地震勘探仪器原理

合集下载

地震勘探原理

地震勘探原理

地震勘探原理地震勘探是一种利用地震波在地下传播的物理现象,通过地震波在地下不同介质中的传播速度和反射、折射等特性来获取地下结构信息的方法。

地震勘探原理是基于地震波在地下传播的特性,利用地震波在不同介质中传播速度不同的特点,来推断地下介质的性质和结构。

地震勘探原理的研究对于地下资源勘探、地质灾害预测、地下水资源调查等具有重要的意义。

地震波是一种机械波,它在地下的传播受到地下介质的影响,不同介质对地震波的传播速度和传播路径都有不同的影响。

当地震波遇到地下介质的边界时,会发生反射和折射现象,这些现象可以被记录下来,并通过地震勘探仪器进行分析,从而推断地下的结构信息。

地震勘探原理主要包括地震波的产生、传播和接收三个基本过程。

首先,地震波的产生通常是通过地震仪器或爆炸物等方式产生的,产生的地震波会向地下传播。

其次,地震波在地下的传播受到地下介质的影响,不同介质对地震波的传播速度和传播路径都有不同的影响。

最后,地震波会被地震勘探仪器接收到,并记录下地震波在地下传播的路径和特性,通过对这些数据的分析,可以推断地下的结构信息。

地震勘探原理的研究对于地下资源勘探具有重要的意义。

例如,在石油勘探中,地震勘探可以通过分析地下介质的反射特性,来推断地下是否存在油气藏;在矿产资源勘探中,地震勘探可以通过分析地下介质的反射特性,来推断地下是否存在矿产资源。

此外,地震勘探原理还可以应用于地质灾害预测、地下水资源调查等领域,对于科学研究和工程应用都有重要的意义。

总之,地震勘探原理是一种利用地震波在地下传播的物理现象,通过地震波在地下不同介质中的传播速度和反射、折射等特性来获取地下结构信息的方法。

地震勘探原理的研究对于地下资源勘探、地质灾害预测、地下水资源调查等具有重要的意义,是地球物理勘探领域的重要组成部分。

希望通过对地震勘探原理的深入研究,可以更好地利用地震波这一物理现象,为人类社会的发展和资源利用做出更大的贡献。

地震勘探仪器原理作业及最终答案.doc

地震勘探仪器原理作业及最终答案.doc

地震勘探原理作业整理作业一1、地震勘探的三个阶段和每个阶段需要的设备?地震勘探基本上可分如下三个阶段:野外数据采集、室内资料处理、地震资料解释。

每一个阶段都需要相应的设备,地震勘探装备是地震勘探的物质基础。

需要的设备分别是:地震勘探仪器,大型计算机集群和交互的工作站。

2、地震勘探仪器的任务是什么?地震勘探仪器的任务是将由震源激发的,并经地层传播反射网地表的地震波接收并记诚下來3、地震勘探第一个阶段的成果是什么?地震勘探第一阶段的最终成果,就是地震勘探仪器产生的野外地震记录,它是资料处理和资料解释的原始依据和工作基础4、地震勘探仪器大致分为哪几代?地震勘探仪器经历了六代:第一代:模拟光点记录地震仪第二代:模拟磁带记录地震仪第三代:集中控制式数字地震仪第四代:分布式遥测地震仪第五代:新一代分布式遥测地震仪第六代:全数字地震仪5、地震信号有效范围是0.001毫伏-100毫伏,要求地震勘探仪器的动态范围至少为多少?DR=201og(V max/V min)=201og(l00/0.001)=1OOdB,仪器动态范围为0-1 OOdB 6、对于一个满量程为4096毫伏的10位二进制电压表,输入信号电压为2231.5毫伏,转换的二进制数据是(不含符号位)多少位,量化电平是多少毫伏?输入信号电压〉1/2满谧程,所以转挽的二进制数据是10位的量化电平q=V FSR/2N=4096mV/2,()=4mV 7、叙述地震波的运动学和动力学特征?运动学特征:反射波到达时间有关的特征,如到达时间、速度等,称为运动学特征。

动力学特征:地震波的波形特征称为动力学特征,它包拈振幅特征和频率特征。

8、叙述采样定理。

用低通滤波器从离散信号屮恢a原信号的条件是采样频率(《大于信号最高频率(f m)的两倍。

作业二1、叙述讲过的四种地震勘探检波器的种类,并说明哪种检波器是速度检波器,哪种检波器是加速度检波器。

速度检波器:电动式地震检波器、涡流式地震检波器加速度检波器:压电式地震检波器、数字地震检波器-MEMS加速度传感器2、叙述电动式检波器的性能参数?1、失真度(畸变系数)检波器是一线性振动系统,按理想状态,它的输出应当是一纯正的正弦波,但是由于种种原因,在它的上面总含有其它的倍频于它的高频成分,使其看上去就不那么纯,这就叫做检波器的失真度。

地震勘探仪器-地震

地震勘探仪器-地震
实时化与网络化
随着物联网和云计算技术的发展,地震勘探仪器将实现实时数据传输和处理,提高数据利 用效率和响应速度。同时,通过网络技术实现地震数据的共享和协同分析,提高地震研究 的协作性和开放性。
THANKS
感谢观看
地震勘探仪器-地震
• 地震勘探仪器概述 • 地震勘探仪器的工作原理 • 地震勘探仪器的分类与应用 • 地震勘探仪器的发展趋势与挑战 • 结论
01
地震勘探仪器概述
地震勘探仪器的定义与特点
• 定义:地震勘探仪器是一种用于探测地下地质构造和矿产资源的地球物 理仪器。它通过测量地球表面或近地表的地震波,分析地震波在地下的 传播规律和特征,推断地下岩层的性质、结构和构造,为地质勘探、矿 产资源开发、工程地质等领域提供重要的数据支持。
等方法。
中期发展
随着电子技术和计算机技术的不 断发展,地震勘探仪器逐渐实现 了数字化和自动化,提高了测量
精度和效率。
现代发展
现代地震勘探仪器采用了更先进 的技术和算法,如数字信号处理、 人工智能等,进一步提高了测量 精度和自动化程度,同时也拓展
了应用领域。
02
地震勘探仪器的工作原理
地震波的产生与传播
基础研究
地震勘探仪器可以揭示地球内部的结 构和演化,为地球科学基础研究提供 重要数据。
灾害防治
地震勘探仪器可以探测地下岩层的性质和 构造,为地质灾害防治提供数据支持,如 滑坡、泥石流等灾害的预测和防治。
地震勘探仪器的发展历程
早期发展
地震勘探仪器最早可以追溯到20 世纪初,当时的地震勘探技术比 较简单,主要采用敲击和听诊器
04
地震勘探仪器的发展趋势与挑战
高分辨率地震勘探技术的发展
总结词

地震勘探原理的基本问题

地震勘探原理的基本问题

地震勘探原理的基本问题地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.水平叠加:将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效果最好波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线.动校正:在水平界面情况下,从观测到的波的旅行时中减去正常时差Δt1得到x/2处的t0时间,这一过程叫动校正或正常时差校正.多次覆盖:对被追踪的界面进行多次观测.剖面闭合:是检查对比质量,连接层位,保证解工作正确进行的有效办法,他包括测线交点闭合,测线网的闭合,时间闭合等.几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学.水平分辨率:指沿水平方向能分辨多大的地质体,其值为根号下0.5λh.时距曲线:从地震源出发,传播主观测点的时间t与观测中点相对于激发点的距离x之间的关系剩余时差:把某个波按水平界面一次反射波作动校正后的反射波时间与共中心点处的时间tom之差.绕射波:地震波在传播过程中,如遇到一些岩性的突变点,这些突变点就会成为新震源,再次发出球面波,想四周传播,这就叫绕射波.三维地震:就是在一个观测面上进行观测,对所得资料进行三维偏移叠加处理,以获得地下地质体构造在三维空间的特征.水平切片:就是用一个水平面去切三维数据体得出某一时刻tk各道的信息,更便于了解地下构造形态个查明某些特殊地质现象.同相轴:一串套合很好的波峰或波谷.相位:一个完整波形的第i个波峰或波谷.纵波:传播方向与质点振动方向一致的波.转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生类型不同的,与其类型不同的称为转换波.反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同.地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。

地震勘探原理和方法

地震勘探原理和方法

地震勘探原理和方法地震勘探是一种地球物理勘探方法,通过研究地震波在地壳中的传播规律来推断地下岩层的性质和形态。

本文将介绍地震勘探的基本原理和方法,包括地震波传播原理、地震波探测方法、数据采集技术、数据处理技术、地质解释技术、地球物理测井技术和地震勘探仪器设备等方面。

1.地震波传播原理地震波是指地震发生时产生的波动,包括纵波和横波。

纵波是压缩波,在地壳中以波的形式传播,横波是剪切波,在地壳中以扭动的方式传播。

当地震波在地壳中传播时,遇到不同密度的岩层会发生反射、折射和透射等现象,这些现象是地震勘探的基础。

2.地震波探测方法地震波探测方法包括折射波法和反射波法。

折射波法是通过测量地震波在地壳中传播的速度和时间来推断地下岩层的性质和形态。

反射波法是通过测量地震波在地壳中反射回来的信号来推断地下岩层的性质和形态。

在实际应用中,通常采用折射波法和反射波法相结合的方式来提高地震勘探的精度和分辨率。

3.数据采集技术数据采集技术是地震勘探的关键之一,它包括野外数据采集和室内数据采集。

野外数据采集是在野外布置观测系统,通过激发地震波并记录地震信号来进行数据采集。

室内数据采集则是在室内通过计算机系统对野外采集的数据进行处理和分析。

4.数据处理技术数据处理技术是地震勘探的关键之一,它包括预处理、增益控制、滤波、叠加、偏移、反演等步骤。

预处理包括去除噪声、平滑处理等;增益控制包括调整信号的幅度和相位;滤波包括去除高频噪声和低频干扰;叠加是指将多个地震信号进行叠加,以提高信号的信噪比;偏移是指将反射回来的信号进行移动,以纠正地震信号的偏移;反演是指将地震信号转换为地下岩层的物理性质,如速度、密度等。

5.地质解释技术地质解释技术是地震勘探的关键之一,它包括构造解释、地层解释和储层解释等方面。

构造解释是指根据地震信号推断地下岩层的构造特征和形态;地层解释是指根据地震信号推断地下岩层的年代、沉积环境和地层组合;储层解释是指根据地震信号推断地下油气储层的性质和特征。

地质勘探中的仪器设备

地质勘探中的仪器设备

地质勘探中的仪器设备地质勘探是指通过不同的方法,了解地球内部结构和地下资源分布的一种科学研究。

在地质勘探的过程中,仪器设备起到了至关重要的作用。

本文将就地质勘探中的仪器设备进行介绍。

一、地震勘探仪器地震勘探是一种通过测量地球中的地震波传播和反射来获取地下结构信息的方法。

地震仪器在地震震源和检波器之间进行的数据传输起到至关重要的作用。

常见的地震勘探仪器有地震震源、地震检波器和地震记录器等。

1. 地震震源地震震源是产生人工地震波的设备,通常是由爆炸物或震源车辆组成。

地震震源的形式多样,如压电源、炸药震源和振动源等。

通过产生地震波,地震震源可以帮助勘探者测量地下岩石的速度、密度和其他物理特性。

2. 地震检波器地震检波器是用于接收地震波传播过程中的反射或折射信号的仪器。

常见的地震检波器包括地震观测井、地震阵列和地震测深仪等。

地震检波器可以将地震信号转化为电信号,为勘探者提供参考依据。

3. 地震记录器地震记录器用于记录地震信号,并将其转化为地震图像或数字数据。

地震记录器可以通过多种方式储存数据,如磁带式地震记录器、数字地震记录器和地震数据采集系统等。

地震记录器的使用可以帮助勘探者分析地下结构和探测地下资源。

二、重力测量仪器重力测量是一种利用重力场的变化来推测地下岩石质量的方法。

通过重力测量仪器,勘探者可以测量地下岩石的密度和分布情况。

重力测量仪器主要包括重力计和全球导航卫星系统(GNSS)等。

重力计可以通过测量地面上的重力加速度变化来获得地下岩石的质量信息。

GNSS可以通过测量地表的重力场变化,推断地下岩石的密度分布情况。

三、电磁测量仪器电磁测量是一种通过测量地下岩石的电导率和介电常数来推测地下结构的方法。

电磁测量仪器主要包括电磁感应仪和电测深仪等。

电磁感应仪通过产生高频电磁场,测量地下岩石对电磁场的响应来推断地下构造。

电测深仪是一种用于探测地下电阻率的仪器,通过测量电流传输的速度和电流对电压的响应,可以推断地下岩石的电导率。

地震勘探仪器的原理与新技术

地震勘探仪器的原理与新技术地震记录仪是地震勘探中最基本的仪器之一、它的作用是记录地震波在地下传播时的振动情况。

地震记录仪由一组传感器、放大器和数据采集系统组成。

传感器通常采用压电陶瓷传感器或气流传感器,用于转换地震波的压力波动为电信号。

放大器则用于放大传感器产生的微弱电信号,以便进一步处理和分析。

数据采集系统则负责将放大后的信号数字化,并存储在计算机中,供后续处理。

地震传感器是地震记录仪中的关键部件,也是测量地震波传播的速度、方向和振幅的重要工具。

地震传感器的原理是利用传感器内部的物理效应来测量地震波的振幅和频率。

常用的地震传感器有三轴加速度计和压电传感器。

三轴加速度计可以同时测量三个方向上的加速度,从而确定地震波的传播速度和方向。

压电传感器则使用压电效应将地震波的压力波动转化为电信号。

地震源是地震勘探中的另一个核心部分。

地震源是通过施加力或释放能量来产生地震波的装置。

常见的地震源包括震源车、爆破和振动器。

震源车是一种装有震动源的车辆,通过车辆行驶产生地震波。

爆破则是利用爆炸产生的冲击波来生成地震波。

振动器则是通过振动设备产生地震波。

除了传统的地震勘探仪器,还有一些新技术被应用于地震勘探中。

其中之一是地震反演技术。

地震反演是利用地震波的传播特征来推断地下物质的属性和结构的方法。

它基于波动理论和数值模拟,通过对地震波的观测数据进行反演分析,得到地下介质的速度、密度和衰减等物理属性。

另一个新技术是多次反射地震勘探。

多次反射地震勘探是利用地震波在地下遇到不同介质界面反射产生多次反射波的原理来获取地下信息的方法。

它通过分析不同反射波的时间延迟和振幅变化,可以推断出地下结构的层次和反射界面的位置。

此外,地震勘探中还有其他一些技术和仪器,如地震井探测技术、地震电磁法和地形扫描仪等。

这些新技术和仪器的不断发展,不仅提高了地震勘探的精度和效率,也促进了地球科学的发展和地下资源的开发利用。

综上所述,地震勘探仪器是研究地球内部结构和地下地质构造的重要工具。

地震勘探-检波器工作原理

地震勘探检波器的工作原理地震检波器的理论基础地震检波器是将地表振动变为电信号的一种传感器,或者说地震检波器是把机械振动转化为电信号的机电装置,以最大的逼真度产生地面运动垂直分量的电模拟。

每一个现代地震检波器都是有机械部分和其相连的具有电负载的机电转换器所组成,地震检波器的电学部分和机械部分组成一个整体。

要求它的振幅——频率响应在有意义的频率内是线性的,相位的响应也是线性的。

根据机电转换原理,可把常用的检测器分为三类:即变磁通式(或动圈式)、变磁阻式、压电式。

由于动圈式检波器的输出电压与线圈相对磁铁的运动速度成正比,这种检波器也叫速度检波器。

我国路上地震勘探工作大部分使用变磁通式的检波器。

根据用途不同,也可把地震检波器分为地面检波器、沼泽检波器和井中检波器等。

一个振动系统,它是由一个质量M ,一个弹簧和一个阻尼器Z 组成,地震检波器的装置如图1-1所示,地震检波器的外壳安置在地面上(或沉没于井中),于是,假设外壳的运动精确地重复着地面运动,外壳上具有伸长系数K 的弹簧悬挂着称为惯性质量的重荷M ,为了使用权惯性质量的振动平静下来,惯性质量中被放在胶质液体中,当外壳和惯性质量M 产生相对位移时,在其电极上造成某个电动热E 。

在地震勘探检波器中,主要应用各种感应转换器,在感应转换器中,根据电磁感应,将机械振动变成电震荡,感应机电转换器可以作为与质量M 紧密相连的线圈和与外壳相连的永久磁铁之和(或者反过来),线圈在磁铁的磁场中移动时,在线圈内就发生电动势,转换器线圈内阻在内的某个电阻Z 与转换器两极相连。

可以把地震检波器作为机电系统来研究,这里,某个激发函数()t ζ——例如外壳(地面)对固定读书系统的位移速度,作用于这个系统的输入端,在地震检波器的输出端发生从其电学部分中的负载电阻取得的某个变化的电压()t U ,地震检波器数学模型应该确定这些值之间的关系。

地震检波器的数学模型 为了建立地震检波器的运动数学模型,先讨论其中的作用力。

[]地震勘探原理

名词解释:1、布格重力异常:是野外重力观测数据经过布格校正以后得到的重力异常,它是由地下矿体或构造等局部地质因素在测点处引起的引力的垂向分量。

2、磁异常:地下含有磁性的地质体在其周围空间引起的磁场变化。

3、地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造、地层岩性等,为寻找油气田或其它勘探目的服务的一种物探方法。

4、地震子波:当地震波传播一定距离后,其形状逐渐稳定,具有2-3个相位,有一定的延续时间的地震波,称为地震子波,它是地震记录的基本元素。

5、纵波(P波):质点的振动方向与波的传播方向一致的波,有时也称为压缩波或疏密波。

6、横波(S波):质点的振动方向与波的传播方向垂直的波,有时也称为切变波。

7、体波:当纵波和横波在介质的整个立体空间中传播时合称体波。

8、面波:在自由表面或不同弹性介质的分界面上传播的一类特殊波。

最常见的面波是沿地面传播的瑞利波。

其特点是低速(通常小于横波速度)、低频、强振,是一种干扰波。

9、多次波:在一个或几个界面中经过两次或两次以上重复反射或折射而到达地面的地震波。

多次波是一种干扰波。

10、波阻抗:地震波传播速度与介质密度的乘积(Z=ρ·V)。

它是研究界面上地震波反射强度的一个重要参数。

11、地震波运动学:研究地震波波前的空间位置与其传播时间关系的一门学科,也叫几何地震学,主要用于地震资料的构造解释。

12、时距曲线:波从震源出发,传播到测线上各观测点的传播时间t与观测点相对于激发点(坐标原点)距离x之间的关系曲线。

t=f(x)=f(x,v,h)13、自激自收:激发点和接收点在同一位置上的野外工作方式。

14、炮检距:观测点相对于激发点(坐标原点)距离x15、地震波动力学:研究地震波在运动状态中的能量、波形、频谱等特征及其变化规律的一门学科,它是地震资料地层、岩性解释的基础。

16、频谱:组成一个复杂振动的各个谐振动分量的特性与其频率关系的总和称为该振动的频谱,包括振幅谱和相位谱。

地震勘探原理概论

地震勘探原理概论地震勘探是一种广泛应用于地球探测的技术,以地震波传播的原理为基础。

地震勘探通过人工制造地震波,并观测地震波在地下介质中传播的特性,从而获得地下构造和岩层信息。

本文将从地震波产生、传播和接收三个方面,对地震勘探原理进行概述。

地震波产生是地震勘探的首要过程,通常通过爆炸、震源或振动器等方式产生。

爆炸法是最常用的地震波产生方法之一,它通过炸药或地雷等爆炸物产生的冲击波来激发地震波。

震源法则是利用机械振动或电磁激发地震波,其优点是能够控制波形和频率。

振动器法是通过机械设备产生振动信号,使地面振动,激发地震波。

这些方法都可以有效地产生地震波,使其传播到地下介质中。

地震波的传播是地震勘探的核心过程。

地震波在地下介质中传播的速度取决于地下岩层的性质。

地震波在固体、液体和气体介质中的传播速度有所不同,由此可见,地震波传播的速度与介质的密度、弹性模量等参数有关。

地震波的传播路径通常遵循折射和反射原理,当地震波从一种介质进入另一种介质时,会发生折射和反射,从而使地震波的传播路径发生变化。

地震波的接收是地震勘探的最后一个环节,也是获取地下信息的关键。

地震波在地表或地下的接收器上产生的信号被称为地震记录。

地震记录中包含了地震波传播的速度、幅度和频率等信息。

地震记录可以通过地震仪器进行观测和记录,并通过数据处理得到地下结构和岩层的信息。

地震勘探在石油勘探、地质调查和土木工程等领域有着广泛的应用。

在石油勘探中,地震勘探可以帮助确定油气藏的位置、大小和性质,为油气开发提供重要的依据。

在地质调查中,地震勘探可以揭示地下岩层的分布和性质,有助于地质灾害的预测和防治。

在土木工程中,地震勘探可以用于勘察地质灾害风险、确定地基和地层的信息,为工程设计和施工提供参考。

综上所述,地震勘探是一种基于地震波传播原理的技术,通过地震波的产生、传播和接收,可以获取地下结构和岩层的信息。

地震勘探在各个领域有着广泛的应用,对于石油勘探、地质调查和土木工程等领域的发展和进步有着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地震资料解释
这三大环节中,地震勘探成功的关键很 大程度上取决于地震采集技术。如果地震 采集技术不过关,无论采用多么先进的处 理软件和方法,都不可能无中生有的处理 处理想的地震剖面,得到正确的地质信息 。但是由于仪器设备制造工艺、野外采集 的复杂性等因素的影响,地震采集技术的 研究与发展处于相对缓慢的状态。
激发方式的研究是地震勘探的 重要组成部分,包括激发的井深、 药量、组合激发、激发条件等方面 的试验研究工作。
接收技术的研究主要包括地震 仪器技术、地震检波器技术和野外 使用检波器组合等方面的技术。
3、质量监控与评价
常规质量监控序列包括2个主要阶段: (1)观测系统和坐标系统的控制及它们与地震数据
炮检距分布取决于炮点分布、最大炮检距、 最小炮检距、覆盖次数及非纵距分布,在 窄排列片中炮检距的分布比较均匀,并且 纵向覆盖次数越大,炮检距分布越均匀。 方位角的分布主要受横向覆盖次数和排列 非纵距的影响。方位角分布和炮检距分布 是一对矛盾,在实际设计时应根据目标有 所侧重。设计观测系统是还要考虑偏移成 像、速度分析、反褶积等对面元属性的要 求。
采集设计需要对基础地球物理采集参数 进行论证,包括纵、横向分辨率,面元和 道距大小,最小和最大炮检距,非纵距, 覆盖次数等,每个参数的应用范围都有一 定的假设条件,各个参数的成立条件及相 互联系,又相互制约。所以,一般情况下 ,设计观测系统是要限制最大非纵距,尤 其是在断层发育、地质构造复杂、地层倾 角变化大的地区,应使最大非纵距尽可能 的小一些。
在此基础上,最大炮检距的变化是决定整 个设计覆盖次数变化的关键,其在有效接 收范围内的减少或增加,即是选择窄方位、 宽方位还是全方位观测系统,改变采集成 本变化的主要因素。在面元大小、覆盖次 数、最大炮检距3个采集因素基本明确,采 集成本基本受控的前提下,就可针对不同 的地质任务要求选择三维观测系统。
主要章节
➢第一章 绪论 ➢第二章 震源 ➢第三章 地震检波器 ➢第四章 地震数据采集 ➢第五章 地震数据传输 ➢第六章 地震数据记录
第一章 绪论
第一节 地震勘探技术
地震勘探是地球物理勘探中最重要、解决油 气勘探问题最有效的一种方法。从地震勘探在第 一次世界大战中的应用现在不到一百年,地震勘 探技术已经有了飞速发展。从折射波法到反射波 法、从单次剖面到多次覆盖、从模拟磁带到数字 磁带、从普通叠加到偏移归位、从二维地震勘探 到三维地震勘探,甚至到现在的四维地震勘探、
从单分量地震勘探到多波多分量地震勘探, 地震勘探技术得到不断的发展,而且地震 技术的应用也已经从传统的勘探领域进入 到开发领域,一切发展的前提是地震采集 技术的长足发展。
地震勘探技术是一个系统工程,从地震 资料的采集、室内处理到地震资料的解释 三个环节紧密相连。
地震勘探与接收
地震波的激发与接收是地震勘探成功的关键。 对陆上地震勘探来讲,近年在地震资料的野外采 集方面有不少的发展,主要表现在地震波的激发 与接收两个方面。例如,目前野外施工措施可概 括为“四高”:高定位精度、高空间采样、高时 间采样率、高覆盖次数;“两组合”:组合检波、 组合激发; “两埋实”:检波器挖坑埋实、激发 井埋实(闷井); “两均匀”:反射点方位角分 布均匀、炮检距分布均匀;
一个三维地震采集的观测系统的设计 是一个复杂的综合分析论证的工作过程, 一般难以完全做到面面俱到。
就三维设计而言,采集成本主要与满 足信噪比要求的覆盖次数大小和满足分辨 率要求的反射面元大小有关,这两个因素 一旦确定,地震采集成本就会基本上得到 控制,因为三位观测系统使用的道数也就 会随之基本上受控。
地震资料的采集技术涉及众多内容,大 致可分为采集设计、采集方法、装备制造 和项目管理。进一步可细分为采集设计、 采集技术、质量控制、基础资料管理、信 息技术、HSE、测量、装备制造等。但要真
正解决地震勘探的采集问题,还要涉及地震波的 传播理论,主要是近地表非弹性介质的地震响应、 噪声的影响等。
1、采集设计
地震勘探应该说可以分为两大勘探领域 ----陆地和海洋。对陆上勘探来讲,由于地 表条件不同,可分为平原、山地、沙漠、 黄土塬和滩浅海勘探;海洋主要指深海勘 探。不管是哪一领域,尽管要采用不同的 勘探设备、技术和方法,但对地震勘探本 身来说,万变还是不离其中的,仍然分为 采集、处理、解释三大环节。
一、地震采集
的一致性。 (2)通过少量的纵测线、横测线甚至时间切片的初
步叠加对整个地震质量进行控制。 目前对于质量监控,出现了第三个阶段,目
的是要计算一些强健的属性,他们将以不同的模 式,如炮点、检波器、面元、炮检距等,帮助对 地震质量进行全面定量化控制。下面是一个简单 的流程:
第一阶段 SPS
“两优化”:优化采集参数、优化试验方案; “一措施”:干扰严重时不放炮。
在地震震源、激发方式、检波器技术 和地震波接收方式等方面不断出现新的研 究成果,大力推动了地震勘探技术的发展, 为地震资料质量的提高提供了坚实的基础。
激发震源的研制,主要围绕如何提高 高频信号的能量,并且充分利用炸药的激 发能量,减弱表层干扰波的能量和对地表 设施的破坏作用。
为了完成地质任务,要求所使用的观 测系统各方位角的炮检距分布,覆盖次数 分布,最小炮检距、最大炮检距分布合理, 有利于地质体的正确成像;要求具有足够 的排列长度,以保证对深层的勘探效果, 确保三维地震勘探资料适应中长期对深层 目标勘探的需要。实际上这就是我们常说 的施工设计,也就是指导野外施工队伍的 标准文件。
地震勘探仪器原理
地院地球物理系 二零一三年九月
参考教材
地震勘探仪器原理 袁子龙、狄帮让、肖忠 祥 石油工业出版社 (2006-05出版)
地震勘探仪器原理 孙传友,潘正良编著 石油大学出版社
地震勘探仪器原理 (物探仪器专业用) 吕郊 石油大学出版社 1997年10月第1版
1996-12
地震勘探仪器原理 刘仲一主编 石油工业出版社1986
相关文档
最新文档