高性能船舶动力装置发展前景

合集下载

船舶动力装置论文发展应用论文

船舶动力装置论文发展应用论文

船舶动力装置论文发展应用论文【摘要】在以后的发展中,电力推进系统应该发挥其优势所在,优化布置提供能源利用率。

加大交流变频技术的应用、在有效结合电力系统与推进系统的前提下实现系统的一体化供电也是未来主要的研究趋势。

1 船舶动力装置发展趋势简介在船舶的正常营运中船舶动力装置为其提供动力及能量,是船舶的重要设备之一。

一般情况下,船舶动力装置包括主动力装置、辅助动力装置等。

在技术日新月异的今天,船舶的动力装置历经蒸汽、内燃机、燃气以及混合动力装置的发展。

新时期船舶动力装置的技术研发尤为重要,随着船舶设备不断革新,制造领域的不断发展,现在使用范围比较广泛的有综合电力推进系统、船舶燃气轮机以及混合动力系统等,目下装载了特种推进装置的船舶也应运而生。

人类对自然能源的利用的同时也促进了船舶动力装置的发展。

早在19世纪煤就作为船舶动力的主要燃料,进入20世纪后石油的大规模开采替代了煤的使用。

随着二战结束后,各国着眼于经济发展,以至于在70年代发生石油危机,加上不断遭到污染的环境,人类的目光从石油燃料转向非石油燃料上。

由此生物燃料应运而生,然而生物燃料的主要成分是碳,在生物燃料使用时所释放的CO2仍会污染环境。

各种清洁能源也被提及出来,如天然气、氢气等。

天然气作燃料时对环境的污染较小,氢气作为最理想的能源逐步被人们所利用,得到全世界的认可。

氢气作为燃料在汽车发动机的领域已经取得了突破,作为船舶动力系统中的应用也指日可待。

再者核能的使用已经用于军用舰船,文中不涉及。

伴随着经济与科学技术的不断发展,人们对船舶动力系统的性能提出了更高的要求,这也激励着我们船舶人不断的探索。

2 船舶动力装置的应用2.1 电力推进系统的应用随着船舶动力的发展电力推进系统作为一种新的技术得到推广,并成为世界范围的研究热点。

其优势主要有以下几点,一是该系统中所使用的全电缆连接法使船舶动力的输出设备在布置设计中更加灵活方便;二是该系统的推广使得安全系数得到提高,它所采用的备用电路方法可以提前预防动力系统在运行中出现的电路故障;三是该系统的使用使得电能化比较集中,主推进电动机的选择更加多样化,在减少了辅助动力设备使用的同时,根据设计方案、安装布置要求、能源消耗、系统维护、经济性等不同的指标选择主推进电动机。

船舶动力装置发展的现状和趋势

船舶动力装置发展的现状和趋势

船舶动力装置发展的现状和趋势船舶动力装置是在船舶营运过程中为其提供动力、能量的重要设备。

船舶动力装置由主动力装置、辅助动力装置和辅机及其设备共同组成,三大部分的相互协调共同为船舶提供源源不断的动力。

在技术演化的过程中,船舶动力经历了蒸汽动力、内燃动力、燃气动力以及混合动力等几种不同的发展类型。

随着社会经济的快速发展以及船舶运输行业不断出现的各种新需求,船舶动力装置的技术研发、设备革新和制造等领域发展非常迅速。

现在使用范围比较广的动力装置有综合电力推进系统、船舶燃气轮机、混合动力系统以及最近兴起的特种推进装置等不同的类型。

在不久的将来,随着技术的革新,更具经济性和环保性的动力装置将成为主流。

2、船舶动力装置的现状2.1蒸汽轮机动力装置蒸汽机在船舶上的应用是人类在交通运输领域所取得的重大突破,具有跨时代的意义。

蒸汽机可分为往复式蒸汽机与蒸汽轮机两种,由于功重比与效率的优势,蒸汽轮机已经完全取代了往复式蒸汽机。

一个典型的蒸汽轮机动力装置主要由4部分组成,即供水泵、水管锅炉、涡轮机以及冷凝器,利用锅炉烧出来的蒸汽,冲击叶轮使其旋转,从而带动推进器产生推力。

蒸汽轮机动力装置具有功率大、结构简单、造价低廉等优点,但其热效率低、重量大,某些运动部件由于运转惯性过大而难以平衡,所以目前已较少使用。

2.2柴油机动力装置柴油机动力装置是以柴油为燃料的内燃机,其优点在于启动速度快、运行状态可靠和功率大等。

柴油机动力装置是目前应用最为普遍的船舶动力装置,因此其技术成熟度也相对更高。

柴油机动力装置在上世纪 60 年代开始全面取代了蒸汽轮机,成为最主流的船舶动力装置。

柴油机动力装置分为四冲程柴油机和两冲程柴油机,其中二冲程柴油机的特点是转速相对较低,可以直接驱动螺旋机进行工作,主要应用于大中型远洋运输船舶上。

而四冲程柴油机转速较高,一般主要应用于小型运输船、客船、军舰和豪华游艇上。

目前,柴油机动力装置主要生产商为 MAN 公司和 WARTSILA 公司。

2024年船舶动力系统市场调研报告

2024年船舶动力系统市场调研报告

2024年船舶动力系统市场调研报告概述本调研报告对船舶动力系统市场进行了全面深入的调研分析。

通过调研我们发现,船舶动力系统市场在当前全球船舶产业中具有重要地位和巨大潜力。

本报告对船舶动力系统市场的规模、发展趋势、竞争态势以及主要市场驱动因素进行了详细分析,并提供了市场前景展望。

调研方法本调研报告采用了多种方法进行数据收集和分析。

我们通过文献研究、网络调查、采访行业专家以及参观相关展会等方式获得了大量的市场信息和数据。

在数据分析阶段,我们使用了统计分析方法和市场模型,对收集到的数据进行了综合分析和预测。

市场概况根据调研结果显示,全球船舶动力系统市场规模呈现稳步增长的趋势。

这主要得益于全球船舶运输需求的不断增长,以及政府对船舶行业的支持和投资。

船舶动力系统市场涵盖了内燃机、涡轮机、电动机等多种动力系统产品。

目前,内燃机仍然是船舶动力系统市场的主导产品,但电动船舶市场正快速崛起。

市场发展趋势从市场发展趋势来看,船舶动力系统市场将继续保持增长势头。

未来几年,航运业将持续扩大,对船舶动力系统的需求将持续增加。

此外,环保压力也将推动船舶动力系统市场的发展。

在环境保护要求日益严苛的背景下,电动船舶和清洁能源动力系统将成为发展的重点领域。

市场竞争态势市场竞争态势激烈,主要厂商之间的竞争日益加剧。

目前,全球船舶动力系统市场上主要的厂商有ABB、MAN Diesel & Turbo、Wärtsilä等。

这些厂商竞争激烈,通过技术创新和产品升级来提升竞争力并在市场中占据优势地位。

主要市场驱动因素本调研报告发现,船舶运输需求的增长、环境保护要求的提高以及技术创新是推动船舶动力系统市场发展的主要因素。

随着全球贸易的增加,船舶运输需求将持续增长,为船舶动力系统市场带来巨大机遇。

此外,环保要求的提高和对二氧化碳排放的限制也推动着船舶行业向清洁能源动力系统的转变。

市场前景展望基于对市场调研和数据分析的结果,我们对船舶动力系统市场前景进行了展望。

2024年船舶推进器市场发展现状

2024年船舶推进器市场发展现状

船舶推进器市场发展现状引言船舶推进器是船舶动力系统中至关重要的组成部分,直接影响船舶的性能和效率。

随着全球航运业的快速发展,船舶推进器市场也在不断壮大。

本文将从市场规模、发展趋势和竞争态势三个方面,对船舶推进器市场的现状进行分析。

市场规模船舶推进器市场的规模正在不断增长。

据市场研究机构统计,全球船舶推进器市场在近几年内每年呈现约5%的增长率。

这主要归因于船舶产业的快速发展和全球贸易的增加。

船舶推进器市场的规模主要由新建船舶和船舶修理市场两部分组成。

新建船舶市场是船舶推进器市场的主要需求来源,而船舶修理市场则提供了长期的后续需求。

发展趋势船舶推进器市场的发展正朝着高效、环保和智能化的方向发展。

在追求更高效能的背景下,船舶推进器制造商正在推动新技术的研发,包括利用复合材料、提高推进器的可调性和性能优化等。

此外,环保方面的要求也促使船舶推进器市场发展出更加低排放和低噪音的产品,以满足严格的环境法规。

智能化也成为近年来船舶推进器市场的一个重要发展趋势,利用先进的传感器和自动控制技术,提高推进器的自适应性和操作效率。

竞争态势船舶推进器市场是一个竞争激烈的市场。

全球有多家船舶推进器制造商参与市场竞争,其中一些领先的企业包括ABB、Siemens、MAN Diesel & Turbo等。

这些企业凭借其强大的技术实力和全球化的销售网络,在市场上占据了较大的份额。

此外,船舶推进器市场还涉及到船舶设计公司、船厂和维修公司等多个环节的利益相关者。

他们通过合作关系和技术创新,共同提升船舶推进器市场的竞争力。

结论船舶推进器市场呈现出快速增长和不断创新的发展趋势。

新技术的引入、环保需求的提高和智能化的发展将进一步推动市场的发展。

船舶推进器制造商需要不断提升技术水平,提供高效、环保和智能化的产品,以满足市场的需求。

同时,建立良好的合作关系和供应链体系,加强营销和售后服务,也是船舶推进器企业在市场竞争中取得优势的关键。

2024年船舶推进器市场环境分析

2024年船舶推进器市场环境分析

2024年船舶推进器市场环境分析1. 引言船舶推进器是船舶重要的装备之一,对船舶的性能和效率有着重要的影响。

随着全球贸易的增长和海洋经济的发展,船舶推进器市场也在不断扩大。

本文将对船舶推进器市场的环境进行分析,包括市场规模、竞争格局、技术发展及未来趋势等方面。

2. 市场规模分析船舶推进器市场规模是衡量市场供需状况的重要指标。

根据市场研究机构的数据显示,全球船舶推进器市场规模持续增长。

2019年,全球船舶推进器市场总额达到XX亿美元,预计到2025年将达到XX亿美元。

亚太地区是全球船舶推进器市场最大的市场,其市场份额占据了全球总量的XX%,其次是欧洲和北美地区。

市场规模的扩大主要受益于全球贸易的回暖和海洋经济的发展。

3. 竞争格局分析船舶推进器市场竞争格局激烈,主要由几家国际知名企业垄断。

目前市场上主要的船舶推进器制造商有XX公司、XX集团和XX公司等。

这些大型企业在技术研发、生产制造和市场推广等方面具有较强的实力和竞争优势。

另外,一些新兴的船舶推进器制造商也在不断崛起,采用创新的技术和解决方案,加大对市场份额的争夺力度。

4. 技术发展分析船舶推进器技术的发展对市场竞争格局产生着重要影响。

目前,船舶推进器技术发展主要集中在提高推进效率、降低能源消耗和环境污染。

例如,采用新型的推进器设计,如CP推进器和水下船舶推进器等,能够提高船舶的航行效率,降低油耗和减排。

另外,船舶推进器与电力系统和混合动力技术的结合也成为未来的发展趋势。

5. 市场趋势展望未来船舶推进器市场有望继续保持增长态势。

一方面,全球海洋经济的发展将推动船舶需求的增长,从而带动船舶推进器市场扩大。

另一方面,技术的不断进步和创新将促进船舶推进器市场的发展。

例如,新材料、智能制造和数字化技术的应用,将为船舶推进器带来更多的发展机遇和市场需求。

6. 结论船舶推进器市场在全球贸易增长和海洋经济发展的推动下,呈现出不断扩大的趋势。

竞争格局激烈,技术发展和市场趋势的变化也对市场产生重要影响。

浅谈船舶动力系统现状及发展趋势

浅谈船舶动力系统现状及发展趋势

浅谈船舶动力系统现状及发展趋势近年来,随着全球航运业快速发展,船舶的动力系统也迅速发展和升级。

船舶动力系统涉及到电力、燃料、机械结构等多个领域,其稳定性、高效性和可靠性直接影响到船舶的安全、经济性和环境保护。

在这篇文章中,我们将了解船舶动力系统的现状和发展趋势。

一、现状1. 传统柴油机动力系统目前,大多数商业船只都采用柴油机作为主要动力源。

这是由于柴油机具有可靠性高、低维护成本、燃油价格低等优点。

但是,这种传统的柴油机动力系统在污染排放方面存在很大问题。

船舶柴油机排放的氮氧化物和颗粒物等污染物对于海洋生态环境造成了巨大的危害。

2. 新型天然气动力系统为了降低船舶对环境的影响,新型天然气动力系统被广泛采用。

天然气作为一种清洁能源,其燃烧过程所产生的污染物比燃油要少得多。

而LNG(液化天然气)和CNG(压缩天然气)作为天然气的储存方式,可以取代传统的燃油储存方式。

目前,一些航运公司已经购买了新型的LNG船舶,以取代传统柴油动力源。

3. 混合动力系统混合动力系统是指利用多种动力源,如柴油机、电池和太阳能等,来驱动船舶。

不同的动力源可以在驱动船舶过程中相互补充和转换,以达到提高船舶效率和降低排放的效果。

例如,电池可以储存利用太阳能产生的电力,并在柴油机停止工作时提供动力。

二、发展趋势1. 更多采用LNG燃料系统由于天然气船舶对环境的影响较小,因此越来越多的船舶正在转向LNG动力系统。

预计未来10年中,LNG燃料系统将会逐渐普及,并在商船中占据主导地位。

2. 自动化技术的应用自动化技术在船舶动力系统中的应用越来越广泛。

随着技术的不断升级,船舶的自动化程度将会不断提高。

例如,通过高科技设备的监测和控制,可以更加精准和高效地控制船舶的动力系统。

3. 发展绿色能源相比传统的动力系统,绿色能源更加环保,未来的发展中将会越来越普及。

例如,太阳能面板已经被广泛使用,很多商船都已经开始尝试使用太阳能作为船舶的辅助动力源。

航母动力装置技术现状及发展趋势

航母动力装置技术现状及发展趋势

航母动力装置技术现状及发展趋势航母动力装置技术现状及发展趋势舰船动力装置作为舰船的“心脏”,其技术的发展一直受到各国海军的普遍重视。

近些年,无论是蒸汽动力装置、燃气轮机动力装置、柴油动力装置以及由上述动力装置组合的联合动力装置,还是核动力装置、喷水推进装置及电力推进系统等的科研与生产不断取得新的进展。

舰船动力技术继续向多种形式特种动力装置领域拓展,并在深入研究基础上,开始逐步转入生产和使用阶段。

其中,最值得关注的有两件事,一是功率为29000hp的中间冷却回热燃气轮机完成了3150小时的耐久试验,标志着WR-21舰用燃气轮机将很快装舰使用;二是综合电力推进系统已经计划在世界主要军事大国近期建造的多艘新一代舰艇上使用,这标志着舰用综合电力推进系统的研制已经进入成熟发展阶段,海军舰艇即将开始由长期采用机械动力推进装置向综合电力推进装置过渡。

(1)燃气轮机技术。

燃气轮机是大中型水面舰艇的主动力装置,目前,世界已有近30个国家的海军舰船使用燃气轮机。

其中美国、英国和前苏联使用的数量最多。

随着燃气轮机使用范围的扩大,使用方式由一轴一机扩展到一轴多机;由汽轮机和燃气轮机联合动力装置发展到柴油机与燃气轮机联合使用动力装置、柴油机和燃气轮机交替使用动力装置、燃气轮。

优点●启动加速快;●全负荷时燃油消耗低;●振动噪声小;●结构紧凑、重量轻;●辅机及系统简单;●操纵方便、维修性好●缺点●低负荷时燃料消耗高;●高温热源大、对环境温度敏感;●进排气尺寸大;●自身不能反转倒车;●造价高燃气轮机,代表:印度购买自俄罗斯的“戈尔什科夫海军元帅号”(2)柴油机技术。

目前,柴油机仍是排水量500t以下高速、机动性能好的舰艇的主要动力装置。

对于500t~3500t左右的现代护卫舰,无论吨位和类型如何,柴油机动力装置都具有明显的优势。

现在整机功率1470kW~8088kW的大功率柴油机仍用作排水量4000t以下军用舰艇的主机。

由德国和法国研制的单机功率大的新一代高速大功率柴油机的出现使全柴油机动力装置有可能满足同等舰用功率(30000kW)的要求,同时这些柴油机与燃气轮机组成的CODAG动力装置,足可以满足6000t 以下舰艇的功率要求,另外高速大功率柴油机增压技术的不断成熟和应用,解决了部分负荷下大扭矩的问题,简化了传动和控制系统,使CODAG动力装置有可能再次在护卫舰等舰艇动力系统中得到垂青。

船舶动力系统现状及发展探讨

船舶动力系统现状及发展探讨

船舶动力系统现状及发展探讨摘要:船舶动力系统作为船舶的核心系统,对船舶的良好运行起着至关重要的作用。

在现代船舶工业中,对船舶动力系统的研究一直处于不断的发展中,对船舶动力系统的研究也是各国各轮船厂商关注的焦点。

本文对船舶动力系统的发展现状进行了简单的分析,并对其发展趋势进行的展望,通过对现有动力系统的改进以及对新能源系统的应用进行论述,希望能够对船舶动力系统的发展提供一点帮助。

关键词:船舶;动力系统;发展趋势前言船舶动力系统是整个船舶的核心,也是船舶造价最为昂贵的一部分,船舶动力系统的性能对船舶整体的性能影响十分巨大,因此,船舶动力系统的发展是全球造船业关注的焦点问题,对核心技术的掌握是全国造船国家竞争的关键。

船舶动力系统是船的动力源泉,充当着人体心脏的功能,船舶动力系统对保障船舶的安全运行具有重要的作用。

一、船舶动力系统概述船舶动力系统主要由船舶主机、传动系统以及推进器组成,船舶动力系统的造价占船舶设备的35%,占全船总造价的25%。

动力系统是保证船舶正常运行、作业以及停泊等所必须的船舶机械设备,船舶动力系统的性能关系到船舶运行安全,船舶系统的动力选择决定着船舶运行的费用,船舶动力系统的重要性对船舶不言而喻。

面对全球资源能源的紧张与缺乏,降低能源消耗成为全球的共识,在船舶动力系统研究制造领域,提高船舶动力系统的运行效率、降低资源能源消耗、提高船舶的载重能力和续航能力对资源能源节约与高效利用有着重要的帮助作用;面对全球变暖等极端气候的频繁出现,降低二氧化碳排放,保护生态环境成为全球的共识,国际海事组织以及各国政府对船舶运行产生的环境污染高度重视,加强船舶动力系统的优化,降低船舶运行尾气的排放成为船舶动力系统性能优化的重要考虑的问题。

二、船舶动力系统的现状柴油机动力系统。

柴油机作为船舶动力系统是使用最为广泛的,这是由于柴油机作为动力系统具有启动速度快、负荷运转性能强的优势,同时柴油机动力系统安全、可靠、效率高,广泛被应用于船舶主机和船舶电站。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高性能船舶动力装置发展前景作者:伍赛特来源:《水运管理》2019年第06期【摘要】为使高性能船舶选择适合的动力装置,介绍高性能船舶的特点及其总体发展趋势,阐述其動力装置的相关应用及技术特点,并对未来发展趋势进行展望,认为:中小型高性能船舶动力装置宜采用柴油机,而大型高性能船舶则更适于采用燃气轮机或柴-燃联合动力装置,高性能船舶以其卓越的性能在相关领域依然会长期保有其独特的技术优势。

【关键词】高性能船舶;柴油机;燃气轮机;内燃机;联合动力装置0 引言高性能船舶是从20世纪30年代开始逐渐发展的一类新型船舶,其种类繁多,是船舶发展中最具创造性、最富有活力的类型,具有高航速、高适航能力、高隐身性和高效费比等特点。

探索、研究和开发高性能船舶的出发点是:采用与常规船舶不同的支承方式和流体力学作用,使船舶既能够利用水体的支承作用,同时又能够摆脱船体表面水摩擦阻力和自由表面兴波阻力的束缚,实现船舶的高速航行。

经过几十年的研发,高性能船舶的设计、建造和运营技术已经较为成熟,业界已经研发出各具特色、不同类型的高性能船舶,满足了航运界和军方对船舶在各种水面的运输和作战的特殊要求。

1 高性能船舶动力装置1.1 船用动力装置类型高性能船舶首要的特点是高速。

排水型船舶经过船型改进,其航行阻力下降提高了推进效率,推进动力机组强化度的提高及单位质量比功率的增加提升了推进动力。

气垫船利用气垫的浮力、水翼艇利用水翼的升力来承载船舶质量,为大幅度提高航速创造了条件。

但是,航速对船舶本身质量的变化十分敏感,要求动力系统质量轻、体积小、功率大、转矩特性合理、燃油消耗率低。

高性能船舶主要设计目标是在满足推进要求的条件下,动力系统的总质量最小,船舶有效负荷达到最大。

船用动力装置包括蒸汽轮机、核动力、电动机、燃气轮机、汽油机和柴油机,其中:蒸汽轮机和核动力虽然可以达到很大的功率,但仅适用于大型船舶;燃气轮机和柴油机一般适用于中小型船舶;汽油机功率则较为有限,可作为小型船舶的主要推进动力。

具体来看:(1)燃气轮机转速变化的灵活性较低,其在持续功率时转速可变化的范围为 20%~+10%,在此转速范围内转矩降低较快。

[1]采用燃气轮机作为气垫船的动力时,需要独立改变推力,以带动变矩螺旋桨或风扇。

燃气轮机与柴油机在单位质量或单位体积功率、燃油消耗率、附属系统、传动装置等方面存在不同,在用作气垫船动力时,动力装置的总质量随航行范围的增大变化梯度也不同,其中,燃气轮机的变化梯度较陡,柴油机的变化梯度较平缓。

因此,同类型气垫船,其航行范围不同时,应选用不同的发动机。

燃气轮机有很低的比质量(单位功率质量),但压气机和动力涡轮的转速很高,约为~r/min,需要用减速齿轮箱将转速降到500~ r/min,才能符合推进器、风扇或喷水系统的要求。

(2)汽油机转速高、排量小,单机功率受限,加之汽油挥发性强、闪点较低,燃油箱须采取防挥发、防碰撞的设计措施,因此只适用于小型船艇。

(3)高速和中速船用柴油机可作为高速单体船、双体船和水翼艇的动力,风冷柴油机或有闭式冷却循环的水冷柴油机可作为气垫船的动力。

柴油机作为气垫船动力机组时的运行工况与作为车辆动力装置时不同,设计者应根据气垫船的动力需求和运行特性对机组重新进行功率标定。

大多数车用柴油机在最大持续功率的85%时可长时间安全运行,最大持续功率处于90%以上的只能在紧急情况下运行30 min。

柴油机的转速和负荷变化范围广,从最高转速到怠速可灵活操作,变工况运行。

高速柴油机通常的标定转速是1 500~3 500 r/min,需要采用减速比约为1.5~2.5的齿轮箱传动,在柴油机标定功率小于600 kW时也可用皮带传动来实现。

高性能船舶配备的中速柴油机标定转速为750~1 500 r/min,可直接传动喷水推进装置,或通过较小减速比的齿轮箱驱动推进器。

气垫船上的柴油机可以同时与推进装置和垫升风机相连,也可分别用作推进或垫升机组。

某些气垫船采用了液压传动垫升系统,通过柴油机带动液压泵、液压马达带动风机,柴油机装在船尾、垫升风机装在船头,布置灵活,方便船舶总体设计。

无论是燃气轮机还是柴油机,随环境温度升高,功率均会下降,以标定功率时20 ℃环境温度为基准,气温每升高10 ℃,燃气轮机功率下降7%,柴油机功率下降2%。

船舶在高温的气候条件下航行,必须考虑温度对动力系统功率的影响。

柴油机的冷却系统是将空气或水加压使其流过柴油机,以维持柴油机正常的工作温度。

超出最高允许温度时,应采取相应防护或控制措施;低温时,冷却剂流量由节温器控制,以保证柴油机正常的热力状态。

[2]在很冷的地区进行冷起动时需要对燃油和柴油机进行预热:气温在 20 ℃以下应使用专用润滑油;气温在40 ℃以下柴油会凝固,必须预热后才能起动。

高性能船舶动力系统的推进功率大,在船舶设计航程内柴油机所消耗的燃油量对全船质量的影响不可忽视,选择机组时不仅要考虑机组本身的质量和比功率,也要考虑燃油消耗率的影响。

1.2 船用动力装置机组特性高性能船舶动力机组要求高的单位质量比功率,除满足额定工况的功率要求外,还应有足够的低速转矩储备能力。

当推进主机在额定转速50%和75%时,功率只有分别达到额定功率的35%和80%,才能满足船舶的越峰需求。

水翼艇离港时,其主推进系统只有克服峰值阻力,才能从浮航进入到翼航状态。

这就要求作为主推进动力的高速柴油机具备优良的低转速大转矩特性。

不同的船型和水翼系统,水翼艇起飞过程中的阻力不同,最大阻力的位置也因艇的大小而不同。

通常最大阻力位于最高航速的70%处,在设计推进系统转速时为克服最大阻力应当留有一定的余度。

以高速柴油机为推进主机时,为满足水翼艇、滑行艇等高速船舶的低速大转矩要求,保证从浮航到翼航的顺利过渡,通常采取扩大增压柴油机工作范围、相继涡轮增压、液力传动等措施。

若高性能船舶柴油机特性曲线的高效率区趋向与螺旋桨特性曲线走向一致,说明柴油机经济性能好,低速特性较好。

利用液力变扭器连接柴油机和螺旋桨改变其输出特性,实现水翼艇的越峰要求,是船舶动力设计方案之一。

采用调距螺旋桨和喷水推进,利用二行程柴油机,其单位气缸容积的有效功率大,低速特性较好,也有利于水翼艇越峰。

2 高性能船舶柴油机2.1 性能特点风冷柴油机机组质量比水冷柴油机小,且结构简单、完整性较好,但功率受限,可用作小型气垫船动力,带动整体式垫升和推进风机,或用多台机组分别带动垫升风机和推进风机。

风冷柴油机的噪声较大,可以在机舱或柴油机箱内采用噪声隔离措施。

风冷柴油机还需要正确排出强制流动的冷却空气,避免混入船舶通风或垫气系统中。

水冷柴油机的功率和转速范围均较大,可供选择的余地较宽。

高性能船舶的机舱空间有限,对动力的比功率要求高,一般采用中速或高速柴油机作动力。

由于水套的阻尼作用,水冷柴油机的噪声比风冷柴油机的要小。

装在气垫船、水翼艇上的水冷柴油机通常采用闭式循环水冷系统,通过冷却风扇散热,降低冷却水温度。

柴油机是气垫船、水翼艇上的最大装置,较大型船舶的柴油机质量可达30~40 t。

现代柴油机有12~20缸,本身平衡性好,但振动能量仍很大,如果直接安装在气垫船、水翼艇上,需要仔细分析其局部的支撑结构,以确定其自然频率、频谱及对柴油机振动能量谱的响应特性,特别是确定传动轴系在轴向和旋转方向的自然振动频率,采用弹性安装和采取阻尼措施。

如果轴系对主机某一振动频率有明显的响应,则需改变传动轴的刚度和轴承布置。

弹性安装有助于隔离柴油机振动噪声在船体金属结构中的传播;玻璃钢板、复合材料板、泡沫夹心板可衰减振动噪声。

在小型和中型气垫船上,橡胶齿带传动系统的阻尼特性可以用来隔离柴油机和传动链的振动传递。

2.2 船用柴油机的功率标定高性能船舶柴油机的强度较高,使用情况与船型、用途、航线等有较大关系,使用功率与工况密切相关。

一般营运的高性能船舶,其柴油机平均每天运行8~10 h, 1年累计运行2 500~3 500 h;军用高性能船舶或游艇的柴油机平均每天使用2~3 h,全年累计运行500~1 000 h。

3 高性能船舶燃气轮机3.1 性能特点3.1.1 适应高性能船舶航行環境高性能船舶通常在海洋或江河中航行,两栖艇也可能会越过湖泊、沙滩,环境比较复杂、恶劣。

海水和海面空气中含有盐分,燃气轮机进气过程中盐分会沉积在叶片、壳体等表面,腐蚀金属零件;舰船在恶劣的海况中航行时会遇到风暴、飞溅的水花、雨雪粒子,气垫船气垫吹起的微小物体有可能随进气气流进入燃气轮机,给安全航行带来严重后果。

因此,进气系统要采取严格的滤清、防护措施。

燃气轮机应配置相应的清洗系统,适时清除黏附在零件表面的盐分。

在燃油系统和润滑系统中加装油水分离器和滤清器,及时去除油料中的水分、杂质粒子,以减少对零件的磨损。

为了满足抗盐雾和海水腐蚀的要求,某些零部件必须采用耐蚀材料制造,或进行表面处理,例如:将压气机机壳由镁合金改为铝合金;压气机叶片由铝合金改为不锈钢或钛合金;中压涡轮叶片由抗蠕变、高强度的合金改为抗热腐蚀性能高的合金等。

船舶航行中在波浪、风力等因素作用下会产生颠簸,使得船身发生纵倾和横摇,影响燃气轮机及其附属系统的工作状态、泵吸能力和动力传输。

因此,为使燃气轮机及附属系统在最严重的颠簸情况下能维持正常工作,船上的应急机械和装置应保持应有的抗颠簸功能。

军用高性能船舶在战斗中会受到水下爆炸、空中爆炸冲击波的影响,气垫船、水翼艇在航行、靠岸或登陆时有碰撞的可能,要求燃气轮机及机座有一定的耐冲击能力。

应加装减振系统,减少受冲击时传递给燃气发生器的能量;还要加装燃气发生器机匣和支撑系统,以保证燃气发生器本身能承受一定的冲击作用。

船体遭到部分破坏时,机舱可能会进水,为了提高生命力,要求机舱浸水达到燃气轮机排气涡壳下部之前,燃气轮机仍能维持运行。

3.1.2 满足高性能船舶航行工况需求军用高性能船舶主机的巡航功率通常是最大航速功率的10%~40%,以巡航速度运行的时间占整个航行时间的90%~95%,最大航速的航行时间只占整个航行时间的5%~10%。

高速单体船和双体船、水翼艇、气垫船等民用船舶,除起动、出港、避让、靠岸外,以较高或最高航速航行所占的时间比例较大,对船舶燃气轮机的变工况性能有严格的要求,从最低转速到最高转速应运行稳定,不得发生喘振。

3.2 技术要求3.2.1 采取合理措施,提高安全可靠性船舶燃气轮机多数用来驱动螺旋桨式推进器,必须配有动力涡轮和功率输出轴。

有的船舶采用喷水推进,其燃气轮机动力涡轮的输出轴与水泵相连,驱动喷水推进系统。

倒车主要通过调距桨、倒车齿轮箱和控制系统实施,这些构件除用于倒车外,还可以改善低负荷性能。

船舶在海上和江河湖泊上航行时所能承受的大气压力和温度与飞机在高空飞行时所处的环境不同,地面的大气压力大,使得船舶燃气轮机轴承上的负荷大于航空燃气轮机;因此,船舶燃气轮机应通过气体作用力平衡或减少轴向推力,增加轴承的数量并改进轴承设计,以提高轴承的承载能力。

相关文档
最新文档