中考数学压轴必刷 专题6截长补短模型(学生版)

合集下载

八上数学截长补短模型

八上数学截长补短模型

八上数学截长补短模型
截长补短是八上和中考数学常用的构造辅助线,全等辅助线的很重要,希望对大家有帮助。

为了让初中同学更好地掌握做辅助线的技巧,我特此整理了图文版的讲义,希望能给莘莘学子有所帮助.
我们经常会遇到证明线段和差及倍半数量关系的几何问题,这种题型常用到的辅助线方法就是截长补短模型,截长就是是在长线段中截取一段短线段,再证剩下的线段与另一短线段相等。

补短则是将短线段延长,延长的长度等于另一条短线段,再证明延长后的线段和长线段相等。

典型例题:
小试身手:
欢迎在评论区探讨或私信
总之,辅助线作法灵活多样但其目标明确,熟练掌握各种模型就可以轻松解决一些复杂问题,学生们在平时做题的时候要善于总结和思考,多尝试几种方法证明问题,这样就会将方法内化于心,由量变引起质变,取得进步。

解析中考数学几何模型1:截长补短模型

解析中考数学几何模型1:截长补短模型

中考数学几何模型1:截长补短模型有一类几何题其命题主要是证明三条线段长度的“和”或"差”及其比例关系. 这一类题目一般可以采取“截长”或“补短”的方法来进行求解. 所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系. 所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等. 然后求出延长后的线段与最长的已知线段的关系. 有的是采取截长补短后,使之构成某种特定的三角形进行求解.例1、如图,AB∥CD,BE平分∠ABC,点E为AD中点,且BC=AB+CD,求证:CE平分∠BCD.证明:在BC上截取BF=BA,连接EF.∵BE平分∠ABC,∴∠ABE=∠FBE.在△BAE和△BFE中,,∴△BAE≌△BFE.∴EF=AE.∵E是AD的中点,∴DE=AE=EF.又∵BC=AB+CD,BF=AB,∴CD=CF,∴.∴△CED≌△CEF(SSS),∴∠FCE=∠DCE,即CE平分∠BCD.分析:在BC上截取BF=BA.根据SAS证明△BAE≌△BFE.再证明△CEF≌△CED即可.点评:此题考查全等三角形的判定和性质,运用了截取法构造全等三角形进行证明,这是解决有关线段和差问题时常作的辅助线.变形1 如图,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.证明:延长CE,BA,相交于点F.∵AB∥CD,∴∠DCE=∠F,∠D=∠FAE.又∵DE=AE,∴△CDE≌△FAE(AAS),∴FA=CD=1,CE=FE.∵AB=2,BC=3,∴BC=3=BA+AF=BF .∴CE ⊥BE .分析:由已知AB ∥CD 和E 是AD 中点,不难想到作延长CE ,BA ,相交于点F 的辅助线.则得△CDE ≌△FAE ,得CE=CF ,结合结论CE ⊥BE 易联想到只需证BC=BF ,这容易从题中的数值中推得.变形2、如图,在△ABC 中,∠B=2∠C ,∠BAC 的角平分线交BC 于D .求证:AB+BD=AC .证明:在AC 取一点E 使AB=AE ,在△ABD 和△AED 中,AB =AD ,∠BAD =∠EAD ,AD =AD∴△ABD ≌△AED ,∴∠B=∠AED ,BD=DE又∵∠B=2∠C ,∴∠AED=2∠C∵∠AED 是△EDC 的外角,∴∠EDC=∠C ,∴ED=EC ,∴BD=EC∴AB+BD=AE+EC=AC例2、已知△ABC 中,∠A=60°,BD ,CE 分别平分∠ABC 和∠ACB ,BD 、CE 交于点O ,试判断BE ,CD ,BC 的数量关系,并说明理由.分析 在CB 上取点G 使得CG=CD ,可证△BOE ≌△BOG ,得BE ═BG ,可证△CDO ≌△CGO ,得CD=CG ,可以求得BE+CD=BC .解:在BC 上取点G 使得CG=CD ,∵∠BOC=180°-21(∠ABC+∠ACB )=180°-21(180°-60°)=120°,∴∠BOE=∠COD=60°,∵在△COD 和△COG 中,∴△CODF ≌△COG (SAS ),∴∠COG=∠COD=60°,∴∠BOG=120°-60°=60°=∠BOE ,∵在△BOE 和△BOG 中,∴△BOE ≌△BOG (ASA ),∴BE+CD=BG+CG=BC .点评 本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证CD=CG 和BE=BG 是解题的关键.分析:延长BD 至E ,使BE=AB ,连接AE 、CE ,可得△ABE 是等边三角形,即可求得AC=AE ,可得∠ACE=∠AEC ,即可求得∠DCE=∠DEC ,可得DE=CD ,即可解题.变形1、 已知:△ABC 中,AB =AC ,D 为△ABC 外一点,且∠ABD =60°,∠ADB =90°﹣ ∠BDC .试判 断线段 CD 、BD 与 AB 之间有怎样的数量关系?并证明你的结论AB=BD+CD ,证明1:延长CD 到E ,使DE=BD ,连接AE ,∵∠ADB=90°-21∠BDC , ∴∠ADE=180°-(90°-21∠BDC )-∠BDC=90°-21∠BDC ,∴∠ADB=∠ADE ,在△ABD 和△AED 中AD =AD∠ADB =∠ADE BD =DE∴△ABD ≌△AED (SAS ),∴∠E=∠ABD=60°,AB=AE ,∵AB=AC ,∴AE=AC ,∴△ACE 是等边三角形,∴AB=CE=CD+DE=BD+CD .证明2:以AD 为轴作△ABD 的对称△AB ′D (如图),则有B ′D=BD ,AB ′=AB=AC ,∠B ′=∠ABD=60°,∠ADB ′=∠ADB=90°- 21∠BDC ,所以∠ADB ′+∠ADB+∠BDC=180°-∠BDC+∠BDC=180°,所以C 、D 、B ′在一条直线上,所以△ACB ′是等边三角形,所以CA=CB ′=CD+DB ′=CD+BD .证明3:(1)AB=BD+CD ;(2)延长BD 至E ,使BE=AB ,连接AE 、CE ,∵∠ABD=60°,∴△ABE 是等边三角形,∴AE=AB ,∠AEB=60°,∵AB=AC ,∴∠ACE=∠AEC,∵∠ACD=60°,∴∠ACE-∠ACD=∠AEC-∠AEB,即∠DCE=∠DEC,∴DE=CD,∴BE=BD+DE=BD+CD,∴AB=BD+CD例题 3. 如图所示,在五边形 ABCDE 中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE.分析:连接AC,延长DE到F,使EF=BC,连接AF,易证△ABC≌△AEF,进而可以证明△ACD ≌△AFD,可得∠ADC=∠ADF即可解题.证明1:连接AC,延长DE到F,使EF=BC,连接AF,∵BC+DE=CD,EF+DE=DF,∴CD=FD,∵∠ABC+∠AED=180°,∠AEF+∠AED=180°,∴∠ABC=∠AEF,在△ABC和△AEF中,AB=AE∠ABC=∠AEFBC=EF∴△ABC≌△AEF(SAS),∴AC=AF,在△ACD和△AFD中,AC=AFCD=FDAD=AD∴△ACD≌△AFD(SSS)∴∠ADC=∠ADF,即AD平分∠CDE.变形1 如图,在五边形ABCDE中,AB=AE、BC+DE=CD,∠ABC+∠AED=180°.求证:AD平分∠CDE.证明2:如图.连结AC,将△ABC绕点A旋转∠BAE的度数到△AEF的位置.因为AB=AE,所以AB与AE重合.因为∠ABC+∠AED=180°,∠AEF=∠ABC,所以∠AEF+∠AED=180°.所以D、E、F三点在同一直线上,AC=AF,BC=EF.在△ADC与△ADF中,DF=DE+EF=DE+BC=CD,AF=AC,AD=AD.所以△ADC≌△ADF(SSS).因此∠ADC=∠ADF,即AD平分∠CDE.思路解析:要证AD平分∠CDE,则需证∠ADC=∠ADE;而∠ADC是在四边形ABCD中,∠ADE是在△ADE中,且已知BC+DE=CD,AB=AE,∠ABC+∠AED=180°,这时想到,连结AC,将四边形ABCD分成两个三角形,把△ABC绕A点旋转∠BAE的度数到△AEF的位置,这时可知D、E、F在同一直线上,且△ADC与△ADF是全等的,因此命题即可证得.变形2 如图,△ABC 是等边三角形,△BDC 是顶角∠BDC=120°的等腰三角形,M 是 AB 延长线上一点, N 是 CA 延长线上一点,且∠MDN=60°.试探究 BM、MN、CN 之间的数量关系,并给出证明.解:CN=MN+BM证明:在CN上截取点E,使CE=BM,连接DE,∵△ABC为等边三角形,∴∠ACB=∠ABC=60°,又△BDC为等腰三角形,且∠BDC=120°,∴BD=DC,∠DBC=∠BCD=30°,∴∠ABD=∠ABC+∠DBC=∠ACB+∠BCD=∠ECD=90°,在△MBD和△ECD中,,∴△MBD≌△ECD(SAS),∴MD=DE,∠MDB=∠EDC,又∠MDN=60°,∠BDC=120°,∴∠EDN=∠BDC﹣(∠BDN+∠EDC)=∠BDC﹣(∠BDN+∠MDB)=∠BDC﹣∠MDN=120°﹣60°=60°,∴∠MDN=∠EDN,在△MND与△END中,,∴△MND≌△END(SAS),∴MN=NE,∴CN=NE+CE=MN+BM.变形3、如图①△ABC是正三角形,△BDC是等腰三角形,BD=CD,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N,连接MN.(1)探究BM、MN、NC之间的关系,并说明理由.(2)若△ABC的边长为2,求△AMN的周长.(3)若点M是AB的延长线上的一点,N是CA的延长线上的点,其它条件不变,在图②中画出图形,并说出BM、MN、NC之间的关系.分析:(1)延长AC至E,使得CE=BM并连接DE,构造全等三角形,找到相等的线段MD=DE,再进一步证明△DMN≌△DEN,进而等量代换得到MN=BM+NC;(2)利用(1)中结论,将△AMN的周长转化为AB、AC的和来解答;(3)按要求作出图形,BM、MN、NC之间的关系是MN=NC-BM,理由为:先证△BMD≌△CED,再证△MDN≌△EDN(SAS),即可得证.解:(1)MN=BM+NC,理由如下:延长AC至E,使得CE=BM(或延长AB至E,使得BE=CN),并连接DE,如图1所示:∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,BD=CD∠MBD=∠ECDCE=BM∴△MBD≌△ECD(SAS),∴MD=DE,∠BDM=∠CDE,∵∠MDN=60°,∠BDC=120°,∴∠BDM+∠CDN=60°,∴∠CDE+∠CDN=60°,即∠EDN=60°,∴∠EDN=∠MDN,在△DMN和△DEN中,ND=ND∠EDN=∠MDNMD=ED,∴△DMN≌△DEN(SAS),∴MN=EN=NC+CE=BM+NC;(2)利用(1)中的结论得出:△AMN的周长=AM+MN+ANAB--BM+MN+AC--NC=AB--CE+NE+AC--NCAB+AC=2+2=4;(3)按要求作出图形,如图2所示,(1)中结论不成立,应为MN=NC-BM,理由如下:在CA上截取CE=BM,∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠ECD=90°,又∵CE=BM,BD=CD,在△BMD和△CED中,∵CE=BM ∠MBD=ECD=90° BD=CD,∴△BMD≌△CED(SAS),∴DE=DM,在△MDN和△EDN中,∵ND=ND ∠EDN=∠MDN MD=ED ,∴△MDN≌△EDN(SAS),∴MN=NE=NC-CE=NC-BM.点评:本题考查了全等三角形的判定与性质及等边三角形的性质及等腰三角形的性质;此题从不同角度考查了作相等线段构造全等三角形的能力,要充分利用等边三角形及等腰三角形的性质,转换各相等线段解答.变形4、操作:如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.探究:线段BM、MN、NC之间的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得5分.AN=NC(如图②);②DM∥AC(如图③).附加题:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC 之间的关系,在图④中画出图形,并说明理由.解:(1)BM+CN=MN证明:如图,延长AC至M1,使CM1=BM,连接DM1由已知条件知:∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,∴∠ABD=∠ACD=90°.∵BD=CD,∴Rt△BDM≌Rt△CDM1∴∠MDB=∠M1DC,DM=DM1∴∠MDM1=(120°-∠MDB)+∠M1DC=120°.又∵∠MDN=60°,∴∠M1DN=∠MDN=60°.∴△MDN≌△M1DN.∴MN=NM1=NC+CM1=NC+MB.(2)附加题:CN-BM=MN证明:如图,在CN上截取CM1,使CM1=BM,连接MN,DM1∵∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,∴∠DBM=∠DCM1=90°.∵BD=CD,∴Rt△BDM≌Rt△CDM1∴∠MDB=∠M1DC,DM=DM1∵∠BDM+∠BDN=60°,∴∠CDM1+∠BDN=60°.∴∠NDM1=∠BDC-(∠M1DC+∠BDN)=120°-60°=60°.∴∠M1DN=∠MDN.∵ND=ND,∴△MDN≌△M1DN.∴MN=NM1=NC-CM1=NC-MB.分析:根据已知先证明Rt△BDM≌Rt△CDM1从而得到BM=CM1,然后再证明△MDN≌△M1DN,从而推出MN=NM1=NC-CM1=NC-MB.在证明时,需添加辅助线,采用“截长补短”法,借助三角形全等进行证明.点评:此题主要考查等边三角形,等腰三角形的性质及三角形全等的判定等知识;正确作出辅助线是解答本题的关键.该题是一个纯图形探索证明题,注意培养自己的探索精神和钻研精神.例题 4. 在四边形 ABDE 中,C 是 BD 边的中点.(1)如图(1),若 AC 平分∠BAE,∠ACE=90°,则线段 AE、AB、DE 的长度满足的数量关系为;(直接写出答案)(2)如图(2),AC 平分∠BAE,EC 平分∠AED,若∠ACE=120°,则线段 AB、BD、DE、AE 的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),BD=8,AB=2,DE=8,若 ACE=135°,求线段 AE 长度的最大值.分析(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论;(2)在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.可以求得CF=CG,△CFG是等边三角形,就有FG=CG=12BD,进而得出结论;(3)在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.可以求得CF=CG,△CFG是等腰直角三角形,由勾股定理求出FG的值就可以得出结论.解:(1)AE=AB+DE;理由:在AE上取一点F,使AF=AB.如图1∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,∵AB=AF∠BAC=∠FACAC=AC,∴△ACB≌△ACF(SAS),∴BC=FC,∠ACB=∠ACF.∵C是BD边的中点.∴BC=CD,∴CF=CD.∵∠ACE=90°,∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°∴∠ECF=∠ECD.在△CEF和△CED中,∵CF=CD∠ECF=∠ECDCE=CE,∴△CEF≌△CED(SAS),∴EF=ED.∵AE=AF+EF,∴AE=AB+DE,故答案为:AE=AB+DE;(2)如图(2),AC 平分∠BAE,EC 平分∠AED,若∠ACE=120°,则线段 AB、BD、DE、AE 的长 度满足怎样的数量关系?写出结论并证明;(2)猜想:AE=AB+DE+21BD . 证明:如图(2),在AE 上取点F ,使AF=AB ,连结CF ,在AE 上取点G ,使EG=ED ,连结CG . ∵C 是BD 边的中点,∴CB=CD=21BD .∵AC 平分∠BAE ,∴∠BAC=∠FAC .在△ACB 和△ACF 中,∵AB=AF ∠BAC=∠FACAC=AC ,∴△ACB ≌△ACF (SAS ),∴CF=CB ,∴∠BCA=∠FCA .同理可证:CD=CG ,∴∠DCE=∠GCE .∵CB=CD ,∴CG=CF∵∠ACE=120°,∴∠BCA+∠DCE=180°-120°=60°.∴∠FCA+∠GCE=60°.∴∠FCG=60°.∴△FGC 是等边三角形.∴FG=FC=21BD .∵AE=AF+EG+FG .∴AE=AB+DE+21BD .(3)如图(3),BD =8,AB =2,DE =8,若 ACE =135°,求线段 AE 长度的最大值.(3)如图(3),在AE 上取点F ,使AF=AB ,连结CF ,在AE 上取点G ,使EG=ED ,连结CG . ∵C 是BD 边的中点,∴CB=CD=21BD .∵AC 平分∠BAE ,∴∠BAC=∠FAC .在△ACB 和△ACF 中,∵AB=AF ∠BAC=∠FACAC=AC ,∴△ACB ≌△ACF (SAS ),∴CF=CB ,∴∠BCA=∠FCA .同理可证:CD=CG ,∴∠DCE=∠GCE .∵CB=CD ,∴CG=CF∵∠ACE=135°,∴∠BCA+∠DCE=180°-135°=45°.∴∠FCA+∠GCE=45°.∴∠FCG=90°.∴△FGC 是等腰直角三角形.∴FC=21BD .∵BD=8,∴FC=4,∴FG=42.∵AE=AF+FG+GE ,∴AE=AB+42+DE .∵AB=2,DE=8,∴AE=AF+FG+EG=10+42.点评 本题考查了和四边形有关的综合性题目,用到的知识点有:角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键.例题 5.在△ABC 中,∠BAC =90°.(1)如图 1,直线 l 是 BC 的垂直平分线,请在图 1 中画出点 A 关于直线 l 的对称点 A ′,连接 A ′C , A ′B ,A ′C 与 AB 交于点 E ;(2)将图 1 中的直线 A ′B 沿着 EC 方向平移,与直线 EC 交于点 D ,与直线 BC 交于点 F ,过点 F 作 直线 AB 的垂线,垂足为点 H .①如图 2,若点 D 在线段 EC 上,请猜想线段 FH ,DF ,AC 之间的数量关系,并证明; ②若点 D 在线段 EC 的延长线上,直接写出线段 FH ,DF ,AC 之间的数量关系.分析 (1)根据轴对称的性质画出即可;(2)过点F 作FG ⊥CA 于点G ,求出四边形HFGA 为矩形.推出FH=AG ,FG ∥AB 求出∠GFC=∠EBC ,根据线段垂直平分线的性质得出BE=EC ,求出∠ECB=∠EBC=∠GFC ,∠FDC=∠A=90°,∠FDC=∠FGC=90°,根据AAS 推出△FGC ≌△CDF ,推出CG=FD 即可;(3)过F 作FH ⊥BA 于H ,过点C 作CG ⊥FH 于G ,求出四边形ACGH 为矩形.推出AC=GH ,CG ∥AB ,证△FGC ≌△CDF ,根据全等三角形的性质得出FG=FD ,即可得出答案. 解:(1)如图:;(2)①DF+FH=CA ,①证明:过点F 作FG ⊥CA 于点G ,∵FH⊥BA于H,∠A=90°,FG⊥CA,∴∠A=∠FGA=∠FHA=90°,∴四边形HFGA为矩形.∴FH=AG,FG∥AB,∴∠GFC=∠EBC,∵直线l是BC的垂直平分线,∴BE=EC,∴∠EBC=∠ECB,由(1)和平移可知,∠ECB=∠EBC=∠GFC,∠FDC=∠A=90°,∴∠FDC=∠FGC=90°.在△FGC和△CDF中∵∠GFC=∠DCF ∠FGC=∠CDF CF=CF∴△FGC≌△CDF,∴CG=FD,∴DF+FH=GC+AG,即DF+FH=AC;②解:FH-DF=AC,理由是:过F作FH⊥BA于H,过点C作CG⊥FH于G,∵FH⊥BA于H,∠BAC=90°,CG⊥FH,∴∠CAH=∠CGH=∠FHA=90°,∴四边形ACGH为矩形.∴AC=GH,CG∥AB,∴∠GCF=∠EBC,∵直线l是BC的垂直平分线,∴BE=EC,∴∠EBC=∠ECB=∠FCD,∴∠GCF=∠FCD,由(1)和平移可知,∠FDC=∠A=90°,∴∠FDC=∠FGC=90°.在△FGC和△CDF中∵∠GFC=∠DCF ∠FGC=∠CDF CF=CF∴△FGC≌△CDF,∴FG=FD,∵FH-FG=GH,∴FH-DF=AC.点评本题考查了平移的性质,线段垂直平分线性质,全等三角形的性质和判定,等腰三角形的性质的应用,能综合运用性质进行推理是解此题的关键,此题是一道综合性比较强的题目,难度偏大.变形1 (1)已知:如图1,在四边形ABCD中,BC⊥CD,∠ACD=∠ADC.求证:AB+AC>已知:如图2,在△ABC中,AB上的高为CD,试判断)(2BCAC与AB2+4CD2之间的大小关系,并证明你的结论.分析:(1)连接BD,利用三角形三边关系可得AB+AD>BD,再利用勾股定理和等量代换即可证明.(2)如图,作EB⊥AB,EB=2CD,利用(1)的结论即可证明.证明:(1)连接BD,∵∠ACD=∠ADC,∴AC=AD,∵AB+AD>BD,∵BC⊥CD,∴∠BCD=90°,∴BD=,∴AB+AC>;(2)大小关系是(AC+BC)2<AB2+4CD2,理由为:如图,作EB⊥AB,EB=2CD,∵AB+AC>(1)的结论;两边平方得(AC+AB)2>BC2+CD2,∴(AC+BC)2<AB2+4CD2.点评:此题主要考查三角形三边关系和勾股定理等知识点,难易程度适中,是一道典型的题目.例题 6. 如图 1,在△ABC 中,∠ACB=2∠B,∠BAC 的平分线 AO 交 BC 于点 D,点 H 为AO 上一动点,过点 H 作直线 l⊥AO 于 H,分别交直线 AB、AC、BC、于点 N、E、M.(1)当直线 l 经过点 C 时(如图 2),求证:BN=CD;(2)当 M 是 BC 中点时,写出 CE 和 CD 之间的等量关系,并加以证明;(3)请直接写出 BN、CE、CD 之间的等量关系.解:(1 )证明:连接ND ,∵AO 平分∠BAC ,∴∠1= ∠2 ,∵直线l ⊥AO 于H ,∴∠4= ∠5=90 °,∴∠6= ∠7 ,∴AN=AC ,∴NH=CH ,∴AH 是线段NC 的中垂线,∴DN=DC ,∴∠8= ∠9 .∴∠AND= ∠ACB ,∵∠AND= ∠B+ ∠3 ,∠ACB=2 ∠B ,∠B+ ∠3= ∠7+∠9=2 ∠B ∴∠B= ∠3 ,∴BN=DN ,∴BN=DC ;(2 )如图,当M 是BC 中点时,CE 和CD 之间的等量关系为CD=2CE 。

2024年中考数学复习 全等三角形的六种模型全梳理(原卷+答案解析)

2024年中考数学复习 全等三角形的六种模型全梳理(原卷+答案解析)

全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。

类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。

将分散的条件集中到一个三角形中。

1【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连接BE.请根据小明的方法思考:(1)如图2,由已知和作图能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,AD长的取值范围是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,AD是△ABC的中线,BE交AC于点E,交AD于F,且AE=EF.求证:AC=BF.2(培优)已知△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AD,BE,点F为BE中点.AD;(1)如图1,求证:BF=12(2)将△DCE绕C点旋转到如图2所示的位置,连接AE,BD,过C点作CM⊥AD于M点.①探究AE和BD的关系,并说明理由;②连接FC,求证:F,C,M三点共线.1.如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AB=2AE.2.(1)如图1,已知△ABC中,AD是中线,求证:AB+AC>2AD;(2)如图2,在△ABC中,D,E是BC的三等分点,求证:AB+AC>AD+AE;(3)如图3,在△ABC中,D,E在边BC上,且BD=CE.求证:AB+AC>AD+AE.3.(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)3如图,在五边形ABCDE中,AB=AE,CA平分∠BCD,∠CAD=12∠BAE.(1)求证:CD=BC+DE;(2)若∠B=75°,求∠E的度数.4(培优)在△ABC中,BE,CD为△ABC的角平分线,BE,CD交于点F.(1)求证:∠BFC=90°+12∠A;(2)已知∠A=60°.①如图1,若BD=4,BC=6.5,求CE的长;②如图2,若BF=AC,求∠AEB的大小.1.如图,△ABC为等边三角形,若∠DBC=∠DAC=α0°<α<60°,则∠BCD=(用含α的式子表示).2.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠BAD.∠EAF=12(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由.(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.3.阅读下面材料:【原题呈现】如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD 的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。

中考数学几何模型能力提升 截长补短模型(解析版)

中考数学几何模型能力提升 截长补短模型(解析版)

中考数学几何模型1:截长补短模型有一类几何题其命题主要是证明三条线段长度的“和”或"差”及其比例关系. 这一类题目一般可以采取“截长”或“补短”的方法来进行求解. 所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系. 所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等. 然后求出延长后的线段与最长的已知线段的关系. 有的是采取截长补短后,使之构成某种特定的三角形进行求解.例题1. 如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E在AD上.求证:(1)BE⊥CE;(2)BC=AB+CD.变式练习>>>1. 已知△ABC的内角平分线AD交BC于D,∠B=2∠C. 求证:AB+BD=AC.例题2. 已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.变式练习>>>2. 已知:△ABC中,AB=AC,D为△ABC外一点,且∠ABD=60°,∠ADB=90°﹣∠BDC.试判断线段CD、BD与AB之间有怎样的数量关系?并证明你的结论.例题3. 如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE.变式练习>>>3. 如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M是AB延长线上一点,N是CA延长线上一点,且∠MDN=60°.试探究BM、MN、CN之间的数量关系,并给出证明.例题4. 在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为;(直接写出答案)(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),BD=8,AB=2,DE=8,若ACE=135°,求线段AE长度的最大值.例题5.在△ABC中,∠BAC=90°.(1)如图1,直线l是BC的垂直平分线,请在图1中画出点A关于直线l的对称点A′,连接A′C,A′B,A′C与AB交于点E;(2)将图1中的直线A′B沿着EC方向平移,与直线EC交于点D,与直线BC交于点F,过点F作直线AB的垂线,垂足为点H.①如图2,若点D在线段EC上,请猜想线段FH,DF,AC之间的数量关系,并证明;②若点D在线段EC的延长线上,直接写出线段FH,DF,AC之间的数量关系.例题6. 如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.达标检测领悟提升强化落实1. 如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,且AC=AB+BD,求∠ABC的度数.2. 如图,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F,试探究线段AB与AF,CF之间的数量关系,并证明你的结论.3. 如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.4. 如图,▱ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DF A=2∠BAE.(1)若∠D=105°,∠DAF=35°.求∠F AE的度数;(2)求证:AF=CD+CF.5. 如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.6. 如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,连接AC,BD交于点E.(1)若BC=CD=2,M为线段AC上一点,且AM:CM=1:2,连接BM,求点C到BM的距离.(2)证明:BC+CD=AC.7. 如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接AE,过点A作AF⊥AE交DP于点F,连接BF.(1)若AE=2,求EF的长;(2)求证:PF=EP+EB.答案例题1. 如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E在AD上.求证:(1)BE⊥CE;(2)BC=AB+CD.【解答】证明:如图所示:(1)∵BE、CE分别是∠ABC和∠BCD的平分线,∴∠1=∠2,∠3=∠4,又∵AB∥CD,∴∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,∴∠BEC=90°,∴BE⊥CE.(2)在BC上取点F,使BF=BA,连接EF.在△ABE和△FBE中,,∴△ABE≌△FBE(SAS),∴∠A=∠5.∵AB∥CD,∴∠A+∠D=180°,∴∠5+∠D=180,∵∠5+∠6=180°,∴∠6=∠D,在△CDE和△CFE中,,∴△CDE≌△CFE(AAS),∴CF=CD.∵BC=BF+CF,∴BC=AB+CD,变式练习>>>1. 已知△ABC的内角平分线AD交BC于D,∠B=2∠C. 求证:AB+BD=AC.答案:略例题2. 已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC 的数量关系,并说明理由.【解答】解:在BC上取点G使得CG=CD,∵∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°,∴∠BOE=∠COD=60°,∵在△COD和△COG中,,∴△COD≌△COG(SAS),∴∠COG=∠COD=60°,∴∠BOG=120°﹣60°=60°=∠BOE,∵在△BOE和△BOG中,,∴△BOE≌△BOG(ASA),∴BE=BG,∴BE+CD=BG+CG=BC.变式练习>>>2. 已知:△ABC中,AB=AC,D为△ABC外一点,且∠ABD=60°,∠ADB=90°﹣∠BDC.试判断线段CD、BD与AB之间有怎样的数量关系?并证明你的结论.【解答】解:AB=BD+CD,理由是:延长CD到E,使DE=BD,连接AE,∵∠ADB=90°﹣∠BDC,∴∠ADE=180°﹣(90°﹣)﹣∠BDC=90°﹣,∴∠ADB=∠ADE,在△ABD和△AED中∴△ABD≌△AED(SAS),∴∠E=∠ABD=60°,AB=AE,∵AB=AC,∴AE=AC,∴△ACE是等边三角形,∴AB=CE=CD+DE=BD+CD.例题3. 如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE.【解答】解:连接AC,延长DE到F,使EF=BC,连接AF,∵BC+DE=CD,EF+DE=DF,∴CD=FD,∵∠ABC+∠AED=180°,∠AEF+∠AED=180°,∴∠ABC=∠AEF,在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AC=AF,在△ACD和△AFD中,,∴△ACD≌△AFD(SSS)∴∠ADC=∠ADF,即AD平分∠CDE.变式练习>>>3. 如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M是AB延长线上一点,N是CA延长线上一点,且∠MDN=60°.试探究BM、MN、CN之间的数量关系,并给出证明.【解答】解:CN=MN+BM证明:在CN上截取点E,使CE=BM,连接DE,∵△ABC为等边三角形,∴∠ACB=∠ABC=60°,又△BDC为等腰三角形,且∠BDC=120°,∴BD=DC,∠DBC=∠BCD=30°,∴∠ABD=∠ABC+∠DBC=∠ACB+∠BCD=∠ECD=90°,在△MBD和△ECD中,,∴△MBD≌△ECD(SAS),∴MD=DE,∠MDB=∠EDC,又∵∠MDN=60°,∠BDC=120°,∴∠EDN=∠BDC﹣(∠BDN+∠EDC)=∠BDC﹣(∠BDN+∠MDB)=∠BDC﹣∠MDN=120°﹣60°=60°,∴∠MDN=∠EDN,在△MND与△END中,,∴△MND≌△END(SAS),∴MN=NE,∴CN=NE+CE=MN+BM.例题4. 在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为AE=AB+DE;(直接写出答案)(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),BD=8,AB=2,DE=8,若ACE=135°,则线段AE长度的最大值是10+4.(直接写出答案).【解答】解:(1)AE=AB+DE;(2)猜想:AE=AB+DE+BD.证明:在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.∵C是BD边的中点,∴CB=CD=BD.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴CF=CB,∴∠BCA=∠FCA.同理可证:CD=CG,∴∠DCE=∠GCE.∵CB=CD,∴CG=CF∵∠ACE=120°,∴∠BCA+∠DCE=180°﹣120°=60°.∴∠FCA+∠GCE=60°.∴∠FCG=60°.∴△FGC是等边三角形.∴FG=FC=BD.∵AE=AF+EG+FG.∴AE=AB+DE+BD.(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.∵C是BD边的中点,∴CB=CD=BD.∵△ACB≌△ACF(SAS),∴CF=CB,∴∠BCA=∠FCA.同理可证:CD=CG,∴∠DCE=∠GCE∵CB=CD,∴CG=CF∵∠ACE=135°,∴∠BCA+∠DCE=180°﹣135°=45°.∴∠FCA+∠GCE=45°.∴∠FCG=90°.∴△FGC是等腰直角三角形.∴FC=BD.∵BD=8,∴FC=4,∴FG=4.∵AE=AB+4+DE.∵AB=2,DE=8,∴AE≤AF+FG+EG=10+4.∴当A、F、G、E共线时AE的值最大2,最大值为10+4.故答案为:10+4.例题5.在△ABC中,∠BAC=90°.(1)如图1,直线l是BC的垂直平分线,请在图1中画出点A关于直线l的对称点A′,连接A′C,A′B,A′C与AB交于点E;(2)将图1中的直线A′B沿着EC方向平移,与直线EC交于点D,与直线BC交于点F,过点F作直线AB 的垂线,垂足为点H.①如图2,若点D在线段EC上,请猜想线段FH,DF,AC之间的数量关系,并证明;②若点D在线段EC的延长线上,直接写出线段FH,DF,AC之间的数量关系.【解答】解:(1)如图1:;(2)①DF+FH=CA,证明:如图2,过点F作FG⊥CA于点G,∵FH⊥BA于H,∠A=90°,FG⊥CA,∴∠A=∠FGA=∠FHA=90°,∴四边形HFGA为矩形.∴FH=AG,FG∥AB,∴∠GFC=∠EBC,∵直线l是BC的垂直平分线,∴BE=EC,∴∠EBC=∠ECB,由(1)和平移可知,∠ECB=∠EBC=∠GFC,∠FDC=∠A=90°,∴∠FDC=∠FGC=90°.∵在△FGC和△CDF中∴△FGC≌△CDF,∴CG=FD,∴DF+FH=GC+AG,即DF+FH=AC;②解:FH﹣DF=AC,理由是:过F作FH⊥BA于H,过点C作CG⊥FH于G,∵FH⊥BA于H,∠BAC=90°,CG⊥FH,∴∠CAH=∠CGH=∠FHA=90°,∴四边形ACGH为矩形.∴AC=GH,CG∥AB,∴∠GCF=∠EBC,∵直线l是BC的垂直平分线,∴BE=EC,∴∠EBC=∠ECB=∠FCD,∴∠GCF=∠FCD,由(1)和平移可知,∠FDC=∠A=90°,∴∠FDC=∠FGC=90°.∵在△FGC和△CDF中∴△FGC≌△CDF,∴FG=FD,∵FH﹣FG=GH,∴FH﹣DF=AC.例题6. 如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H 作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.【解答】(1)证明:连接ND,如图2所示:∵AO平分∠BAC,∴∠BAD=∠CAD,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,∴∠ANH=∠AEH,∴AN=AC,∴NH=CH,∴AH是线段NC的中垂线,∴DN=DC,∴∠DNH=∠DCH,∴∠AND=∠ACB,∵∠AND=∠B+∠BDN,∠ACB=2∠B,∴∠B=∠BDN,∴BN=DN,∴BN=DC;(2)解:当M是BC中点时,CE和CD之间的等量关系为CD=2CE,理由如下:过点C作CN'⊥AO交AB于N',过点C作CG∥AB交直线l于点G,如图3所示:由(1)得:BN'=CD,AN'=AC,AN=AE,∴∠ANE=∠AEN,NN'=CE,∴∠ANE=∠CGE,∠B=∠BCG,∴∠CGE=∠AEN,∴CG=CE,∵M是BC中点,∴BM=CM,在△BNM和△CGM中,,∴△BNM≌△CGM(ASA),∴BN=CG,∴BN=CE,∴CD=BN'=NN'+BN=2CE;(3)解:BN、CE、CD之间的等量关系:当点M在线段BC上时,CD=BN+CE;理由如下:过点C作CN'⊥AO交AB于N',如图3所示:由(2)得:NN'=CE,CD=BN'=BN+CE;当点M在BC的延长线上时,CD=BN﹣CE;理由如下:过点C作CN'⊥AO交AB于N',如图4所示:同(2)得:NN'=CE,CD=BN'=BN﹣CE;当点M在CB的延长线上时,CD=CE﹣BN;理由如下:过点C作CN'⊥AO交AB于N',如图5所示:同(2)得:NN'=CE,CD=BN'=CE﹣BN.达标检测领悟提升强化落实1. 如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,且AC=AB+BD,求∠ABC的度数.【解答】解:如图,在AC上截取AE=AB,∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴BD=DE,∠B=∠AED,∵AC=AE+CE,AC=AB+BD,∴CE=BD,∴CE=DE,∴∠C=∠CDE,即∠B=2∠C,在△ABC中,∠BAC+∠B+∠C=180°,∴60°+2∠C+∠C=180°,解得∠C=40°,∴∠ABC=2×40°=80°.2. 如图,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F,试探究线段AB与AF,CF之间的数量关系,并证明你的结论.3. 如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.【解答】解:探究结论:BM+CN=NM.证明:延长AC至E,使CE=BM,连接DE,∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,∴∠BCD=30°,∴∠ABD=∠ACD=90°,即∠ABD=∠DCE=90°,∴在△DCE和△DBM中,∴Rt△DCE≌Rt△DBM(SAS),∴∠BDM=∠CDE,又∵∠BDC=120°,∠MDN=60°,∴∠BDM+∠NDC=∠BDC﹣∠MDN=60°,∴∠CDE+∠NDC=60°,即∠NDE=60°,∴∠MDN=∠NDE=60°∴DM=DE(上面已经全等)在△DMN和△DEN中∵∴△DMN≌△DEN(SAS),∴BM+CN=NM.4. 如图,▱ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.(1)若∠D=105°,∠DAF=35°.求∠FAE的度数;(2)求证:AF=CD+CF.【解答】(1)解:∵∠D=105°,∠DAF=35°,∴∠DFA=180°﹣∠D﹣∠DAF=40°(三角形内角和定理).∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD(平行四边形对边平行且相等).∴∠DFA=∠FAB=40°(两直线平行,内错角相等);∵∠DFA=2∠BAE(已知),∴∠FAB=2∠BAE(等量代换).即∠FAE+∠BAE=2∠BAE.∴∠FAE=∠BAE;∴2∠FAE=40°,∴∠FAE=20°;(2)证明:在AF上截取AG=AB,连接EG,CG.∵∠FAE=∠BAE,AE=AE,∴△AEG≌△AEB.∴EG=BE,∠B=∠AGE;又∵E为BC中点,∴CE=BE.∴EG=EC,∴∠EGC=∠ECG;∵AB∥CD,∴∠B+∠BCD=180°.又∵∠AGE+∠EGF=180°,∠AGE=∠B,∴∠BCF=∠EGF;又∵∠EGC=∠ECG,∴∠FGC=∠FCG,∴FG=FC;又∵AG=AB,AB=CD,∴AF=AG+GF=AB+FC=CD+FC.5. 如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.【解答】解:(1)∵四边形ABCD是正方形,且边长为4,∴∠ABF=90°,AB=AD=4,∵在Rt△ABF中,AB=2FB,∴FB=×4=2,∴AF==2,∵AG=AD=4,∴FG=AF﹣AG=2﹣4;(2)证明:在BC上截取BM=AE,连接AM,∵AG=AD,AB=AD,∴AG=AB,∵AE⊥AF,∴∠EAG=∠ABM=90°,在△AGE和△BAM中,,∴△AGE≌△BAM(SAS),∴∠AMB=∠AEG,∠BAM=∠AGD,∵AG=AD,∴∠AGD=∠ADG,∴∠BAM=∠ADG,∵∠BAD=90°,∴∠FAB+∠BAE=∠BAE+∠EAD=90°,∴∠FAB=∠EAD,∴∠AEG=∠EAD+∠ADG=∠FAB+∠BAM=∠FAM,∴∠FAM=∠AMB,∴AF=FM=BF+BM=BF+AE.6. 如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,连接AC,BD交于点E.(1)若BC=CD=2,M为线段AC上一点,且AM:CM=1:2,连接BM,求点C到BM的距离.(2)证明:BC+CD=AC.【解答】解:(1)∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∴∠ABD=∠ADB=60°.∵BC=CD,∴△ABC≌△ADC,∴∠BAC=∠DAC=30°,∠ACB=∠ACD=60°.∴∠AEB=∠BEC=90°,∠ABC=90°,∴CE=BC=1,BE=,AC=2BC=4.∵AM:CM=1:2,∴AM=,CM=,∴EM=,在Rt△BEM中由勾股定理得BM==.过点C作CF⊥BM于点F.∴.∴,∴CF=.即点C到BM的距离.(2)证明:延长BC到点F,使CF=CB,连接DF,∵AB=AD,∠ABD=60°,∴△ABD是等边三角形,∴∠ADB=60°,AD=BD,∴BC=CD,∴CF=CD.∵∠BCD=120°,∴∠DCF=180°﹣∠BCD=60°,∴△DCF是等边三角形,∴∠CDF=∠ADB=60°,DC=DF,∴∠ADC=∠BDF,又∵AD=BD,∴△ACD≌△BDF,∴AC=BF=BC+CF,即AC=BC+CD.7. 如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接AE,过点A作AF⊥AE交DP于点F,连接BF.(1)若AE=2,求EF的长;(2)求证:PF=EP+EB.【解答】解:(1)∵四边形ABCD是正方形,且BE⊥DP,AF⊥AE,∴AB=AD,∠BAD=∠EAF=∠BEF=90°,∴∠1+∠FAB=∠2+∠FAB=90°,∴∠1=∠2.∵∠3+∠5=∠4+∠6,且∠5=∠6,∴∠3=∠4.在△AEB和△AFD中,∵,∴△AEB≌△AFD,∴AE=AF=2,在Rt△EAF中,由勾股定理,得EF==2.(2)过点A作AM⊥EF于M,且∠EAF=90°,AE=AF,∴△EAF为等腰直角三角形.∴AM=MF=EM.∠AME=∠BEF=90°.∵点P是AB的中点,∴AP=BP.在△AMP和△BEP中,∵,∴△AMP≌△BEP,∴BE=AM,EP=MP,∴MF=BE,∴PF=PM+FM=EP+BE.。

全等三角形(4种模型2种添加辅助线方法)(学生版)--中考数学压轴题专项训练

全等三角形(4种模型2种添加辅助线方法)(学生版)--中考数学压轴题专项训练

全等三角形(4种模型2种添加辅助线方法)1.题型一:一线三等角模型2.题型二:手拉手模型3.题型三:半角模型4.题型四:旋转模型5.题型五:倍长中线法6.题型六:截长补短法题型一一线三等角模型过等腰直角三角形的直角顶点或者正方形直角顶点的一条直线。

过等腰直角三角形的另外两个顶点作该直线的垂线段,会有两个三角形全等(AAS)常见的两种图形:题型二手拉手模型【基本模型】一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;12题型三半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

解题技巧:在图1中,△AEB 由△AND 旋转所得,可得△AEM ≌△AMN ,∴BM +DN =MN∠AMB =∠AMNAB =AH△CMN 的周长等于正方形周长的一半在图2中将△ABC 旋转至△BEF ,易得△BED ≌△BCD 同理得到边角之间的关系;总之:半角模型(题中出现角度之间的半角关系)利用旋转--证全等--得到相关结论.题型四旋转模型31一、奔驰模型旋转是中考必考题型,奔驰模型是非常经典的一类题型,且近几年中考中经常出现。

我们不仅要掌握这类题型,提升利用旋转解决问题的能力,更重要的是要明白一点:旋转的本质是把分散的条件集中化,从而解决问题2二、费马点模型费马点就是到三角形的三个顶点距离之和最小的点.最值问题是中考常考题型,费马点属于几何中的经典题型,目前全国范围内的中考题都是从经典题改编而来,所以掌握费马点等此类最值经典题是必不可少的.题型五倍长中线法三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等4在△ABC 中AD 是BC边中线延长AD 到E ,使DE =AD ,连接BE作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E 连接BE延长MD 到N ,使DN =MD ,连接CD截长补短法截长补短法在初中几何教学中有着十分重要的作用,它主要是用来证线段的和差问题,而且这种方法一直贯穿着整个几何教学的始终.那么什么是截长补短法呢?所谓截长补短其实包含两层意思,即截长和补短.截长就是在较长的线段上截取一段等于要证的两段较短的线段中的一段,证剩下的那一段等于另外一段较短的线段.当条件或结论中出现a +b =c 时,用截长补短.1.补短法:通过添加辅助线“构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2.截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。

13 全等模型-倍长中线与截长补短模型(学生版)-2024年中考数学几何模型归纳讲练(全国通用)

13 全等模型-倍长中线与截长补短模型(学生版)-2024年中考数学几何模型归纳讲练(全国通用)
专题 13 全等模型-倍长中线与截长补短模型
全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三 角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。 模型 1.倍长中线模型 【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添 加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角 形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。 【常见模型及证法】 1、基本型:如图 1,在三角形 ABC 中,AD 为 BC 边上的中线.
证明思路:延长 AD 至点 E,使得 AD=DE. 若连结 BE,则 BDE CDA ;若连结 EC,则 ABD ECD ;
2、中点型:如图 2, C 为 AB 的中点. 证明思路:若延长 EC 至点 F ,使得 CF EC ,连结 AF ,则 BCE ACF ; 若延长 DC 至点 G ,使得 CG DC ,连结 BG ,则 ACD BCG . 3、中点+平行线型:如图 3, AB // CD ,点 E 为线段 AD 的中点. 证明思路:延长 CE 交 AB 于点 F (或交 BA 延长线于点 F ),则 EDC EAF .
(2)问题解决:如图②,在 VABC 中, D 是 BC 边上的中点, DE DF 于点 D , DE 交 AB 于点 E , DF
交 AC 于点 F ,连接 EF ,求证: BE CF EF ; (3)问题拓展:如图③,在四边形 ABCD 中, B D 180 , CB CD , BCD 100 ,以 C 为顶点作 一个 50 的角,角的两边分别交 AB 、 AD 于 E 、 F 两点,连接 EF ,探索线段 BE , DF , EF 之间的数量关 系,并说明理由.

(完整版)几何模型截长补短模型

(完整版)几何模型截长补短模型

第三章截长补短模型截长补短如图①,若证明线段 AB CD EF 之间存在 EF=AB+CD 可以考虑截长补短法。

截长法:如图②,在 EF 上截取EG=AB 再证明 GF=C[即卩可。

补短法:如图③,延长 AB 至H 点,使BH=CD 再证明AH=EF 即卩可。

B © 模型分析截长补短的方法适用于求证线段的和差倍分关系。

截长,指在长线段中截取一段等 于已知线段;补短,指将短线段延长,延长部分等于已知线段。

该类题目中常出现等腰 三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程。

模型实例例1.如图,已知在^ ABC 中,/ C=2/ B, AD 平分/ BAC 交BC 于点D 。

求证:AB=AC+CD例2.如图,已知 OD 平分/ AOB DCL OA 于点C,/ A=/ GBD 求证:AO+BO=2CO.1 HB热搜精练1.如图,在△ ABC中,/ BAC=60 , AD是/ BAC的平分线,且AC=AB+BD 求/ ABC勺度数。

C2 .如图,在△ ABC中,/ ABC=60 , AD CE分别平分/ BAG / ACB 求证:AC=AE+C 。

CD3 .如图,/ ABCf BCD=180 , BE CE分别平分/ ABC / BCD 求证:AB+CD=B。

4 .如图,在△ ABC中,/ ABC=90 , AD平分/ BAC交BC于点D,/ C=30°, BE丄AD于点E。

求证:AC-AB=2BEC5 .如图,Rt△ ABC中, AC=BC AD平分/ BAC交BC于点D, CE!AD交AD于F 点,交AB于点E。

求证:AD=2DF+CE6 .如图,五边形ABCDEK AB=AC BC+DE=C,D/ B+/ E=18O°。

求证:AD平分/ CDEC E。

全等模型-倍长中线与截长补短模型(学生版+答案解析)

全等模型-倍长中线与截长补短模型(学生版+答案解析)

全等模型-倍长中线与截长补短模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。

模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。

【常见模型及证法】1、基本型:如图1,在三角形ABC中,AD为BC边上的中线.证明思路:延长AD至点E,使得AD=DE.若连结BE,则ΔBDE≅ΔCDA;若连结EC,则ΔABD≅ΔECD;2、中点型:如图2,C为AB的中点.证明思路:若延长EC至点F,使得CF=EC,连结AF,则ΔBCE≅ΔACF;若延长DC至点G,使得CG=DC,连结BG,则ΔACD≅ΔBCG.3、中点+平行线型:如图3, AB⎳CD,点E为线段AD的中点.证明思路:延长CE交AB于点F(或交BA延长线于点F),则ΔEDC≅ΔEAF.1(2023·江苏徐州·模拟预测)(1)阅读理解:如图①,在△ABC中,若AB=8,AC=5,求BC边上的中线AD的取值范围.可以用如下方法:将△ACD绕着点D逆时针旋转180°得到△EBD,在△ABE中,利用三角形三边的关系即可判断中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=100°,以C为顶点作一个50°的角,角的两边分别交AB、AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并说明理由.2(2023·贵州毕节·二模)课外兴趣小组活动时,老师提出了如下问题:(1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考帮小明完成解答过程.(2)如图2,AD是△ABC的中线,BE交AC干E,交AD于F,且AE=EF.请判昕AC与BF的数量关系,并说明理由.3(2022·山东·安丘市一模)阅读材料:如图1,在△ABC中,D,E分别是边AB,AC的中点,小亮在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使EF=DE,连接CF,证明△ADE≌△CFE,再证四边形DBCF是平行四边形即得证.类比迁移:(1)如图2,AD是△ABC的中线,E是AC上的一点,BE交AD于点F,且AE=EF,求证:AC=BF.小亮发现可以类比材料中的思路进行证明.证明:如图2,延长AD至点M,使MD=FD,连接MC,⋯⋯请根据小亮的思路完成证明过程.方法运用:(2)如图3,在等边△ABC中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE,F是线段BE的中点,连接DF、CF.请你判断线段DF与AD的数量关系,并给出证明.4(2022·河南商丘·一模)阅读材料如图1,在△ABC中,D,E分别是边AB,AC的中点,小明在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使EF=DE,连接CF,证明△ADE≌△CFE,再证四边形DBCF是平行四边形即得证.(1)类比迁移:如图2,AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF.小明发现可以类比材料中的思路进行证明.证明:如图2,延长AD至点M,使MD=FD,连接MC,⋯⋯请根据小明的思路完成证明过程.(2)方法运用:如图3,在等边△ABC中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE.F是线段BE的中点,连接DF,CF.请你判断线段DF与AD的数量关系,并给出证明;模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【压轴必刷】中考数学压轴大题之经典模型培优案
专题6截长补短模型
【例1】阅读题:如图1,OM平分AOB
∠,以O为圆心任意长为半径画弧,交射线OA,OB于C,D两点,在射线OM上任取一点E(点O除外),连接CE,DE,可证OCE ODE
△△
≌,请你参考这个作全等的方法,解答下列问题:
(1)如图2,在ABC中,2
A B
∠=∠,CD平分ACB
∠交AB于点D,试判断BC与AC、AD之间的数量关系;
(2)如图3,在四边形ABCD中,AC平分BAD
∠,10
BC CD
==,20
AB=,8
AD=,求ABC的面积.【例2】已知,90
POQ
∠=,分别在边OP,OQ上取点A,B,使OA OB
=,过点A平行于OQ的直线与过点B平行于OP的直线相交于点C.点E,F分别是射线OP,OQ上动点,连接CE,CF,EF.
(1)求证:OA OB AC BC
===;
(2)如图1,当点E,F分别在线段AO,BO上,且45
ECF
∠=时,请求出线段EF,AE,BF之间的等量关系式;
(3)如图2,当点E,F分别在AO,BO的延长线上,且135
ECF
∠=时,延长AC交EF于点M,延长BC交EF于点N.请猜想线段EN,NM,FM之间的等量关系,并证明你的结论.
【例3】如图,已知B(-1,0),C(1,0),A为y轴正半轴上一点,点D为第二象限一动点,E在BD的
延长线上,CD交AB于F,且∠BDC=∠BAC.
(1)求证:∠ABD=∠ACD;
(2)求证:AD平分∠CDE;
(3)若在点D运动的过程中,始终有DC=DA+DB,在此过程中,∠BAC的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC的度数.
【例4】问题提出,如图1所示,等边△ABC内接于⊙O,点P是AB上的任意一点,连结PA,PB,PC.线段PA、PB、PC满足怎样的数量关系?
(尝试解决)为了解决这个问题,小明给出这样种解题思路:发现存在条件CA=CB,∠ACB=60°,从而将CP绕点逆时针旋转60°交PB延长线于点M,从而证明△PAC≌△MBC,请你完成余下思考,并直接写出答案:PA、PB、PC的数量关系是;
(自主探索)如图2所示,把原问题中的“等边△ABC”改成“正方形ABCD”,其余条件不变,
①PC与PA,PB有怎样的数量关系?请说明理由:
②PC+PD与PA,PB的数量关系是.(直接写出结果)
(灵活应用)把原问题中的“等边△ABC”改成“正五边形ABCDE”,其余条件不变,则PC+PD+PE与PA+PB 的数量关系是.(直接写出结果)
【例5】.在△ABC中,AB=AC,点D与点E分别在AB、AC边上,DE//BC,且DE=DB,点F与点G分别
在BC、AC边上,∠FDG
1
2
∠BDE.
(1)如图1,若∠BDE=120°,DF⊥BC,点G与点C重合,BF=1,直接写出BC= ;
(2)如图2,当G在线段EC上时,探究线段BF、EG、FG的数量关系,并给予证明;
(3)如图3,当G在线段AE上时,直接写出线段BF、EG、FG的数量关系:_____________.
【例6】如图,△ABC中,AB=AC,∠EAF=1
2
∠BAC,BF⊥AE 于E交AF于点F,连结CF.
(1)如图1 所示,当∠EAF 在∠BAC 内部时,求证:EF=BE+CF.
(2)如图2 所示,当∠EAF 的边AE、AF 分别在∠BAC 外部、内部时,求证:CF=BF+2BE.
一、解答题
1.等边ABC
∆中,点H、K分别在边BC、AC上,且AK CH
=,连接AH、BK交于点F.
(1)如图1,求AFB
∠的度数;
图1
(2)连接CF,若90
BFC
∠=︒,求
BF
AF
的值;
(3)如图2,若点G为AC边的中点,连接FG,且2
AF FG
=,则BFG
∠的大小是___________.
图2
2.如图,四边形ABCD中,180
B D
∠+∠=︒,150
BCD
∠=︒,CB CD
=,M、N分别为AB、AD上的动点,且75
MCN
∠=︒.求证:MN BM DN
=+.
3.在ABC中,AE,CD为ABC的角平分线,AE,CD交于点F.
(1)如图1,若60
B
∠=︒.
①直接写出AFC
∠的大小;
②求证:AC AD CE
=+.
(2)若图2,若90B ∠=︒,求证:ACF AFD CEF DEF S S S S =++△△△△.
4.如图,在ABC 中,45A ∠=︒.
(1)如图1,若AC =BC =,求ABC 的面积;
(2)如图2,D 为ABC 外的一点,连接CD ,BD 且CD CB =,ABD BCD ∠=∠.过点C 作CE AC ⊥交AB
的延长线于点E .求证:2BD AB +.
(3)如图3,在(2)的条件下,作AP 平分CAE ∠交CE 于点P ,过E 点作EM AP ⊥交AP 的延长线于点M .点
K 为直线AC 上的一个动点,
连接MK ,过M 点作'MK MK ⊥,且始终满足'MK MK =,连接'AK .若4AC =,请直接写出''AK MK +取得最小值时()2''AK MK +的值.
5.如图,等边△ABC 内接于⊙O ,点D 是弧AC 上一点,连接BD 交AC 于E .
(1)如图1,求证∠ADB =∠CDB ;
(2)如图2,点F 为线段BD 上一点,连接CF ,若∠BCF =2∠ABD 时,求证:BF =DE +AD ;
(3)在(2)的条件下,作∠BCF 的平分线交⊙O 于M ,在CM 上取点R ,连接AR 交CF 于点T ,若TR =1,MR =5,∠CAT =3∠ACD ,求AT 的长.。

相关文档
最新文档