函数关系满足如图所示的函数图象。