高二数学线性规划问题解题步骤总结高中线性规划解题技巧

合集下载

高中数学一轮复习线性规划中求整点最优解的两种常用方法

高中数学一轮复习线性规划中求整点最优解的两种常用方法

线性规划中求整点最优解的两种常用方法简单的线性规划是新教材的新增加内容,它在人们的生活和生产实践中有着广泛的应用,因此,它必将成为高考的一个新亮点,而在线性规划中,求整点最优解的问题是一个难点,下面介绍两种常用的方法.1、平移求解法步骤:1、作出可行域(若是实际问题,则首先应根据题意列出线性约束条件,找出线性目标函数);2、找出最优解(当最优解不是整数解时,过最优解作与线性目标函数平行的直线);3、平移直线族(在平面直角坐标系中,打出网格,在可行域内,平移步骤2中所作的直线,最先经过的整点即为所求的整点最优解). 【范例引导】例1、要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格今需要A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少.解:设需截第一种钢板x 张,第二种钢板y 张,则⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0027*******y x y x y x y x 目标函数为:y x z +=.作出可行域,由⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+539518152273y x y x y x ,所以A ⎪⎭⎫ ⎝⎛539,518.此时,5211=+y x ,因为A 点不是整点,它是非整点最优解,用平移求解法,打出网格,将平行直线族y x t +=中的5211=+y x 向右上方平移,由图可知,在可行域中最先经过的整点是B (3,9)和C (4,8),它们是所求的最优整点解,此时.12=+y x答:要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种,一种是截第一种钢板3张、第二种钢板9张;二是截第一种钢板4张、第二种钢板8张. 2、调整优值法步骤:1、求出非整点的最优解及最优值(即对应最优解的目标函数值);2、借助不定方程的知识调整最优值;3、筛选出符合条件的最优解. 【范例引导】例2、用“调整优值法” 解例1 .解:由⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+539518152273y x y x y x ,所以A ⎪⎭⎫ ⎝⎛539,518,因为A 点不是整点,它是非整点最优解,此时,5211=+=y x t = 11.4不是整数,因而需要对t 进行调整,由于y x ,为整数,所以t 为整数,而与11.4最靠近的整数是12,故取t =12,即12=+y x ,将x y -=12代入到线性约束条件,解得:5.43≤≤x ,取4,3==x x 得整点的最优解为:B (3,9)和C (4,8),此时.12=+y x例3、已知y x ,满足不等式组:⎪⎪⎩⎪⎪⎨⎧∈∈≥≥≤+≤+Ny N x y x y x y x ;0;040356056(*)求y x z 150200+=的最大值. 解:根据约束条件画出可行域,由⎩⎨⎧=+=+40356056y x y x 得非整点最优解)760,720(,此时,711857760150720200=⋅+⋅=z 也是非整数.因为y x z 150200+=)34(50y x +=,又y x ,为整数,所以z 一定是50的倍数.令y x z 150200+==1850,则)437(31x y -=,代入到(*)式中得3212≤≤x ,故当3=x 时,325=y 为非整数解.令y x z 150200+==1800,则)436(31x y -=,代入到(*)式中得:40≤≤x ,经计算(0,12),(3,8)为其整数解,此时,1800=z . 【名师小结】在一定的约束条件下使某目标达到最大值或最小值的问题称为数学规划,而当约束条件和目标函数都是一次的(又称线性的),我们称这种规划问题为线性规划.例如,如何分配有限的资源以达到某种既定的目标(如利润最大,支付最小等),称为资源分配问题,而许多资源分配问题可以归结为线性规划模型来处理. 在解线性规划应用问题时的一般步骤为:(1)审题;(2)设出所求的未知数;(3)列出约束条件,建立目标函数;(4)作出可行域;(5)找出最优解. 【误区点拨】1、对于整点解问题,其最优解不一定是离边界点最近的整点,而先要过边界点作目标函数By Ax t +=的图象,则最优解是在可行域内离直线By Ax t +=最近的整点;2、熟练掌握二元一次不等式所表示的平面区域是解决线性问题的基础,因此,正确地作出可行域是我们解题的关键;3、一般的线性规划问题,其约束条件是平面上的一个多边形闭区域,或者是向某一方向无限延展的半闭区域,而目标函数必在边界取最值,且是边界的顶点处取最值,但不一定有最优整数解,这一点一定要注意. 【反馈训练】1、设y x ,满足⎪⎪⎩⎪⎪⎨⎧∈∈>>≤+<+zy z x y x y x y x ,0,01141023,求y x u 45+=的最大值. 2怎样搭配价格最低?3、有一化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料或1车皮乙种肥料需要的主要原料和产生的利润分别是:磷酸盐4吨,硝酸盐18吨,利润10000元或磷酸盐1吨,硝酸盐15吨,利润5000元.工厂现有库存磷酸盐10吨,硝酸盐66吨,应生产甲、乙肥料各多少车皮可获得最大的利润?4、某工厂有甲、乙两种产品,计划每天各生产不少于15吨,已知生产甲产品1吨需煤9吨,电力4千瓦,劳动力3个;乙产品4吨需煤9吨,电力5千瓦,劳动力10个.甲产品1吨利润7万元,甲产品1吨利润12万元,但每天用煤不超过300吨,电力不超过200千瓦,劳动力只有300个,问每天生产甲、乙两种产品各多少,能使利润总额达到最大? 【参考答案】1、最优整数解为(2,1),=m an u 14;2、10片A 和3片B 搭配价格最低为1.6元.3、最后归结为在约束条件⎪⎩⎪⎨⎧≥≥≤+≤+0,0661518104y x y x y x 下,求目标函数y x u 500010000+=的整数解问题,答案是生产甲、乙肥料各2车皮时可获得最大的利润30000元.4、最后归结为在约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+≤+.15,15,300103,20054,30049y x y x y x y x 下,求目标函数y x u 127+=的整数解问题,答案是甲、乙两种产品各20吨、24吨,利润总额达到最大428元.。

高中数学解线性规划问题的方法与思路总结

高中数学解线性规划问题的方法与思路总结

高中数学解线性规划问题的方法与思路总结一、引言线性规划是高中数学中的重要内容,也是数学建模和实际问题求解中常用的方法之一。

本文将总结解线性规划问题的方法与思路,帮助高中学生和他们的父母更好地理解和应用线性规划。

二、线性规划问题的基本概念线性规划问题是在一组线性约束条件下,求解一个线性目标函数的最优值的问题。

其中,线性约束条件可以用一组线性不等式或等式表示,线性目标函数是一次函数。

三、线性规划问题的解题步骤1. 建立数学模型:根据实际问题,确定决策变量、目标函数和约束条件,并将其转化为数学表达式。

2. 确定可行域:根据约束条件,确定决策变量的取值范围,即可行域。

3. 确定最优解:通过图像、代数或单纯形表等方法,确定最优解的存在性和唯一性。

4. 求解最优解:利用图像、代数或单纯形表等方法,求解最优解,并进行验证。

5. 分析最优解:对最优解进行解释和分析,得出结论。

四、线性规划问题的解题技巧1. 图像法:将线性规划问题转化为几何问题,在平面直角坐标系中绘制可行域和目标函数的图像,通过观察图像找到最优解。

例如,解决如下问题:求函数 f(x, y) = 3x + 4y 在约束条件x ≥ 0, y ≥ 0, 2x + y ≤ 6 的可行域中的最大值。

通过绘制可行域和目标函数的图像,可以观察到最优解在可行域的顶点处取得。

2. 代数法:通过代数计算,利用不等式关系和线性目标函数的性质,求解最优解。

例如,解决如下问题:求函数 f(x, y) = 2x + 3y 在约束条件x ≥ 0, y ≥ 0, x + y ≤ 4 的可行域中的最大值。

通过列出不等式组成的方程组,利用代数方法求解方程组,得到最优解。

3. 单纯形表法:适用于多个决策变量和多个约束条件的线性规划问题。

通过构建单纯形表,利用迭代计算的方法求解最优解。

例如,解决如下问题:求函数 f(x, y, z) = 5x + 4y + 3z 在约束条件x ≥ 0, y ≥ 0, z ≥ 0, x + y + z = 6 的可行域中的最大值。

高中数学线性规划解题技巧

高中数学线性规划解题技巧

高中数学线性规划解题技巧在高中数学中,线性规划是一个重要的内容,也是考试中常见的题型。

线性规划是一种优化问题,通过建立数学模型,找出使目标函数达到最优值的变量取值。

在解题过程中,我们需要掌握一些技巧和方法,下面就来具体介绍一下。

一、确定变量和目标函数在解线性规划问题时,首先要明确变量和目标函数。

变量是我们要求解的未知数,而目标函数则是我们要优化的目标。

例如,假设我们要求解一个生产问题,生产两种产品A和B,我们可以将A的产量表示为x,B的产量表示为y,目标函数可以是总利润或总成本。

二、列出约束条件约束条件是限制变量取值范围的条件,也是我们解题的关键。

要列出准确的约束条件,需要仔细分析题目并进行逻辑推理。

约束条件可以是生产能力、资源限制、市场需求等各种限制条件。

例如,假设某工厂生产产品A和B,A的生产需要2个单位的资源1和3个单位的资源2,B的生产需要4个单位的资源1和1个单位的资源2。

工厂拥有资源1的总量为10个单位,资源2的总量为12个单位。

那么我们可以得到以下约束条件:2x + 4y ≤ 103x + y ≤ 12三、确定可行域可行域是指满足所有约束条件的变量取值范围。

在解线性规划问题时,我们需要确定可行域的范围,以便找到最优解。

为了确定可行域,我们可以将约束条件转化为不等式,并将其绘制在坐标系中。

通过求解这些不等式的交集,我们可以确定可行域的范围。

以前面的例子为例,我们可以将约束条件绘制在坐标系中,得到以下图形:[图1]根据图中的交集部分,我们可以确定可行域的范围。

四、确定最优解确定最优解是线性规划的核心问题。

我们需要找到使目标函数达到最大或最小值的变量取值。

在确定最优解时,有两种常用的方法:图形法和单纯形法。

图形法通过绘制等高线图来找到最优解,而单纯形法通过迭代计算来逐步逼近最优解。

以目标函数为总利润的例子为例,我们可以通过图形法找到最优解。

在可行域中,我们需要找到使总利润最大化的点。

通过绘制等高线图,我们可以找到目标函数的等高线与可行域的交点,从而确定最优解。

高中线性规划

高中线性规划

高中线性规划一、概述线性规划是数学中的一个分支,用于解决最优化问题。

在高中数学中,线性规划通常是在给定一些约束条件下,寻找一个目标函数的最大值或最小值。

本文将详细介绍高中线性规划的基本概念、解题步骤和示例。

二、基本概念1. 目标函数:线性规划的目标是通过最大化或最小化一个线性函数来达到某种目标。

目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中c1、c2、...、cn为常数,x1、x2、...、xn为变量。

2. 约束条件:线性规划的解必须满足一系列约束条件。

约束条件通常表示为一组线性不等式或等式。

例如,ax1 + bx2 + ... + zxn ≤ d,其中a、b、...、z为常数,x1、x2、...、xn为变量,d为常数。

3. 可行解:满足所有约束条件的解称为可行解。

4. 最优解:在所有可行解中,使目标函数达到最大值或最小值的解称为最优解。

三、解题步骤高中线性规划的解题步骤如下:1. 确定问题:明确问题的目标和约束条件。

2. 建立数学模型:将问题转化为数学形式,确定目标函数和约束条件。

3. 绘制图形:根据约束条件绘制图形,确定可行解的区域。

4. 确定顶点:在可行解的区域内,确定顶点(极值点)。

5. 计算目标函数值:计算每个顶点对应的目标函数值。

6. 比较目标函数值:比较所有顶点对应的目标函数值,找出最优解。

四、示例假设某公司生产两种产品A和B,每天生产时间为8小时。

产品A每件利润为100元,产品B每件利润为200元。

生产一件产品A需要2小时,生产一件产品B 需要4小时。

公司希望最大化每天的利润。

1. 确定问题:最大化每天的利润。

2. 建立数学模型:目标函数:Z = 100A + 200B(最大化利润)约束条件:2A + 4B ≤ 8(生产时间约束)非负约束:A ≥ 0,B ≥ 03. 绘制图形:根据约束条件绘制图形,可行解区域为一个三角形。

4. 确定顶点:可行解区域的顶点为(0, 0),(0, 2),(4, 0)。

高考数学中的线性规划算法解题技巧

高考数学中的线性规划算法解题技巧

高考数学中的线性规划算法解题技巧高考数学中的线性规划是一种非常重要的问题类型,在考试中经常被考查,对于学生来说是必须掌握的一项技能。

而在线性规划中,解题的算法是关键,正确运用算法不仅能够提高解题效率,还能避免不必要的错误。

本文将介绍一些线性规划解题的算法和技巧,帮助学生在考试中取得更好的成绩。

一、线性规划的基本概念在解题之前,我们需要熟悉线性规划的一些基本概念。

线性规划是指在一定的限制条件下,求解一个线性函数的最大或最小值。

在这个过程中,我们需要确定目标函数、约束条件以及变量的取值范围。

通常情况下,我们可以将线性规划问题表示为标准型或非标准型。

标准型的形式如下:$$\max(z)=c_1x_1+c_2x_2+...+c_nx_n$$$$s.t.\begin{cases}a_{11}x_1+a_{12}x_2+...+a_{1n}x_n\le b_1\\a_{21}x_1+a_{22}x_2+...+a_{2n}x_n\le b_2\\...\\a_{m1}x_1+a_{m2}x_2+...+a_{mn}x_n\le b_m\\\end{cases}$$变量取值范围为$x_i\ge0(i=1,2,...,n)$而非标准型的形式则可以被转化为标准型。

二、单纯形法的原理和步骤单纯形法是解决线性规划问题的一种经典算法,其基本原理是通过不断地构造可行解和寻找可行解中的最优解来达到最终的优化目标。

其具体步骤如下:1、将标准型问题中的目标函数系数、约束条件系数和右端项系数分别组成一个矩阵。

2、选择其中一个非基变量(即取值为0的变量)作为入基变量,计算出使目标函数增大的最大步长。

3、选择其中一个基变量(即取值不为0的变量)作为出基变量,计算出使目标函数增大的最小步长。

4、通过第2步和第3步计算出的步长来更新目标函数和约束条件,得到一个新的可行解。

5、使用新的可行解重复进行第2-4步的计算,直到找到最优解。

需要注意的是,单纯形法有两种可能的结果:一是存在最优解,二是存在无穷多个最优解。

高中线性规划

高中线性规划

高中线性规划引言概述:线性规划是数学中的一种优化方法,用于解决最大化或者最小化目标函数的问题。

在高中数学中,线性规划是一个重要的概念,它可以应用于各种实际问题,如资源分配、生产计划等。

本文将详细介绍高中线性规划的概念、应用以及解题方法。

一、线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,该函数称为目标函数。

目标函数通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中ci为常数,xi 为变量。

1.2 约束条件:线性规划的解必须满足一组约束条件,这些条件通常表示为一组线性不等式或者等式。

例如,Ax ≤ b,其中A是一个矩阵,x和b是向量。

1.3 可行解和最优解:满足所有约束条件的解称为可行解。

在可行解中,使目标函数达到最大或者最小值的解称为最优解。

二、线性规划的应用领域2.1 生产计划:线性规划可以用于确定最佳的生产计划,以最大化利润或者最小化成本。

通过考虑资源约束和市场需求,可以确定每种产品的生产量。

2.2 资源分配:线性规划可以用于确定资源的最佳分配方式,以最大化资源利用率或者最小化浪费。

例如,可以确定每一个部门的资源分配,以满足不同项目的需求。

2.3 运输问题:线性规划可以用于解决运输问题,即确定如何将货物从供应地点运送到需求地点,同时最小化运输成本。

三、线性规划的解题方法3.1 图形法:对于二维问题,可以使用图形法来解决线性规划问题。

通过绘制目标函数和约束条件的图形,可以确定最优解所在的区域。

3.2 单纯形法:对于多维问题,单纯形法是一种常用的解题方法。

该方法通过迭代计算,逐步接近最优解。

3.3 整数规划:在某些情况下,变量的值必须是整数。

这种情况下,可以使用整数规划方法来解决问题。

整数规划通常比线性规划更复杂,需要使用特定的算法进行求解。

四、线性规划的局限性4.1 线性假设:线性规划假设目标函数和约束条件都是线性的,但实际问题中往往存在非线性因素。

高考数学线性规划常见题型及解法[1]

高考数学线性规划常见题型及解法[1]

高考数学线性规划常见题型与解法线性规划问题是高考的重点,也是常考题型,属于中等偏简单题,易得分,高考中要求会从实际问题中建立一格二元线性规划的模型,使实际问题得到解决。

现就常见题型与解决方法总结如下: 一、求线性目标函数的最值;例题:(2012年广东文5)已知变量,x y 满足条件1110x y x y x +≤⎧⎪-≤⎨⎪+≥⎩,则2z x y =+的最小值为 A.3 .1 C5 6解析:利用线性规划知识求解。

可行域如图阴影所示,先画出直线01:2l y x =-,平移直线0l ,当直线过点A 时,2z x y =+的值最小,得110,x x y =-⎧⎨--=⎩12,x y =-⎧⎨=-⎩min (1,2),12(2)5A z ∴--∴=-+⨯-=- 探究提高:本题主要考查线性规划求最值,同时考查学生的作图能力,数形结合思想与运算求解能力,难度适中。

二、求目标函数的取值范围;例题:(2012山东文6)设变量,x y 满足约束条件2224,41x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是解析:作出不等式组表示的区域,如图阴影部分所示,作直线30x y -=,并向上、向下平移,由图可得,当直线过点C 时,目标函数取得最大值,当直线过点A 是,目标函数取得最小值,由210,(2,0)240x y A x y ++=⎧⎨+-=⎩得;由4101,(,3)2402x y x y -+=⎧⎨+-=⎩得B 探究提高:本题设计有新意,作出可行域,寻求最优解条条件,取得目标函数的最大(小)值,进一步确定取值范围 三、求约束条件中参数的取值;例题:(2012福建文10)若直线2x y =上存在点(,)x y 满足条件-30-2-30,x y x y x m +≥⎧⎪≤⎨⎪≥⎩则实数m 的最大值为( )解析:在同一直角坐标系中函数2x y =的图像与30230x y x y +-≤⎧⎨--≤⎩,所表示的平面区域图阴影部分所示。

高中线性规划

高中线性规划

高中线性规划一、概述线性规划是运筹学中的一种优化方法,通过建立数学模型,解决最大化或最小化目标函数的问题。

在高中数学中,线性规划是一种重要的内容,旨在培养学生的数学建模和解决实际问题的能力。

本文将详细介绍高中线性规划的基本概念、解题步骤和应用案例。

二、基本概念1. 目标函数:线性规划的目标是通过最大化或最小化目标函数来寻找最优解。

目标函数通常是一个线性函数,可以表示为z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为常数,x₁、x₂、...、xₙ为变量。

2. 约束条件:线性规划的解必须满足一系列约束条件,通常表示为一组线性不等式或等式。

约束条件可以用不等式组的形式表示,如a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b,也可以用等式组的形式表示,如a₁x₁ + a₂x₂ + ... + aₙxₙ = b。

3. 变量:线性规划中的变量表示问题中需要求解的未知数,通常用x₁、x₂、...、xₙ表示。

三、解题步骤1. 建立数学模型:根据实际问题,确定目标函数和约束条件,并将其转化为数学模型。

2. 确定可行域:将约束条件表示为几何图形,确定可行域,即满足所有约束条件的解集合。

3. 确定最优解:在可行域内,确定目标函数的最大值或最小值。

可以使用图形法、代入法或单纯形法等方法求解。

4. 检验最优解:将最优解代入原问题,验证是否满足所有约束条件。

四、应用案例假设某公司生产两种产品A和B,每单位产品A的利润为5元,每单位产品B 的利润为8元。

公司的生产能力限制为每天生产A产品不超过1000个,B产品不超过800个。

另外,公司的销售部门预计每天销售A产品最多900个,B产品最多700个。

问如何安排生产,使得利润最大化?解题步骤如下:1. 建立数学模型:设x₁为生产的A产品数量,x₂为生产的B产品数量。

目标函数:z = 5x₁ + 8x₂(最大化利润)约束条件:- 生产能力限制:x₁ ≤ 1000,x₂ ≤ 800- 销售限制:x₁ ≤ 900,x₂ ≤ 700- 非负约束:x₁ ≥ 0,x₂ ≥ 02. 确定可行域:根据约束条件,绘制出可行域的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学线性规划问题解题步骤总结高中线性
规划解题技巧
线性规划问题是最简单的优化问题,是高二数学学习的重点。

下面WTT给高二学生带的数学期望与随机变量知识要点,希望对你有帮助。

高二数学线性规划问题解题步骤
高二数学线性规划问题教学反思
线性规划是《运筹学》中的基本组成部分,是通过数形结合方法来解决日常生活实践中的最优化问题的一种数学模型,体现了数形结合的数学思想,具有很强的现实意义。

也是高中数学教材的新增知识点,在近两年高考中属于必考知识。

线性规划问题,高考主要以选择填空题的形式出现,常考两种类型:一类是求目标函数的最值问题(或取值范围),另一类是考查可行域的作法。

下面我们结合教材和各地高考及模拟题举例说明。

第一大类:求目标函数的最值问题,解答此类题型时,关键是要正确理解目标函数的几何意义,再数形结合求出目标函数的最值,而目标函数的几何意义是由其解析式确定的,常见的目标函数有三类。

1、截距式(目标函数为二元一次型),即,这也是最常见的类型,目标函数值的几何意义是与直线的纵截距有关。

2、距离式(目标函数为二元二次型),目标函数值的几何意义与距离有关。

3、斜率式(目标函数为分式型),目标函数值的几何意义与直线的斜率有关。

反思该节线性规划的教学,认为应注意如下几个问题
1.线性规划应用题条,数据较多,梳理已知数据至关重要(以线定界,以点定面)
2.学生作图时太慢,没有使用尺规作图,找最优解时不会通过斜率比较分析。

(用尺作图直观)
3.借用线性规划思想解题能力不强,某些目标函数的几何意义理解不透。

(三组形式)
4.高考中对线性规划的考查常以选择、填空题的形式出现,具有小巧、灵活的特点,因此,对常见题型要重点训练。

总之,对于线性规划问题,应坚持应用数形结合的思想方法解题,作出可行域和看出目标函数的几何意义是解题关键。

高二数学学习方法
(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。

记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

(2)建立数学纠错本。

把平时容易出现错误的知识或推理记载下来,以防再犯。

争取做到:找错、析错、改错、防错。

达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

(4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

(5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

(6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

(7)学会从多角度、多层次地进行总结归类。

如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

(8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

(9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

猜你感兴趣:
1.高二数学下学期教学计划3篇
2.高二数学第二学期教学计划
3.高二数学概率知识点总结
4.高二数学必修3归纳总结
5.简单的线性规划问题教学反思
6.高中数学高考考点分布总结。

相关文档
最新文档