竞赛辅导:一次函数及绝对值函数的应用(含答案)
一次函数应用题含答案

一次函数应用题含答案一次函数应用题含答案一、方案优化问题我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA,yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村花的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,x=40;当yA>yB时,-5x+5000>3x+4680,x<40;当yA<yb时,-5x+5000<3x+4680,x style="padding: 0px; margin: 0px; font-family: Arial, 宋体; font-size: 14px; white-space: normal; background-color: rgb(255, 255, 255);">40.当x=40时,yA=yB即两村运费相等;当0≤x<40时,ya>yB即B村运费较少;当40<x≤200时,ya<yb即a村费用较少.(3)由yB≤4830得3x+4680≤4830∴x≤50设两村的运费之和为y,∴y=yA+yB.即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.二、利润最大化问题某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.可得,6195≤35x+70(100-x)≤6299.解得,20■≤x≤23.∵x为解集内的正整数,∴x=21,22,23.∴有三种进货方案:方案一:购进甲种T恤21件,购进乙种T恤79件;方案二:购进甲种T恤22件,购进乙种T恤78件;方案三:购进甲种T恤23件,购进乙种T恤77件.(2)设所获得利润为W元.W=30x+40(100-x)=-10x+4000.∵k=-10<0,∴W随x的增大而减小.∴当x=21时,W=3790.该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.(3)购进甲种T恤9件、乙种T恤1件.要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).三、行程问题从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15-5=10,小明骑车在下坡路的速度为:15+5=20.∴小明返回的时间为:(6.5-4.5)÷20+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1-0.5-0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,∴y=-20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意得10t+1.5=-20(t+0.15)+16.5,解得:t= 0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的'是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.四、分段计费问题已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴50k+b=20060k+b=260解得k=6b=-100∴y关于x的函数关系式是y=6x-100(x≥50);(2)由可知,当y=620时,x>50∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x-100+■(x-80)=600,化简得x2+40x-14000=0解得:x1=100,x2=-140(不合题意,舍去).答:这家企业2014年3月份的用水量是100吨.要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.2015年第3期《锐角三角函数》参考答案1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1(2)■(2cos45°-sin60°)+■=■(2×■-■)+■=2-■+■=29. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米,在Rt△ACD中,tan∠CAD=■,∴AD=■=■=80■,在Rt△ABD中,tan∠BAD=■,∴BD=ADtan30°=80■×■=80,∴BC=CD-BD=240-80=160. 答:这栋大楼的高为160米. 10.解:在Rt△CDB中,∠C=90°,BC=■=■=4,∴tan∠CBD=■.在Rt△ABC中,∠C=90°,AB=■=4■,∴sinA=■.。
[数学]-专题41 含绝对值的一次函数(原版)
![[数学]-专题41 含绝对值的一次函数(原版)](https://img.taocdn.com/s3/m/d577f0c7a1116c175f0e7cd184254b35eefd1aa6.png)
专题41 含绝对值的一次函数1.请你用学习“一次函数”时积累的经验和方法研究函数y x =的图象和性质,并解决问题: (1)完成下列步骤,画出函数y x =的图象; ①列表、填空:②描点; ③连线.(2)观察函数图象,写出该函数图象的一条性质.2.请你用学习“一次函数”时积累的经验和方法研究函数|1|y x =+的图象和性质,并解决问题.(1)按照下列步骤,画出函数|1|y x =+的图象; ①列表;②描点; ③连线.(2)观察图象,填空;①当x ___________时,y 随x 的增大而减小;x ___________时,y 随x 的增大而增大; ②此函数有最 ___________值(填“大”或“小” ),其值是 ___________; (3)根据图象,不等式11|1|22x x +>+的解集为 ___________.3.请你用学习“一次函数和二次根式”时积累的经验和方法解决下列问题:(1)在平面直角坐标系中,画出函数|1|y x =-的图象; ①列表填空:②描点、连线,画出|1|y x =-的图象;(2)结合所画函数图象,写出|1|y x =-两条不同类型的性质;(3)1102x -=的近似解. 4.某班“数学兴趣小组”对函数11y x =---的图象和性质进行了探究,探究过程如下: (1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如下:其中,m = ___________,n = ___________.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)观察这个函数图象,写出它的两条性质:①___________;②___________.(4)请根据函数图象,直接写出当方程111x m ---=-有解时,m 的取值范围___________. 5.某学习小组在综合与实践活动中,研究一元一次不等式、一元一次方程和一次函数的关系课题时,对函数13y x =+-的图像和性质做了探究. 下面是该学习小组的探究过程,请补充完整; (1)下表是y 与x 的几组对应值,请将表格补充完整:表格中m 的值为__________,n 的值为___________.(2)如图,在平面直角坐标系中描点并画出此函数的图像:(提示:先用铅笔画图确定后用签字笔画图)(3)请观察函数的图像,直接写出如下结论;①当自变量x ________时,函数y 随x 的增大而增大; ②方程132x +-=的解是x =____________; ③不等式14x +<的解集为________.6.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程.结合学习函数的经验,探究函数1y x a =-+的图象与性质,探究过程如下.请补充完整.(1)列表:请根据表格中的信息,可得=a __________,b = __________.(2)①根据(1)中结果,请在给出的平面直角坐标系中,画出这个函数的图象.②若点()11,A x y ,()22,B x y 在函数图象上,且121x x <<,观察图像写出1y 、2y 的大小关系. 并说明理由.(3)结合画出的函数图象,解决问题:若关于x 的方程112x a x m -+=+有且只有一个正数解和一个负数解,则满足条件的m 取值范围是___________.7.在一次函数学习中,我们经历了列表、描点、连线画函数图象,结合图象研究函数性质的过程.小红对函数1(3)2(3)x x y x -<⎧=⎨≥⎩的图象和性质进行了如下探究,请同学们认真阅读探究过程并解答:(1)请同学们把小红所列表格补充完整,并在平面直角坐标系中画出该函数的图象:(2)根据函数图象,以下判断该函数 性质的说法,正确的有 . ①函数图象关于y 轴对称; ②此函数无最小值;③当x <3时,y 随x 的增大而增大;当x ≥3时,y 的值不变.(3)若直线y =12x +b 与函数y =1(3)2(3)x x x -<⎧⎨≥⎩的图象只有一个交点,则b = .8.某“数学兴趣小组”根据学习函数的经验,对函数312y x =+-的图象和性质进行了探究,探究过程如下,请补充完整.(1)如图,在平面直角坐标系xoy 中,请同学们自己列表并画出函数图象;(2)根据函数图象,写出该函数的两条性质: ①____________②_____________(3)若关于x 的方程312x b +-=有两个互不相等的实数根,则实数b 的取值范围是______. 9.请你用学习“一次函数和二次根式”时积累的经验和方法解决下列问题: (1)在平面直角坐标系中,画出函数|1|y x =-的图象: ①列表填空:②描点、连线,画出|1|y x =-的图象:(2)结合所画函数图象,写出|1|y x =-两条不同类型的性质; (3)结合所画函数图象,当x =________时,|1|1x -=. 10.已知函数32x ky -+=,且当1x =时2y =;请对该函数及其图像进行如下探究: (1)根据给定的条件,可以确定出该函数的解析式为___________; (2)根据解折式,求出如表的m ,n 的值;m =___________,n =___________.(3)根据表中数据.在如图所示的平面直角坐标系中描点并画出函数图像; (4)写出函数图像一条性质___________; (5)请根据函数图像写出当312x kx -+>+时,x 的取值范围.11.请你用学习一次函数时积累的经验和方法研究函数1y x =-的图象和性质,并解决问题. (1)根据函数数表达式,填写下表:m =______,n =______.(2)利用(1)中表格画出函数1y x =-的图象.(3)观察图象,当x ______时,y 随x 的增大而减小. (4)利用图象,直接写出不等式1112x x -<+的解集. 12.小颖根据学习函数的经验,对函数11y x =--的图象与性质进行了探究,下面是小颖的探究过程,请你补充完整. (1)列表:①k =______;②若()7,5A -,(),5B m -为该函数图象上不同的两点,则m =______. (2)描点并画出该函数的图象.(3)根据函数图象可得: ①该函数的最大值为______;②观察函数11y x =--的图象,写出该图象的两条性质:______,______; ③已知直线1112y x =-与函数11y x =--的图象相交,则当1y y ≤时x 的取值范围是______. 13.在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质——运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.学习了一次函数之后,现在来解决下面的问题: 在y a x b =+中,下表是y 与x 的几组对应值.(1)求a 、b 的值;(2)m =______,n =______;(3)在给出的平面直角坐标系xOy 中,描出以上表格中各组对应值为坐标的点,并根据描出的点,画出该函数的图象.根据函数图象可得: ①该函数的最小值为______;②写出该函数的另一条性质____________;(4)已知直线14y x =+与函数y a x b =+的图象交于两点,则当1y y >时,x 的取值范围为______. 14.小时在学习了一次函数知识后,结合探究一次函数图像与性质的方法,对新函数21y x =--及其图像进行如下探究.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如表:其中m = ,n = .(2)请在给出的平面直角坐标系中画出该函数的图像,并结合图像写出该函数的一条性质: .(3)当112133x x --≤+时,x 的取值范围为___________.15.小颖根据学习函数的经验,对函数1|1|y x =--的图象与性质进行了探究,下面是小颍的探究过程,请你补充完整.(1)列表:①k =__________;②若(8,6),(,6)A B m --为该函数图象上不同的两点,则m =___________; (2)描点并画出该函数的图象.(3)根据函数图象可得:该的数的最大值为_____________;观察函数1|1|y x =--的图象,写出该图象的一条性质:_____________________; (4)已知直线1112y x =-与函数1|1|y x =--的图象相交,则当1y y <时x 的取值范围是__________.16.九年级某数学兴趣小组在学习了一次函数的图象与性质后,进一步研究了函数1y x =+的图象与性质.其探究过程如下:(1)绘制函数图象,列表:下表是x 与y 的几组对应值,其中m = .描点:根据表中各组对应值(),x y ,在平面直角坐标系中描出各点,请你描出剩下的点; 连线:顺次连接各点,已经画出了部分图象,请你把图象补充完整;(2)通过观察图象,下列关于该函数的性质表述正确的是: ;(填写代号) ①函数值y 随x 的增大而减小; ②1y x =+关于y 轴对称; ③1y x =+有最小值1. (3)在上图中,若直线1522y x =+交函数1y x =+的图象于A ,B 两点(A 在B 左侧),记()0,1为C 点.则ABC S ∆= .17.某校数学兴趣小组根据学习函数的经验,对函数13y x =+-的图象和性质进行了探究,探究过程如下:自变量x 的取值范围是全体实数,x 与y 的几组对应值如下表:(1)①表中a 的值为 ,b 的值为 ;②以每组对应值作为一个点的坐标,在平面直角坐标系中描出表中的所有点,并按照自变量从小到大的顺序连线,画出该函数的图象,并观察图象,发现函数的最小值为 ; (2)在函数13y x =+-的图象所在坐标系中,作13y x =的图象,交13y x =+-的图象于点A ,B (A 在B 的左侧),并观察图象,直接写出下列结果: ①方程组1313y x y x ⎧=+-⎪⎨=⎪⎩的解为 ; ②不等式1133x x +-<的解集为 .18.有这样一个问题:探究函数21y x =-+的图像与性质.小明根据学习函数的经验,对函数21y x =-+的图像与性质进行了探究.(1)①函数21y x =-+的自变量x 的取值范围是_____________;②若点A (-7,a ),B (9,b )是该函数图像上的两点,则a ___________b (填“>”“<”或“=”);(2)请补全下表,并在平面直角坐标系xOy 中,画出该函数的图像:(3)函数12y x =-和函数2211y x =-++的图像如图所示,观察函数图像可发现:①12y x =-的图像向___________平移________个单位长度得到21y x =-+,2211y x =-++的图像向___________平移________个单位长度得到21y x =-+; ②当21211x x -+=-++时,x =_____________;③观察函数2211y x =-++的图像,写出该图像的一条性质.19.学习函数时,我们经历了“确定函数解析式、画出函数图象、利用函数图象研究函数性质、利用函数性质解决问题”的学习过程.以下是我们研究函数2y x =-+的图象和性质的部分过程,请按要求完成下列问题.(1)列表:y 与x 的部分对应值如下表,则m =______,n =______;(2)描点、连线:根据上表中的数据,在平面直角坐标系中画出函数2y x =-+的图象;(3)结合图象,写一条函数2y x =-+的性质:________________; (4)根据函数图象填空:①方程22x -+=有______个解;②若关于x 的方程2x a -+=无解,则a 的取值范围是______.20.小慧根据学习函数的经验,对函数y =|x ﹣1|+1的图象与性质进行了探究,下面是小慧的探究过程,请补充完整.(1)函数y =|x ﹣1|+1的自变量x 可以取 ; (2)列表,找出y 与x 的几组对应值.若A (8,8),B (m ,8)为该函数图象上不同的两点,则m = ;(3)在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,并根据描出的点画出该函数的图象,根据函数图象可得: ①该函数的最小值为 ;x+3与函数y=|x﹣1|+1的图象交于C,D两点,当y1≥y时x的取值范围②已知直线y1=12是.。
《一次函数》经典例题剖析(附练习及答案)

《一次函数》复习课知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数. 知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 (1)k 的正负决定直线的倾斜方向; ①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置; ①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①如图11-18(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限); ②如图11-18(2)所示,当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限); ③如图11-18(3)所示,当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限); ④如图11-18(4)所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限). (5)由于|k|决定直线与x 轴相交的锐角的大小,k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x +1可以看作是正比例函数y=x 向上平移一个单位得到的.知识点3 正比例函数y=kx (k ≠0)的性质 (1)正比例函数y=kx 的图象必经过原点;(2)当k >0时,图象经过第一、三象限,y 随x 的增大而增大; (3)当k <0时,图象经过第二、四象限,y 随x 的增大而减小. 知识点4 点P (x 0,y 0)与直线y=kx+b 的图象的关系(1)如果点P (x 0,y 0)在直线y=kx+b 的图象上,那么x 0,y 0的值必满足解析式y=kx+b ; (2)如果x 0,y 0是满足函数解析式的一对对应值,那么以x 0,y 0为坐标的点P (1,2)必在函数的图象上.例如:点P (1,2)满足直线y=x+1,即x=1时,y=2,则点P (1,2)在直线y=x+l 的图象上;点P ′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P ′(2,1)不在直线y=x+l 的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx (k ≠0)中只有一个待定系数k ,故只需一个条件(如一对x ,y 的值或一个点)就可求得k 的值.(2)由于一次函数y=kx+b (k ≠0)中有两个待定系数k ,b ,需要两个独立的条件确定两个关于k ,b 的方程,求得k ,b 的值,这两个条件通常是两个点或两对x ,y 的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b ; (2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式. 解:设一次函数的关系式为y =kx+b (k ≠0), 由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交;当b=0时,即-kb=0时,直线经过原点;当k ,b 同号时,即-kb﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例剖析基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21(6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x 32m+(m-4)是一次函数?基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.例5 已知y-3与x 成正比例,且x=2时,y=7. (1)写出y 与x 之间的函数关系式; (2)当x=4时,求y 的值; (3)当y=4时,求x 的值.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例9 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?例10 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例11 已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.例12 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?例13 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.学生做一做判断三点A(3,5),B(0,-1),C(1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例14 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?(2)直线y=-x与y=-x+6的位置关系如何?甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快.”乙生说:“直线y=-x与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?例15 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.学生做一做某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.例16 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .基础训练习题:1.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?2.已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3.(1)求这个函数的解析式。
(完整版)一次函数经典题型+习题(精华,含答案)

一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m ,n )在第二象限,则点(|m|,-n)在第____象限;2、 若点P(2a —1,2—3b )是第二象限的点,则a ,b 的范围为______________________;3、 已知A (4,b ),B (a ,—2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A ,B 关于y 轴对称,则a=_______,b=__________;若若A,B 关于原点对称,则a=_______,b=_________;4、 若点M (1—x ,1—y )在第二象限,那么点N (1—x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,—2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C(0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q (—2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________; 4、 两点(3,—4)、(5,a )间的距离是2,则a 的值为__________; 5、 已知点A(0,2)、B(—3,—2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________。
一次函数综合应用(习题及解析)精选全文

精选全文完整版(可编辑修改)一次函数综合应用(习题及解析)例题示范例 1:一次函数 y=kx+b 的图象经过点 A(0,3),且与正比例函数y=-x 的图象相交于点 B,点 B 的横坐标为-1,求一次函数的表达式.思路分析:从完整的表达式入手,由正比例函数过点 B,可得 B 点坐标,然后由一次函数 y=kx+b 的图象经过点 A,B,待定系数法求解.解:∵点 B 在正比例函数 y=-x 的图象上,且点 B 的横坐标为-1∴B(-1,1)将 A(0,3),B(-1,1)代入 y=kx+b,得b 3k b 1k 2b 3∴一次函数的表达式为 y=2x+3.巩固练习一次函数 y=2x+a 和 y=-x+b 的图象都经过点 A(-2,0),且与 y 轴分别交于点 B,C,那么△ABC 的面积为.直线 y=kx+b 和直线 y 1 x 3 与 y 轴的交点相同,且经2过点(2,-1),那么这个一次函数的表达式是.一次函数 y=kx-3 经过点 M,那么此直线与 x 轴、y 轴围成的三角形的面积为.在平面直角坐标系中,O 为原点,直线 y=kx+b 交 x 轴于点A(-2,0),交 y 轴于点 B、假设△AOB 的面积为 8,那么 k 的值为直线 y=kx+1,y 随 x 的增大而增大,且与直线 x=1,x=3以及 x 轴围成的四边形的面积为 10,那么 k 的值为.一次函数 y=kx+b 的图象经过点(0,2),且与坐标轴围成的三角形的面积为 2,那么这个一次函数的表达式是如图,在平面直角坐标系中,一次函数 y 1 x 6 的图象与2x 轴、y 轴分别交于点 A,B,与正比例函数 y=x 的图象交于第一象限内的点 C、〔1〕求 A,B,C 三点的坐标;〔2〕S△AOC= .如图,直线 y=2x+3 与直线 y=-2x-1 相交于 C 点,并且与 y 轴分别交于 A,B 两点.〔1〕求两直线与 y 轴交点 A,B 的坐标及交点 C 的坐标;〔2〕求△ABC 的面积.一次函数 y=2x-3 的图象与 y 轴交于点 A,另一个一次函数图象与 y 轴交于点 B,两条直线交于点 C,C 点的纵坐标为 1,且 S△ABC=5,求另一条直线的解析式.一次函数 y=kx+b 的图象经过点(0,10),且与正比例函数y 1 x 的图象相交于点(4,a).2〔1〕求一次函数 y=kx+b 的解析式;〔2〕求这两个函数图象与 y 轴所围成的三角形的面积.如图,直线 y=kx+4 与 x 轴、y 轴分别交于点 A,B,点 A的坐标为(-3,0),点 C 的坐标为(-2,0).〔1〕求 k 的值;〔2〕假设 P 是直线 y=kx+4 上的一个动点,当点 P 运动到什么位置时,△OPC 的面积为 3?请说明理由.【参考答案】巩固练习1.6 2.y=-2x+3 3.9 44.4 或-4 5.2 6. y x 2或y ﹣x 2 7.〔1〕A(12,0),B(0,6),C(4,4) 〔2〕24 8.〔1〕A(0,3) B(0,-1) C(-1,1);〔2〕2 9. y 1 x 2 或 y 9 x 8 2 210. 〔1〕 y 2x 10 〔2〕2011. 〔1〕 k 在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
一次函数实际应用(带解析)

一次函数实际应用(解析版)1.已知A、B两地之间有一条长270千米的公路.甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从A 地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止.甲、乙两车相距的路程y(千米)与甲车的行驶时间x(时)之间的函数关系如图所示.(1)乙车的速度为千米/时,a=,b=(2)求甲、乙两车相遇后y与x之间的函数关系式.(3)当甲车到达距B地70千米处时,求甲、乙两车之间的路程.2.(8.00分)某种水泥储存罐的容量为25立方米,它有一个输入口和一个输出口.从某时刻开始,只打开输入口,匀速向储存罐内注入水泥,3分钟后,再打开输出口,匀速向运输车输出水泥,又经过2.5分钟储存罐注满,关闭输入口,保持原来的输出速度继续向运输车输出水泥,当输出的水泥总量达到8立方米时,关闭输出口.储存罐内的水泥量y(立方米)与时间x(分)之间的部分函数图象如图所示.(1)求每分钟向储存罐内注入的水泥量.(2)当3≤x≤5.5时,求y与x之间的函数关系式.(3)储存罐每分钟向运输车输出的水泥量是立方米,从打开输入口到关闭输出口共用的时间为分钟.3.(8分)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y (件),甲车间加工的时间为x (时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装的件数为 件;这批服装的总件数为 件. (2)求乙车间维修设备后,乙车间加工服装的数量y 与x 之间的函数关系式. (3)求甲、乙两车间共同加工完1 000件服装时甲车间所用的时间.4.实验室里,水平桌面上有甲、乙、丙三个高都是10cm 的圆柱形容器(甲、丙的底面积相同),用两个相同的管子在容器的6cm 高度处连通(即管子底离容器底6cm ,管子的体积忽略不计),、现在三个容器中,只有甲中有水,水位高2cm ,如图①所示,若每分钟同时向乙、丙中注入相同量的水,到三个容器都注满水停止,乙、丙容器中的水位h (cm )与注水时间t (min )的图象如图②所示.(1)乙、丙两个容器的底面积之比为 . (2)图②中a 的值为 ,b 的值为 . (3)注水多少分钟后,乙与甲的水位相差2cm ?y (件)5.小明在练习操控航拍无人机,该型号无人机在上升和下落时的速度相同,设无人机的飞行高度为y (米),小明操控无人飞机的时间为x(分),y与x之间的函数图象如图所示.(1)无人机上升的速度为米/分,无人机在40米的高度上飞行了分.(2)求无人机下落过程中,y与x之间的函数关系式.(3)求无人机距地面的高度为50米时x的值.6.某加工厂为赶制一批零件,通过提高加工费标准的方式调动工人的积性.工人每天加工零件获得的加工费y(元)与加工个数x(个)之间的函数图像为折线OA-AB-BC,如图所示.(1)求工人一天加工费不超过20个时零件的加工费.(2)求40≤x≤60时y与x的函数关系式.(3)小王两天一共加工了60个零件,共得到加工费220元,在这两天中,小王一天加工的零件不足20个,求小王第一天加工零件的个数。
初中数学一次函数及其应用2含答案

一次函数及其应用2一.选择题(共33小题)1.一次函数图象与y轴交于点(0,3),图象经过第四象限,下列函数解析式中符合题意的是()A.y=2x﹣3B.y=2x+3C.y=﹣2x﹣3D.y=﹣2x+3 2.对于函数y=﹣x+3,下列结论正确的是()A.当x>4时,y<0B.它的图象经过第一、二、三象限C.它的图象必经过点(﹣1,3)D.y的值随x值的增大而增大3.已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.4.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x>O B.x>﹣1C.x<0D.x>25.把直线y=kx向上平移3个单位,经过点(1,5),则k值为()A.﹣1B.2C.3D.56.将直线y=﹣2x+1向上平移2个单位长度,所得到的直线解析式为()A.y=2x+1B.y=﹣2x﹣1C.y=2x+3D.y=﹣2x+37.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)8.一次函数y=(m+2)x﹣m+1,若y随x的增大而减小,且该函数的图象与x轴交点在原点右侧,则m的取值范围是()A.m>﹣2B.m<﹣2C.﹣2<m<1D.m<19.若一次函数y=(a﹣3)x﹣a的图象经过第二、三、四象限,则a的取值范围是()A.a≠3B.a>0C.a<3D.0<a<310.把一次函数y=2x+1的图象向下平移1个单位后得到一个新图象,则新图象所表示的函数的解析式是()A.y=2x﹣1B.y=2x+2C.y=2x D.y=2x﹣311.将直线L1:y=2x﹣2沿y轴向上平移4个单位的到L2,则L1与L2的距离为()A.B.C.D.12.已知(﹣1,y1),(1,y2)是直线y=﹣x+3上的两点,则y1,y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定13.A点(﹣1,m)和点(0.5,n)是直线y=(k﹣1)x+b(0<k<1)上的两个点,则m,n关系为()A.m>n B.m≥n C.m≤n D.m<n14.甲、乙两辆塑料汽车同时沿直线轨道AC起作同方向的匀速运动,甲乙同时分别A,B 出发,沿轨道到达C处,已知甲的速度始终是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为S1,S2,S1,S2与t的函数关系如图,当两车的距离小于10米时,信号会产生相互干扰,那么t是下列哪个值时两车的信号在产生相互干扰()A.B.C.D.15.甲乙两人在同一条笔直的公路上步行从A地去往B地.已知甲、乙两人保持各自的速度匀速步行,且甲先出发,甲乙两人的距离y(千米)与甲步行的时间t(小时)的函数关系图象如图所示,下列说法:①乙的速度为7千米/时;②乙到终点时甲、乙相距8千米;③当乙追上甲时,两人距A地21千米;④A、B两地距离为27千米.其中错误的个数为()A.1个B.2个C.3个D.4个16.小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16min回到家中,设小明出发第tmin时的速度为vm/min,离家的距离为sm,v与t之间的函数关系如图所示,下列说法错误的是()A.小明出发第2分钟时离家200mB.跑步过程中,小明离家的最远距离为780mC.当2<t≤5时,s与t之间的函数表达式为s=160t﹣120D.小明出发第5分钟时,开始按原路返回17.在某次物理实验课上,小明同学测得在弹簧的弹性限度内弹簧的长度y与物体质量x的关系如下表,则y与x的关系式是()x/g0204060……y/cm10111213……A.y=x B.y=0.1x+10C.y=0.05x+10D.y=0.2x+10 18.甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.施工时间/天123456789累计完成施工量/米3570105140160215270325380下列说法错误的是()A.甲队每天修路20米B.乙队第一天修路15米C.乙队技术改进后每天修路35米D.前七天甲,乙两队修路长度相等19.点(﹣2,6)在正比例函数y=kx图象上,下列各点在此函数图象上的为()A.(3,1)B.(﹣3,1)C.(1,3)D.(﹣1,3)20.直线不经过点()A.(﹣2,3)B.(0,0)C.(3,﹣2)D.(﹣3,2)21.已知一次函数y=3x+2上有两点M(x1,y1),N(x2,y2),若x1>x2,则y1、y2的关系是()A.y1>y2B.y1=y2C.y1<y2D.无法判断22.将直线y=2x经过平移可得到直线y=2(x+3)+4,平移方法正确的是()A.先向右平移3个单位,再向上平移4个单位B.先向右平移3个单位,再向下平移4个单位C.先向左平移3个单位,再向上平移4个单位D.先向左平移3个单位,再向下平移4个单位23.已知点(k,b)为第二象限内的点,则一次函数y=﹣kx+b的图象大致是()A.B.C.D.24.已知一次函数的函数表达式为y=kx+b,若k+b=﹣6,kb=5,则一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限25.已知点A(5,y1)和点B(4,y2)都在直线y=﹣7x+b上,则y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不能确定26.一次函数y=mx+n的图象如图所示,则下面结论正确的是()A.m<0,n>0B.m>0,n<0C.m<0,n<0D.m>0,n>0 27.已知一次函数y=x+b不过第二象限,则b的取值范围是()A.b<0B.b>0C.b≤0D.b≥028.若a、b为实数,且,则直线y=ax+b不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限29.将直线y=5x﹣1平移后,得到直线y=5x+7,则原直线()A.沿y轴向上平移了8个单位B.沿y轴向下平移了8个单位C.沿x轴向左平移了8个单位D.沿x轴向右平移了8个单位30.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶.已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需()分钟到达终点B.A.78B.76C.16D.1231.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x (min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②甲行走的速度是乙的1.5倍;③b=960;④a=34.以上结论正确的有()A.①④B.①②③C.①③④D.①②④32.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234…水池中水量(m)38363432…下列结论中正确的是()A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3D.y与t之间的关系式为y=38﹣2t33.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)与放水时间t(分)有如下关系:放水时间(分)1234…水池中水量38363432…(m3)下列结论中正确的是()A.y随t的增加而增大B.放水时间为15分钟时,水池中水量为8m3C.每分钟的放水量是2m3D.y与t之间的关系式为y=40t二.填空题(共7小题)34.正比例函数y=kx(k≠0)经过点(2,1),那么y随着x的增大而_____.(填“增大”或“减小”)35.把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为_____.36.在一次函数y=kx﹣2x+2中,y随x的增大而增大,则k的取值范围为_____37.直线y=(3m﹣1)x﹣m,函数y随x的增大而增大,且图象经过一,三,四象限,则m的取值范围是_____.38.若(m,n)在函数y=3x﹣7的图象上,3m﹣n的值为_____.39.若y与x的函数关系式为y=2x﹣2,当x=2时,y的值为_____.40.某汽车生产厂对其生产的A型汽车进行油耗试验:匀速行驶的汽车在行驶过程中,油箱的剩余油量y(升)与行驶时间(小时)之间的关系如下表;t(小时)0123…y(升)100928476…由表格中y与t的关系可知,当汽车行驶_____小时,油箱的剩余油量为28升.三.解答题(共10小题)41.已知函数y=(m﹣2)是y关于x的正比例函数.(1)求m的值;(2)求出该正比例函数图象向右平移一个单位所得到的函数解析式.42.已知一次函数y=(2m+1)x+3﹣m(1)若y随x的增大而减小,求m的取值范围;(2)若图象经过第一、二、三象限,求m的取值范围.43.一辆快递车从长春出发,走高速公路,途经伊通,前往靖宇镇送快递,到达后卸货和休息共用1h,然后开车按原速原路返回长春.这辆快递车在长春到伊通、伊通到靖宇的路段上分别保持匀速前进,这辆快递车距离长春的路程y(km)与它行驶的时间x(h)之间的函数图象如图所示.(1)快递车从伊通到长春的速度是_____km/h,往返长春和靖宇两地一共用时_____h.(2)当这辆快递车在靖宇到伊通的路段上行驶时,求y与x之间的函数关系式,并写出自变量x的取值范围.(3)如果这辆快递车两次经过同一个服务区的时间间隔为4h,直接写出这个服务区距离伊通的路程.44.如图,A(0,2),M(4,3),N(5,6),动点P从点A出发,沿y轴以每秒1个单位速度向上移动,且过点P的直线l:y=﹣x+b也随之移动,设移动时间为t秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时、点M关于l的对称点落在坐标轴上.45.甲、乙两家采摘园的圣女果品质相同,售价也相同,节日期间,两家均推出优惠方案,甲:游客进园需购买60元门票,采摘的打六折;乙:游客进园不需购买门票,采摘超过一定数量后,超过部分打折,设某游客打算采摘x千克,在甲、乙采摘园所需总费用为y1、y2元,y1、y2与x之间的函数关系的图象如图所示.(1)分别求出y1、y2与x之间的函数关系式;(2)求出图中点A、B的坐标;(3)若该游客打算采摘10kg圣女果,根据函数图象,直接写出该游客选择哪个采摘园更合算.46.如图①,某容器由A、B、C三个长方体组成,其中A、B、C的底面积分别为25cm2、10cm2、5cm2,整个容器容积是长方体C的容积的4倍(容器各面的厚度均忽略不计),现以速度v(单位:cm3/s)均匀地向容器内注水,直至注满为止.图②是注水全过程中容器内的水面高度h(单位:cm)与注水时间t(单位:s)的函数图象.(1)在注水过程中,注满A所用的时间为_____s,再注满B又用了_____s.(2)求A的高度h A及注水的速度V t.(3)求注满容器所需时间及容器的高度47.“黄金1号”玉米种子的价格为5元/千克,如果一次购买2千克以上的种子,超过部分的种子的价格打8折.(1)填写下表购买种子数量/千克0.51 1.52 2.53 3.54…付款金额/元________________________(2)写出付款金额y(元)与购买数量x(千克)之间的函数关系式,并画出图象.48.学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.(1)根据图象信息,当t=_____分钟时甲乙两人相遇,乙的速度为_____米/分钟;(2)求点A的坐标.49.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是_____千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.50.如图所示OA、BA分别表示甲、乙两名学生在同一直线上沿相同方向的运动过程中,路程S(米)与时间t(秒)的函数关系图象,试根据图象回答下列问题.(1)出发时,乙在甲前面多少米处?(2)在什么时间范围内甲走在乙的后面?在什么时间他们相遇?在什么时间内甲走在乙的前面?一次函数及其应用2参考答案与试题解析一.选择题(共33小题)1.解:设一次函数表达式为:y=kx+b=kx+3,b=3,图象经过第四象限,则k<0,故选:D.2.解:A.当x>4时,y<0,符合题意;B.它的图象经过第一、二、四象限,不符合题意;C.它的图象必经过点(﹣1,4),不符合题意;D.y的值随x值的增大而减小,不符合题意;故选:A.3.解:∵函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴﹣b>0∴函数y=﹣bx+k的图象经过第一、二、三象限.故选:A.4.解:由图象可得,当y>0时,x的取值范围是x>﹣1,故选:B.5.解:直线y=kx(k≠0)的图象向上平移3个单位长度后的解析式为y=kx+3,将点(1,5)代入y=kx+3,得:5=k+3,∴k=2,∴平移后直线解析式为y=2x+3.故选:B.6.解:由“上加下减”的原则可知,把直线y=﹣2x+1上平移2个单位长度后所得直线的解析式为:y=﹣2x+12,即y=﹣2x+3故选:D.7.解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.8.解:∵y随x的增大而减小,∴m+2<0,解得m<﹣2;又该函数的图象与x轴交点在原点右侧,所以图象过一、二、四象限,直线与y轴交点在正半轴,故﹣m+1>0.解得m<1.∴m的取值范围是m<﹣2.故选:B.9.解:∵一次函数y=(a﹣3)x﹣a的图象经过第二、三、四象限,∴,解得:0<a<3.故选:D.10.解:由“上加下减”的原则可知,把一次函数y=2x+1的图象向下平移1个单位后所得直线的解析式为:y=2x+1﹣1,即y=2x.故选:C.11.解:∵将直线L1:y=2x﹣2沿y轴向上平移4个单位的到L2,∴L2的解析式为:y=2x+2,∴L2:y=2x+2与y轴交于(0,2),如图,∵y=2x+2与x轴交于B(﹣1,0),与y轴交于A(0,2),y=2x﹣2与x轴交于F(1,0),与y轴交于E(0,﹣2),∴OB=OF,过O作OC⊥AB于C,反向延长OC交EF于D,∵AB∥EF,∴CD⊥EF,∴∠OCB=∠ODF=90°,∵∠BOC=∠DOF,∴△OBC≌△OFD,∴OC=OD,∵OA=2,OB=1,∴AB=,∴OC==,∴CD=,∴L1与L2的距离为,故选:D.12.解:∵k=﹣1<0,∴函数y随x增大而减小,∵﹣1<1,∴y1>y2.故选:A.13.解:∵0<k<1,∴直线y=(k﹣1)x+b中,k﹣1<0,∴y随x的增大而减小,∵﹣1<0.5,∴m>n.故选:A.14.解:乙的速度v2=120÷3=40(米/分),甲的速度v甲=40×1.5=60米/分.所以a==1分.设函数解析式为S1=kt+b,0≤t≤1时,把(0,60)和(1,0)代入得S1=﹣60t+60,1<t≤3时,把(1,0)和(3,120)代入得S1=60t﹣60;S2=40t,当0≤t<1时,S2+S1<10,即﹣60t+60+40t<10,解得t>2.5,因为0≤t<1,所以当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1<10,即40t﹣(60t﹣60)<10,所以t>2.5,当2.5<t≤3时,两遥控车的信号会产生相互干扰.∵,∴时两车的信号在产生相互干扰.故选:C.15.解:①由题意,得甲的速度为:12÷4=3千米/时;设乙的速度为a千米/时,由题意,得(7﹣4)a=3×7,解得:a=7.即乙的速度为7千米/时,故①正确;②乙到终点时甲、乙相距的距离为:(9﹣4)×7﹣9×3=8千米,故②正确;③当乙追上甲时,两人距A地距离为:7×3=21千米.故③正确;④A,B两地距离为:7×(9﹣4)=35千米,故④错误.综上所述:错误的只有④.故选:A.16.解:由图象可得,小明出发第2分钟时离家:100×2=200(m),故选项A正确;跑步过程中,小明离家的最远距离为:[100×2+160×(5﹣2)+80×(16﹣5)]÷2=780(m),故选项B正确;当2<t≤5时,s与t之间的函数表达式为s=100×2+(t﹣2)×160=160t﹣120,故选项C正确;小明出发5分钟时,离家的距离为:160×5﹣120=680<780,故此时小明没有达到离家的最远距离,没有按原路返回,还要继续向前走,故选项D错误;故选:D.17.解:在弹簧的弹性限度内弹簧的长度y与物体质量x的关系为一次函数关系,设y与x的关系式为y=kx+b,把,代入,可得,解得,∴y与x的关系式为y=0.05x+10,故选:C.18.解:由题意可得,甲队每天修路:160﹣140=20(米),故选项A正确;乙队第一天修路:35﹣20=15(米),故选项B正确;乙队技术改进后每天修路:215﹣160﹣20=35(米),故选项C正确;前7天,甲队修路:20×7=140米,乙队修路:270﹣140=130米,故选项D错误;故选:D.19.解:将点(﹣2,6)代入函数表达式:y=kx得:6=﹣2k,解得:k=﹣3,故函数的表达式为:y=﹣3x,当x=1时,y=﹣3,当x=3时,y=﹣9,当x=﹣3时,y=9,当x=﹣1时,y=3,故选:D.20.解:A、当x=﹣2时,y=﹣×(﹣2)=≠3,故直线不经过点(﹣2,3);B、当x=0时,y=﹣×0=0,故直线经过点(0,0);C、当x=3时,y=﹣×3=﹣2,故直线经过点(3,﹣2);D、当x=﹣3时,y=﹣×(﹣3)=2,故直线经过点(﹣3,2).故选:A.21.解:k=3>0,故函数y随x的增大而增大,∵若x1>x2,则y1>y2,故选:A.22.解:将直线y=2x先向左平移3个单位,再向上平移4个单位,得到直线的解析式为y =2(x+3)+4,故选:C.23.解:∵点(k,b)为第二象限内的点,∴k<0,b>0,∴﹣k>0.∴一次函数y=﹣kx+b的图象经过第一、二、三象限,观察选项,C选项符合题意.故选:C.24.解:∵k+b=﹣6<0,kb=5>0,∴k<0,b<0,∴一次函数y=kx+b的图象经过第二、三、四象限,即一次函数的图象不经过第一象限,故选:A.25.解:∵﹣7<0,∴y随x的增大而减小,∵5>4,则y1<y2,故选:C.26.解:如图,∵该直线经过第二、四象限,∴m<0.又∵该直线与y轴交于正半轴,∴n>0.综上所述m<0,n>0.故选:A.27.解:一次函数y=x+b的图象不经过第二象限,则可能是经过一三象限或一三四象限,经过一三象限时,b=0;经过一三四象限时,b<0.故b≤0,故选:C.28.解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.29.解:∵将直线y=5x﹣1平移后,得到直线y=5x+7,而7﹣(﹣1)=8,∴原直线沿y轴向上平移了8个单位,故选:A.30.解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=千米/分钟,由纵坐标看出AB两地的距离是16千米,设乙的速度是x千米/分钟,由题意,得10x+16×=16,解得x=千米/分钟,相遇后乙到达A站还需(16×)÷=2分钟,相遇后甲到达B站还需(10×)÷80分钟,当乙到达终点A时,甲还需80﹣2=78分钟到达终点B,故选:A.31.解:①当x=0时,y=1200,∴A、B之间的距离为1200m,结论①正确;②乙的速度为1200÷(24﹣4)=60(m/min),甲的速度为1200÷12﹣60=40(m/min),60÷40=1.5,∴乙行走的速度是甲的1.5倍,结论②错误;③b=(60+40)×(24﹣4﹣12)=800,结论③错误;④a=1200÷40+4=34,结论④正确.故结论正确的有①④.故选:A.32.解:由表格可得,y随t的增加而减小,故选项A错误,放水时间为15分钟时,水池中水量为:40﹣(40﹣38)÷1×15=10m3,故选项B错误,每分钟的放水量是40﹣38=2m3,故选项C正确,y与t之间的关系式为y=40﹣(40﹣38)÷1×t=40﹣2t,故选项D错误,故选:C.33.解:设y与t之间的函数关系式为y=kt+b,将(1,38)、(2,36)代入y=kt+b,,解得:,∴y与t之间的函数关系式为y=﹣2t+40,D选项错误;∵﹣2<0,∴y随t的增大而减小,A选项错误;当t=15时,y=﹣2×15+40=10,∴放水时间为15分钟时,水池中水量为10m3,B选项错误;∵k=﹣2,∴每分钟的放水量是2m3,C选项正确.故选:C.二.填空题(共7小题)34.解:∵点(2,1)在正比例函数y=kx(k≠0)的图象上,∴k=,故y=x,则y随x的增大而增大.故答案为:增大.35.解:把直线y=2x﹣1向上平移2个单位再向左平移3个单位,所得直线解析式为y=2(x+3)﹣1+2=2x+7.故答案为:y=2x+7.36.解:∵一次函数y=kx﹣2x+2中,y随x的增大而增大,∴k﹣2>0,解得k>2.故答案为:k>2.37.解:根据题意可得:3m﹣1>0,﹣m<0,解得:m>,故答案为:m>,38.解:将点(m,n)坐标代入y=3x﹣7得:n=3m﹣7,即:3m﹣n=7,故答案为:7.39.解:把x=2代入y=2x﹣2,得y=2×2﹣2=2,故答案为2.40.解:由题意可得:y=100﹣8t,当y=28时,28=100﹣8t解得:t=9.故答案为:9.三.解答题(共10小题)41.解:(1)∵函数y=(m﹣2)是y关于x的正比例函数.∴m2﹣3=1,m﹣2≠0,解得:m=﹣2.(2)正比例函数y=﹣2x的图象向右平移一个单位后所得直线的解析式是:y=﹣2(x﹣1)=﹣2x+2,42.解:(1)由2m+1<0,可得m<﹣,∴当m<﹣时,y随着x的增大而减小;(2)由,可得﹣<m<3,∴当﹣<m<3时,函数图象经过第一、二、三象限.43.解:(1)快递车从伊通到长春的速度是:66÷0.6=110km/h;往返长春和靖宇两地一共用时间为:2.6×2+1=6.2小时;故答案为:110;6.2;(2)当这辆快递车在靖宇到伊通的路段上行驶时,设y与x之间的函数关系式为y=kx+b,由点A(3.6,246),B(5.6,66)得,解得,∴y=﹣90x+570(3.6≤x≤5.6);(3)(246﹣66)÷(2.6﹣0.6)×(4﹣1)×=135(km).246﹣135﹣66=45(km).答:这个服务区距离伊通的路程为45km.44.解:(1)当t=3时,点P的坐标为(0,5),则直线l的表达式为:y=﹣x+5;(2)当直线l过点M时,将点M的坐标代入直线l的表达式:y=﹣x+b得:3=﹣4+b,解得:b=7,t=5;当直线l过点N时,同理可得:t=9,故t的取值范围为:5<t<9;(3)①当点M′落在x轴上,如图,当点M关于l的对称点E′落在坐标轴上时,直线M′M交l于点H,设直线l交x轴于点G,则M′M⊥l,∠HM′G=45°=∠M′GH=∠HGM,即MG⊥x轴,故M′G=MG=3,则点G(4,0),则t=2;②当点M′落在y轴上,同理可得:t=1,故t=1或2.45.解:(1)由图得单价为300÷10=30(元),据题意,得y1=30×0.6x+60=18x+60当0≤x<10时,y2=30x,当x≥10时由题意可设y2=kx+b,将(10,300)和(20,450)分别代入y2=kx+b中,得,解得,故y2与x之间的函数关系式为y2=;(2)联立y2=18x+60,y2=30x,得,解得:,故A(5,150).联立y1=18x+60,y2=15x+150x,得解得,故B(30,600).(3)由(2)结合图象得,当5<x<30时,甲采摘园所需总费用较少.46.解:(1)由图象可知注满A所用的时间为10s,注满B又用了18﹣10=9s;故答案为10,8;(2)由A注满时水的体积和容器容积相等,可得10v t=25h A,∴v t=2.5h A,B注满时水的体积和容器容积相等,可得8v t=10(12﹣h A),∴h A=4,∴v t=10,∴A的高度为4cm,注水的速度为10cm3/s;(3)由整个容器容积是长方体C的容积的4倍,有25h A+10(12﹣h A)+5h C=4×5h C,∴h C=12,∴容器的高度为4+8+12=24cm;注满C容器所需时间为5×12÷10=6s,∴注满整个容器所需时间为18+6=24s.47.解:(1)由题意可得,当购买种子0.5千克时,需要付款:0.5×5=2.5(元),当购买种子1千克时,需要付款:1×5=5(元),当购买种子1.5千克时,需要付款:1.5×5=7.5(元),当购买种子2千克时,需要付款:2×5=10(元),当购买种子2.5千克时,需要付款:2×5+(2.5﹣2)×5×0.8=12(元),当购买种子3千克时,需要付款:2×5+(3﹣2)×5×0.8=14(元),当购买种子3.5千克时,需要付款:2×5+(3.5﹣2)×5×0.8=16(元),当购买种子4千克时,需要付款:2×5+(4﹣2)×5×0.8=18(元),故答案为:2.5,5,7.5,10,12,14,16,18;(2)当0≤x≤2时,y=5x,当x>2时,y=5×2+(x﹣2)×5×0.8=4x+2,即y=,函数图象如右图所示.48.解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40米/分钟,甲、乙两人的速度和为2400÷24=100米/分钟,乙的速度为:米/分钟.故答案为24,60;(2)乙从图书馆回学校的时间为2400÷60=40分钟,40×40=1600,∴A点的坐标为(40,1600).49.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.50.解:(1)由图象可得,出发时,乙在甲前面12米处;(2)由图象可得,甲的速度为:12÷1.5=8(米/秒),则当甲行驶64米时,用的时间为:64÷8=8(秒),由图可知,当在第8秒时,两人相遇,故当0≤t<8时,甲走在乙的后面,当t=8秒时,他们相遇,当t>8时,甲走在乙的前面.。
一次函数绝对值和最值问题

含绝对值函数综合问题一、含绝对值函数的最值1、含一个绝对值的一次绝对值函数的最值、单调性、对称性(1)()||f x x =的图像是以原点为顶点的“V ”字形图像;函数在顶点处取得最小值“(0)0f =”,无最大值;在函数(,0],[0,)x ∈-∞↓+∞↑;对称轴为:0x =(2)()||(0)f x kx b k =+≠图像是以(,0)b k-为顶点的“V ”字形图像;在顶点取得最小值:“()0b f k -=”,无最大值;函数在(,],[,)b b x k k ∈-∞-↓-+∞↑;对称轴为:b x k=- (3)函数()||(0)f x k x b k =+≠: 0k >时,函数是以(,0)b -为顶点的“V ”字形图像;函数在顶点取得最小值:“()0f b -=”,无最大值;函数在(,],[,)x b b ∈-∞-↓-+∞↑;对称轴为:x b =-0k <时,是以(,0)b -为顶点的倒“V ”字形图像,函数在顶点取得最大值:“()0f b -=”,无最小值;函数在(,],[,)x b b ∈-∞-↑-+∞↓;对称轴为:x b =-2、含两个绝对值的一次绝对值函数的最值、单调性、对称性(1)函数()||||()f x x m x n m n =-+-<的图像是以点(,),(,)A m n m B n n m --为折点的“平底形”图像;在[,]x m n ∈上的每点,函数都取得最小值n m -,无最大值;函数在(,],[,)x m x n ∈-∞↓∈+∞↑ ,在[,]x m n ∈无单调性;对称轴为2m n x +=。
(2)函数()||||f x x m x n =---: 当m n >时,()f x 是以点(,),(,)A m n m B n m n --为折点的“Z 字形”函数图像;在(,]x n ∈-∞上的每点,函数都取得最大值m n -,在[,)x m ∈+∞上的每点,函数都取得最小值n m -;函数在[,]x n m ∈↓,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对称中心为(,0)2m n +; 当n m >时,()f x 是以点(,),(,)A m m n B n n m --为折点的“反Z 字形”函数图像; 在(,]x m ∈-∞上的每点,函数都取得最小值m n -,在[,)x n ∈+∞上的每点,函数都 取得最大值n m -;函数在[,]x m n ∈↑,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对称中心为(,0)2m n +; (3)()||||()f x a x m b x n m n =-+-<图像是以(,()),(,())A m f m B n f n 为折点的折线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竞赛辅导:一次函数及绝对值函数的应用1一、填空题(共4小题,每小题5分,满分20分)1.(5分)已知一次函数y=3x+m与反比例函数y=的图象有两个交点,当m=_________时,有一个交点的纵坐标为6.2.(5分)如图,正方形ABCD的边长为10cm,点E在边CB的延长线上,且EB=10cm,点P在边DC上运动,EP与AB的交点为F.设DP=xcm,△EFB与四边形AFPD的面积和为ycm2,那么,y与x之间的函数关系式是_________(0<x<10).3.(5分)将直线y=2x﹣4沿y轴向上平移3个单位得到直线_________,若沿x轴向右平移3个单位又可得到直线_________.4.(5分)直线y=3x+4关于直线y=x对称的直线的函数解析式是_________.二、选择题(共2小题,每小题4分,满分8分)5.(4分)方程|x﹣1|+|y﹣1|=1确定的曲线所围成的图形面积为()A.4B.3C.2D.16.(4分)方程|xy|+|x﹣y+1|=0的图象是()A.三条直线:x=0,y=0,x﹣y+1=0 B.两条直线:x=0,x﹣y+1=0C.一个点和一条直线:(0,0),x﹣y+1=0 D.两个点(0,1),(﹣1,0)三、解答题(共6小题,满分72分)7.(12分)作出函数y=|x﹣2|﹣1的图象.8.(12分)已知函数y=|x﹣a|+|x+19|+|x﹣a﹣96|,其中a为常数,且满足19<a<96,当自变量x的取值范围是a≤x≤96时,求y的最大值.9.(12分)已知A、B的坐标分别为(﹣2,0)、(4,0),点P在直线y=0.5x+2上,横坐标为m,如果△ABP为直角三角形,求m的值.10.(12分)如图,在Rt△ABC中,AB是斜边,点P在中线CD上,AC=3cm,BC=4cm,设P、C的距离为xcm,△APB的面积为ycm2,求y与x的函数关系式及自变量x的取值范围.11.(12分)在平面直角坐标系里,点A的坐标是(4,0),点P是第一象限内一次函数y=﹣x+6图象上的点,原点是O,如果△OPA的面积为S,P点坐标为(x,y),求S关于x的函数表达式.12.(12分)某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(l)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,l吨水生产出的饮料所获的利润是多少?1吨水价格x(元) 4 6用1吨水生产的饮料所获利润y(元)200 198(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.已知该厂日用水量不少于20吨,设该厂日用水量为t吨,当日所获利润为W元.求W与t的函数关系式;该厂加强管理,积极节水,使日用水量不超过25吨,但仍不少于20吨,求该厂的日利润的取值范围.竞赛辅导:一次函数及绝对值函数的应用1参考答案与试题解析一、填空题(共4小题,每小题5分,满分20分)1.(5分)已知一次函数y=3x+m与反比例函数y=的图象有两个交点,当m=5时,有一个交点的纵坐标为6.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:将y=6分别代入两个函数可得,然后变形可得.解答:解:依题意有,由3x+m=6可得6x=12﹣2m,再代入m﹣3=6x中就可得到m=5.故答案为:5.点评:运用了函数的知识、方程组的有关知识,以及整体代入的思想.2.(5分)如图,正方形ABCD的边长为10cm,点E在边CB的延长线上,且EB=10cm,点P在边DC上运动,EP与AB的交点为F.设DP=xcm,△EFB与四边形AFPD的面积和为ycm2,那么,y与x之间的函数关系式是y=5x+50(0<x<10).考点:相似三角形的判定与性质;根据实际问题列一次函数关系式;三角形中位线定理;正方形的性质.专题:几何图形问题.分析:易得BF是△EPC的中位线,那么△EFB的面积与△EPC面积之比为1:4,易得正方形的面积,那么也就可以求得四边形AFPD的面积,让△EFB与四边形AFPD的面积相加即可.解答:解:∵正方形ABCD的边长为10cm,DP=xcm,∴PC=10﹣x,∵EB=10cm,∴S△EPC=×(10﹣x)×(10+10)=100﹣10x,BF是△EPC的中位线,∴△EFB∽△EPC,∴S△EFB=×(100﹣10x),∴四边形BCPF的面积×(100﹣10x),∵正方形的面积为100,四边形AFPD的面积=100﹣×(100﹣10x),∴y=×(100﹣10x)+100﹣×(100﹣10x)=5x+50,故答案为y=5x+50.点评:考查了列一次函数问题,用到的知识点为:相似三角形的面积比等于相似比的平方.3.(5分)将直线y=2x﹣4沿y轴向上平移3个单位得到直线y=2x﹣1,若沿x轴向右平移3个单位又可得到直线y=2x﹣10.考点:一次函数图象与几何变换.分析:根据上加下减,左加右减的法则可得出答案.解答:解:y=2x﹣4沿y轴向上平移3个单位得到直线:y=2x﹣4+3=2x﹣1,若沿x轴向右平移3个单位又可得到直线:y=2(x﹣3)﹣4=2x﹣10.故填:y=2x﹣1,y=2x﹣10.点评:本题考查一次函数的图象变换,注意上下移动改变的是y,左右移动改变的是x,规律是上加下减,左加右减.4.(5分)直线y=3x+4关于直线y=x对称的直线的函数解析式是y=x﹣.考点:一次函数图象与几何变换.专题:计算题.分析:设(x,y)为所求函数解析式上任意点,则关于y=x的对称点为(y,x),∴(y,x)在直线y=3x+4上,代入后即可得出要求的函数解析式.解答:解:设(x,y)为所求函数解析式上任意点:则关于y=x的对称点为(y,x),∴(y,x)在直线y=3x+4上,代入得:x=3y+4,∴3y=x﹣4,∴y=x﹣,故答案为:y=x﹣.点评:本题考查了一次函数图象与几何变换,属于基础题,注意设出一个点的坐标是关键.二、选择题(共2小题,每小题4分,满分8分)5.(4分)方程|x﹣1|+|y﹣1|=1确定的曲线所围成的图形面积为()A.4B.3C.2D.1考点:函数最值问题.专题:计算题.分析:由方程|x﹣1|+|y﹣1|=1确定的曲线所围成的图形面积与方程|x|+|y|=1确定的曲线所围成的图形面积相等,分析求解方程|x|+|y|=1确定的曲线所围成的图形面积相即可.解答:解:先考虑简单的情况:当|x|+|y|=1时:当x>0,y>0时,x+y=1,当x>0,y<0时,x﹣y=1,当x<0,y>0时,y﹣x=1,当x<0,y<0时,x+y=﹣1,∴四条直线与坐标轴的交点分别为(0,1),(1,0),(﹣1,0),(0,﹣1),∴正方形边长为:=,∴正方形面积为:×=2.∵|x﹣1|+|y﹣1|=1的在坐标系内的图象只不过是将|x|+|y|=1的图象向右又向上移动了一个单位,图象的形状并未改变,∴其面积依然为2.故选C.点评:此题考查了函数最值问题.注意抓住方程|x﹣1|+|y﹣1|=1确定的曲线所围成的图形面积与方程|x|+|y|=1确定的曲线所围成的图形面积相等是解题的关键.6.(4分)方程|xy|+|x﹣y+1|=0的图象是()A.三条直线:x=0,y=0,x﹣y+1=0 B.两条直线:x=0,x﹣y+1=0C.一个点和一条直线:(0,0),x﹣y+1=0 D.两个点(0,1),(﹣1,0)考点:非负数的性质:绝对值;解二元一次方程组.分析:根据非负数的性质,可求出x、y的值,从而得到方程|xy﹣1|+|x﹣y+1|=0的图象是两个点.解答:解:根据题意得:,解得或.∴方程|xy﹣1|+|x﹣y+1|=0的图象是两个点(0,1),(﹣1,0).故选D.点评:本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.三、解答题(共6小题,满分72分)7.(12分)作出函数y=|x﹣2|﹣1的图象.考点:一次函数的图象;绝对值.专题:作图题.分析:根据题意,化简绝对值可得,函数y=|x﹣2|﹣1=,进而作出其图象.解答:解:根据题意,函数y=|x﹣2|﹣1=,进而可得其图象为:点评:本题考查一次函数图象的变化及分段函数图象的作法,注意绝对值的化简方法即可.8.(12分)已知函数y=|x﹣a|+|x+19|+|x﹣a﹣96|,其中a为常数,且满足19<a<96,当自变量x的取值范围是a≤x≤96时,求y的最大值.考点:一次函数的性质;绝对值.专题:计算题.分析:先由19<a<96,a≤x≤96,得到x﹣a>0,x+19>0,x﹣a﹣96<0,这样就可以去绝对值,即y=x﹣a+x+19﹣(x﹣a﹣96)=x+115,根据当k>0,图象经过第一,三象限,y随x的增大而增大,所以x=96,y有最大值,代入计算即可.解答:解:∵19<a<96,a≤x≤96,得到x﹣a>0,x+19>0,x﹣a﹣96<0,∴y=|x﹣a|+|x+19|+|x﹣a﹣96|=x﹣a+x+19﹣(x﹣a﹣96)=x+115,∵k=1>0,y随x的增大而增大,∴当自变量x的取值范围是a≤x≤96时,x=96,y有最大值,y的最大值=96+115=211.所以y的最大值为211.点评:本题考查了一次函数y=kx+b(k≠0,k,b为常数)的性质.它的图象为直线,当k>0,图象经过第一,三象限,y随x的增大而增大;当k<0,图象经过第二,四象限,y随x的增大而减小;当b>0,直线与y 轴的交点在x轴上方;当b=0,直线经过坐标原点;当b<0,直线与y轴的交点在x轴下方.同时考查了绝对值的含义.9.(12分)已知A、B的坐标分别为(﹣2,0)、(4,0),点P在直线y=0.5x+2上,横坐标为m,如果△ABP为直角三角形,求m的值.考点:一次函数图象上点的坐标特征.专题:计算题;数形结合.分析:分三种情况①A为直角,②B为直角,③P为直角,前两种情况m的值就是A和B的横坐标,③可设p (m,m+2),再根据AP2+BP2=AB2可求出.解答:解:①此时AP垂直x轴,m=﹣2;②此时BP垂直x轴,m=4;③可设p(m,m+2),∴可得:(m+2)2++(m﹣4)2+=36,解得:m=±.∴m的值可为﹣2,4,±.点评:本题考查一次函数图象上点的坐标特征,注意本题要分三种情况讨论,不要漏解.10.(12分)如图,在Rt△ABC中,AB是斜边,点P在中线CD上,AC=3cm,BC=4cm,设P、C的距离为xcm,△APB的面积为ycm2,求y与x的函数关系式及自变量x的取值范围.考点:相似三角形的判定与性质;根据实际问题列一次函数关系式;直角三角形斜边上的中线;勾股定理.专题:计算题.分析:根据勾股定理求出AB的长,然后过P点作PH⊥AB交AB于H,过C点作CM⊥AB交AB于M,求证△ACB∽△AMC,利用其对应边成比例求得CM的长,再利用CM∥BH,求出PH,代入即可.解答:解:在Rt△ABC中,AB===5,∵AD=BD,∴CD=AB=,∵PC的长为x,∴PD=﹣x,过P点作PH⊥AB交AB于H,过C点作CM⊥AB交AB于M,∵△ACB∽△AMC∴=,∴CM==,∵CM⊥AB,PH⊥AB,∴CM∥BH,∴=,∴PH===﹣x.S△APB=y=AB•BH=×5×(﹣x),∴y=﹣x+6,∴0<x<.答:y与x的函数关系式是y=﹣x+6,自变量x的取值范围为0<x<.点评:此题主要考查学生对相似三角形的判定与性质、根据实际问题列一次函数关系式、勾股定理和直角三角形斜边上的中线等知识点的理解和掌握,此题涉及到的知识点较多,综合性强,难度大,属于难题.解答此题的关键是过P点作PH⊥AB交AB于H,过C点作CM⊥AB交AB于M,求证△ACB∽△AMC.11.(12分)在平面直角坐标系里,点A的坐标是(4,0),点P是第一象限内一次函数y=﹣x+6图象上的点,原点是O,如果△OPA的面积为S,P点坐标为(x,y),求S关于x的函数表达式.考点:一次函数图象上点的坐标特征;三角形的面积.专题:几何图形问题.分析:易得OA之间的距离,△OPA的面积=×AO×P的纵坐标,把相关数值代入求解即可.解答:解:∵AO=4,点P的纵坐标为y,∴S=×4y=2(6﹣x)=12﹣2x,∵点P在第一象限,∴x>0,6﹣x>0,∴0<x<6,∴S=12﹣2x(0<x<6).点评:考查一次函数图象上的点的坐标的特点;得到三角形的面积的关系式是解决本题的关键.注意写完函数解析式后应考虑相应自变量的取值.12.(12分)某饮料厂生产一种饮料,经测算,用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.(l)根据表中提供的数据,求y与x的函数关系式;当水价为每吨10元时,l吨水生产出的饮料所获的利润是多少?1吨水价格x(元) 4 6用1吨水生产的饮料所获利润y(元)200 198(2)为节约用水,这个市规定:该厂日用水量不超过20吨时,水价为每吨4元;日用水量超过20吨时,超过部分按每吨40元收费.已知该厂日用水量不少于20吨,设该厂日用水量为t吨,当日所获利润为W元.求W与t 的函数关系式;该厂加强管理,积极节水,使日用水量不超过25吨,但仍不少于20吨,求该厂的日利润的取值范围.考点:一次函数的应用.分析:(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数.可以设出一次函数关系式,然后根据表中所给的条件(4,200)(6,198)可求出解析式;(2)根据函数式可求出一吨水价是40的利润,然后根据题意可得w=200×20+164(t﹣20),代入t=20或t=25可求出日利润的取值范围.解答:解:(1)用1吨水生产的饮料所获利润y(元)是1吨水的价格x(元)的一次函数式为根据题意得:y=kx+b,,解得,∴所求一次函数式是y=﹣x+204,当x=10时,y=﹣10+204=194(元);(2)当1吨水的价格为40元时,所获利润是:y=﹣40+204=164(元).∴W与t的函数关系式是w=200×20+(t﹣20)×164,即w=164t+720,∵20≤t≤25,∴4000≤w≤4820.点评:本题考查的是用一次函数解决实际问题,注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.参与本试卷答题和审题的老师有:HJJ;workholic;392901;gsls;自由人;zcx;lanchong;caicl;HLing;王岑;lk;fxx(排名不分先后)菁优网2012年12月20日。