【山东省】2017年高考数学(理科)-转化与化归思想-专题练习-答案
2017高考数学(理)(新课标版)考前冲刺复习课时作业:第1部分第2讲分类讨论、转化与化归思想含答案

课时作业1.若m是2和8的等比中项,则圆锥曲线x2+错误!=1的离心率是( )A。
错误! B.错误!C。
错误!或错误! D.错误!或错误!D [解析] 因为m是2和8的等比中项,所以m2=2×8=16,所以m=±4.当m=4时,圆锥曲线错误!+x2=1是椭圆,其离心率e=错误!=错误!;当m=-4时,圆锥曲线x2-错误!=1是双曲线,其离心率e=错误!=错误!=错误!.综上知,选项D正确.2.已知集合A={x|1≤x〈5},C={x|-a<x≤a+3}.若C∩A =C,则a的取值范围为()A。
错误! B.错误!C.错误!D。
错误!C [解析] 因为C∩A=C,所以C⊆A.①当C=∅时,满足C⊆A,此时-a≥a+3,得a≤-错误!;②当C≠∅时,要使C⊆A,则错误!解得-错误!〈a≤-1。
由①②得a≤-1。
3.已知三棱柱的底面为正三角形,且侧棱垂直于底面,其侧面展开图是边长分别为6和4的矩形,则它的体积为( )A。
错误!B.4错误!C.错误!D.4错误!或错误!D [解析] 当矩形长、宽分别为6和4时,体积V=2×错误!×错误!×4=4错误!;当长、宽分别为4和6时,体积V=错误!×错误!×错误!×6=错误!。
4.(2016·高考全国卷乙)已知方程错误!-错误!=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(-1,3) B.(-1,错误!)C.(0,3) D.(0,错误!)A [解析] 由题意得(m2+n)(3m2-n)>0,解得-m2<n<3m2,又由该双曲线两焦点间的距离为4,得m2+n+3m2-n=4,即m2=1,所以-1<n<3.5.(2016·昆明两区七校调研)某校从8名教师中选派4名同时去4个偏远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有( )A.900种B.600种C.300种D.150种B [解析]依题意,就甲是否去支教进行分类计数:第一类,甲去支教,则乙不去支教,且丙也去支教,则满足题意的选派方案有C 错误!·A 错误!=240种;第二类,甲不去支教,且丙也不去支教,则满足题意的选派方案有A 错误!=360种.因此,满足题意的选派方案共有240+360=600种,选B 。
2017年高考数学(理科)-转化与化归思想-专题练习

转化与化归思想
题组1正与反的相互转化
1.由命题“存在 ,使 ”是假命题,得 的取值范围是 ,则实数 的取值是()
A. B.
C.1D.2
2.(2016·开封模拟)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()
A. B.
C. D.
3.若二次函数 在区间 内至少存在一个值 ,使得 ,则实数 的取值范围为________.
4.若椭圆 与连接两点 , 的线段没有公共点,则实数 的取值范围为________.
5.已知点 是椭圆 上一点, , 是椭圆的两焦点,且满足 .
(1)求椭圆的两焦点坐标;
(2)设点 是椭圆上任意一点,当 最大时,求证: , 两点关于原点 不对称.
9.已知函数 .若对于任意的三个实数 , , ,都有 恒成立,求实数 的取值范围.
题组2主与次的相互转化
6.设 是定义在 上的单调递增函数,若 对任意 恒成立,则 的取值范围为________.
7.已知函数 , ,其中 是 的导函数.对满足-1≤a≤1的一切a的值,都有 ,则实数 的取值范围为________.
8.于满足 的所有实数 ,使不等式 成立的 的取值范围是________.
(精编精校)2017年普通高等学校招生全国统一考试 理科数学(山东卷)【word精析版】

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)·P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设函数的定义域为,函数的定义域为,则(A)(1,2)(B)(C)(-2,1)(D)[-2,1)【答案】D【解析】试题分析:由得,由得,故,选D.【考点】1.集合的运算;2.函数的定义域;3.简单不等式的解法【名师点睛】集合的交、并、补运算问题,应把集合先化简再计算,常借助数轴或韦恩图进行求解.(2)已知,i是虚数单位.若,则a=(A)1或-1 (B)(C)-(D)【答案】A【解析】试题分析:由得,所以,故选A.【考点】1.复数的概念;2.复数的运算【名师点睛】复数的共轭复数是,据此结合已知条件,求得的值.(3)已知命题p:;命题q:若a>b,则,下列命题为真命题的是(A)(B)(C)(D)【答案】B【考点】常用逻辑用语【名师点睛】解答有关逻辑联结词的相关问题,首先要明确各命题的真假,利用或、且、非真值表,进一步作出判断.(4)已知x,y满足约束条件,则z=x+2y的最大值是(A)0 (B)2 (C)5 (D)6【答案】C【解析】试题分析:约束条件表示的可行域如图中阴影部分所示,目标函数z=x+2y,即,平移直线,可知当直线经过直线与的交点时,取得最大值,为,选C.【考点】简单的线性规划【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.(5)为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为24,据此估计其身高为(A)(B)(C)(D)【答案】C【解析】试题分析:由已知得则当时,,选C.【考点】线性相关与线性回归方程的求解与应用【名师点睛】判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数的公式求出,然后根据的大小进行判断.求线性回归方程时,在严格按照公式求解时,一定要注意计算的准确性.(6)执行两次下图所示的程序框图,若第一次输入的的值为,第二次输入的的值为,则第一次、第二次输出的的值分别为(A)0,0 (B)1,1 (C)0,1 (D)1,0【答案】D【考点】程序框图【名师点睛】识别程序框图和完善程序框图是高考的重点和热点.解决这类问题:首先,要明确程序框图中的顺序结构、条件结构和循环结构;第二,要理解程序框图解决的实际问题;第三,按照题目的要求完成解答.对程序框图的考查常与函数和数列等相结合,进一步强化框图问题的实际背景.(7)若,且,则下列不等式成立的是(A)(B)(C)(D)【答案】B【解析】试题分析:因为,且,所以,所以选B.【考点】1.指数函数与对数函数的性质;2.基本不等式【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.本题虽小,但考查的知识点较多,需灵活利用指数函数、对数函数的性质及基本不等式作出判断.(8)从分别标有,,,的张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A)(B)(C)(D)【答案】C【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.(9)在中,角A,B,C的对边分别为,,.若为锐角三角形,且满足,则下列等式成立的是(A)(B)(C)(D)【答案】A【解析】试题分析:由题意知,所以,选A.【考点】1.三角函数的和差角公式;2.正弦定理【名师点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A,B,C的式子,再用正弦定理将角转化为边,得到.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.(10)已知当时,函数的图象与的图象有且只有一个交点,则正实数的取值范围是(A)(B)(C)(D)【答案】B【考点】函数的图象、函数与方程及函数性质的综合应用【名师点睛】已知函数有零点求参数的取值范围常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;(2)分离参数法:将参数分离,转化成求函数值域的问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.(11)已知的展开式中含有项的系数是,则.【答案】【解析】试题分析:的展开式的通项公式为,令,得,解得.【考点】二项式定理【名师点睛】根据二项展开式的通项,确定二项式系数或确定二项展开式中的指定项,是二项式定理问题中的基本问题,往往要综合运用二项展开式的系数的性质、二项展开式的通项求解. 本题能较好地考查考生的思维能力、基本计算能力等.(12)已知是互相垂直的单位向量,若与的夹角为,则实数的值是.【答案】【考点】1.平面向量的数量积;2.平面向量的夹角;3.单位向量【名师点睛】1.平面向量与的数量积为,其中是与的夹角,要注意夹角的定义和它的取值范围:.2.由向量的数量积的性质有,,,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.3.本题主要利用向量的模与向量运算的灵活转换,应用平面向量的夹角公式,建立关于的方程求解.(13)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.【答案】【解析】试题分析:由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以.【考点】1.三视图;2.几何体的体积【名师点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.(14)在平面直角坐标系中,双曲线的右支与焦点为的抛物线交于两点,若,则该双曲线的渐近线方程为.【答案】【考点】1.双曲线的几何性质;2.抛物线的定义及其几何性质【名师点睛】1.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都与椭圆的有关问题相类似.因此,双曲线与椭圆的标准方程可统一为的形式,当,,时为椭圆,当时为双曲线.2.凡涉及抛物线上的点到焦点的距离,一般运用定义转化为到准线的距离处理.(15)若函数(是自然对数的底数)在的定义域上单调递增,则称函数具有M性质.下列函数中所有具有M性质的函数的序号为.①②③④【答案】①④【解析】试题分析:①在R上单调递增,故具有性质;②在R上单调递减,故不具有性质;③,令,则,当时,,当时,,在上单调递减,在上单调递增,故不具有性质;④,令,则,在R上单调递增,故具有性质.【考点】1.新定义问题;2.利用导数研究函数的单调性【名师点睛】1.本题考查新定义问题,属于创新题,符合新高考的动向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.2.求可导函数单调区间的一般步骤:(1)确定函数f(x)的定义域(定义域优先);(2)求导函数f′(x);(3)在函数f(x)的定义域内求不等式f′(x)>0或f′(x)<0的解集.(4)由f′(x)>0(f′(x)<0)的解集确定函数f(x)的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.3.由函数f(x)在(a,b)上的单调性,求参数范围的问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,要注意“=”是否可以取到.三、解答题:本大题共6小题,共75分.(16)(本小题满分12分)设函数,其中.已知.(Ⅰ)求;(Ⅱ)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数的图象,求在上的最小值.【答案】(Ⅰ).(Ⅱ)最小值为.【解析】试题分析:(Ⅰ)利用两角和与差的三角函数化简得到.由题设知及可得.(Ⅱ)由(Ⅰ)得,从而.根据得到,进一步求的最小值.(Ⅱ)由(Ⅰ)得.所以.因为,所以,当,即时,取得最小值.【考点】1.两角和与差的三角函数;2.三角函数图象的变换与性质【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,本题易错点在于一是图象的变换与解析式的对应,二是忽略设定角的范围.难度不大,能较好地考查考生的基本运算求解能力及复杂式子的变形能力等.(17)(本小题满分12分)如图,几何体是圆柱的一部分,它是由矩形(及其内部)以边所在直线为旋转轴旋转得到的,是的中点.(Ⅰ)设是上的一点,且,求的大小;(Ⅱ)当,时,求二面角的大小.【答案】(Ⅰ).(Ⅱ).【解析】试题分析:(Ⅰ)利用,,证得平面,利用平面,得到,结合可得.(Ⅱ)两种思路,一是几何法,二是空间向量方法,其中思路一:取的中点,连接,,.得四边形为菱形,得到.取中点,连接,,.得到,,从而为所求二面角的平面角.根据相关数据即得所求的角.思路二:以为坐标原点,分别以,,所在的直线为,,轴,建立如图所示的空间直角坐标系.写出相关点的坐标,求平面的一个法向量,平面的一个法向量,计算即得二面角的大小.试题解析:(Ⅰ)因为,,,平面,,所以平面,又平面,所以,又,因此(Ⅱ)解法一:取的中点,连接,,.因为,所以四边形为菱形,所以.取中点,连接,,.则,,所以为所求二面角的平面角.又,所以.在中,由于,由余弦定理得,所以,因此为等边三角形,故所求的角为.解法二:以为坐标原点,分别以,,所在的直线为,,轴,建立如图所示的空间直角坐标系.由题意得,,,故,,,所以.因此所求的角为.【考点】1.垂直关系;2. 空间角的计算【名师点睛】此类题目是立体几何中的常见问题.解答本题,关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,明确角的构成.立体几何中角的计算问题,往往可以利用几何法、空间向量方法求解,应根据题目条件,灵活选择方法.本题能较好地考查考生的空间想象能力、逻辑推理能力、转化与化归思想及基本运算能力等.(18)(本小题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I)求接受甲种心理暗示的志愿者中包含A1但不包含的概率;(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.【答案】(I)(II)X的分布列为X 0 1 2 3 4PX的数学期望是.【解析】试题分析:(I)记接受甲种心理暗示的志愿者中包含但不包含的事件为M,计算即得;(II)由题意知X可取的值为:.利用超几何分布的概率计算公式得X的分布列,进一步计算X的数学期望.试题解析:(I)记接受甲种心理暗示的志愿者中包含但不包含的事件为M,则(II)由题意知X可取的值为:.则因此X的分布列为X 0 1 2 3 4PX的数学期望是=【考点】1.古典概型;2.随机变量的分布列与数学期望;3.超几何分布【名师点睛】本题主要考查古典概型的概率公式和超几何分布概率的计算公式、随机变量的分布列和数学期望.解答本题,首先要准确确定所研究对象的基本事件空间、基本事件个数.本题属中等难度的题目,计算量不是很大,能很好地考查考生数学的应用意识、基本运算求解能力等.(19)(本小题满分12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1, 1),P2(x2, 2),…,P n+1(x n+1, n+1)得到折线P1 P2…P n+1,求由该折线与直线y=0,所围成的区域的面积.【答案】(I)(II)【解析】试题分析:(I)依题意布列关于和公比的方程组求解.(II)利用梯形的面积公式,记梯形的面积为,求得,应用错位相减法计算得到试题解析:(I)设数列的公比为,由已知.由题意得,所以,因为,所以,因此数列的通项公式为①-②得=所以【考点】1.等比数列的通项公式;2.等比数列的求和;3.错位相减法求和【名师点睛】本题主要考查等比数列的通项公式及求和公式、数列求和的错位相减法.此类题目是数列问题中的常见题型.本题覆盖面广,对考生的计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好地考查考生的数形结合思想、逻辑思维能力及基本计算能力等. (20)(本小题满分13分)已知函数,,其中是自然对数的底数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)令,讨论的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ).(Ⅱ)见解析试题解析:(Ⅰ)由题意,又,所以,因此曲线在点处的切线方程为,即.(Ⅱ)由题意得,因为,令,则,所以在上单调递增. 因为所以当时,当时,,(1)当时,,当时,,单调递减,当时,,单调递增,所以当时取到极小值,极小值是;(2)当时,,由得,.①当时,,当时,,单调递增;当时,,单调递减;当时,,单调递增.所以当时取得极大值.极大值为,当时取到极小值,极小值是;②当时,,所以当时,,函数在上单调递增,无极值;③当时,,所以当时,,单调递增;当时,,单调递减;当时,,单调递增.所以当时取到极大值,极大值是;当时取到极小值.极小值是.综上所述:当时,在上单调递减,在上单调递增,函数有极小值,极小值是;当时,函数在和上单调递增,在上单调递减,函数有极大值,也有极小值,极大值是,极小值是;当时,函数在上单调递增,无极值;当时,函数在和上单调递增,在上单调递减,函数有极大值,也有极小值,极大值是,极小值是.【考点】1.导数的几何意义;2.应用导数研究函数的单调性、极值;3.分类讨论思想【名师点睛】1.函数f (x)在点x0处的导数f ′(x0)的几何意义是曲线y=f (x)在点P(x0,y0)处的切线的斜率.相应地,切线方程为y−y0=f ′(x0)(x−x0).注意:求曲线切线时,要分清在点P处的切线与过点P 的切线的不同.2. 本题主要考查导数的几何意义、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当,或复杂式子变形能力差.本题能较好地考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.(21)(本小题满分14分)在平面直角坐标系中,椭圆:的离心率为,焦距为.(Ⅰ)求椭圆的方程;(Ⅱ)如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.【答案】(I).(Ⅱ)的最大值为,取得最大值时直线的斜率为.试题解析:(I)由题意知,,所以,因此椭圆的方程为.(Ⅱ)设,联立方程得,由题意知,且,所以.由题意可知圆的半径为由题设知,所以,因此直线的方程为.联立方程得,因此.由题意可知,而,令,则,因此,当且仅当,即时等号成立,此时,所以,因此,所以最大值为.综上所述:的最大值为,取得最大值时直线的斜率为.【考点】1.椭圆的标准方程及其几何性质;2.直线与圆锥曲线的位置关系;3. 二次函数的图象和性质【名师点睛】本题对考生的计算能力要求较高,是一道难题.解答此类题目,利用的关系,确定椭圆(圆锥曲线)的方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程得到的方程组,应用一元二次方程根与系数的关系,得到“目标函数”的解析式,应用确定函数最值的方法---如二次函数的性质、基本不等式、导数等求解.本题易错点是复杂式子的变形能力不足,导致错漏百出.本题能较好地考查考生的逻辑思维能力、运算求解能力、分析问题及解决问题的能力等.。
【高考真题】2017年山东省高考数学试卷(理科) 含答案解析

2017年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(﹣2,1)D.[﹣2,1)2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.65.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知x i=22.5,y i=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.1706.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,07.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.15.(5分)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.19.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成(x n+1的区域的面积T n.20.(13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT 的最大值,并求取得最大值时直线l的斜率.2017年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(﹣2,1)D.[﹣2,1)【分析】根据幂函数及对数函数定义域的求法,即可求得A和B,即可求得A∩B.【解答】解:由4﹣x2≥0,解得:﹣2≤x≤2,则函数y=的定义域[﹣2,2],由对数函数的定义域可知:1﹣x>0,解得:x<1,则函数y=ln(1﹣x)的定义域(﹣∞,1),则A∩B=[﹣2,1),故选:D.【点评】本题考查函数定义的求法,交集及其运算,考查计算能力,属于基础题.2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.【分析】求得z的共轭复数,根据复数的运算,即可求得a的值.【解答】解:由z=a+i,则z的共轭复数=a﹣i,由z•=(a+i)(a﹣i)=a2+3=4,则a2=1,解得:a=±1,∴a的值为1或﹣1,故选:A.【点评】本题考查共轭复数的求法,复数的乘法运算,考查计算能力,属于基础题.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】由对数函数的性质可知命题p为真命题,则¬p为假命题,命题q是假命题,则¬q是真命题.因此p∧¬q为真命题.【解答】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选:B.【点评】本题考查命题真假性的判断,复合命题的真假性,属于基础题.4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6【分析】画出约束条件表示的平面区域,根据图形找出最优解是由解得的点A的坐标,代入目标函数求出最大值.【解答】解:画出约束条件表示的平面区域,如图所示;由解得A(﹣3,4),此时直线y=﹣x+z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=﹣3+2×4=5.故选:C.【点评】本题考查了线性规划的应用问题,是中档题.5.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知x i=22.5,y i=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.170【分析】由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得,将x=24代入回归直线方程即可估计其身高.【解答】解:由线性回归方程为=4x+,则=x i=22.5,=y i=160,则数据的样本中心点(22.5,160),由回归直线方程样本中心点,则=﹣4x=160﹣4×22.5=70,∴回归直线方程为=4x+70,当x=24时,=4×24+70=166,则估计其身高为166,故选:C.【点评】本题考查回归直线方程的求法及回归直线方程的应用,考查计算能力,属于基础题.6.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,0【分析】根据已知中的程序框图,模拟程序的执行过程,可得答案.【解答】解:当输入的x值为7时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,满足b2>x,故输出a=1;当输入的x值为9时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,不满足b2>x,满足x能被b整数,故输出a=0;故选:D.【点评】本题考查的知识点是程序框图,难度不大,属于基础题.7.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【分析】a>b>0,且ab=1,可取a=2,b=.代入计算即可得出大小关系.【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.【点评】本题考查了函数的单调性、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.【分析】计算出所有情况总数,及满足条件的情况数,代入古典概型概率计算公式,可得答案.【解答】解:从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,共有=36种不同情况,且这些情况是等可能发生的,抽到在2张卡片上的数奇偶性不同的情况有=20种,故抽到在2张卡片上的数奇偶性不同的概率P==,故选:C.【点评】本题考查的知识点是古典概型及其概率计算公式,难度不大,属于基础题.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A【分析】利用两角和与差的三角函数化简等式右侧,然后化简通过正弦定理推出结果即可.【解答】解:在ABC中,角A,B,C的对边分别为a,b,c,满足sinB(1+2cosC)=2sinAcosC+cosAsinC=sinAcosC+sin(A+C)=sinAcosC+sinB,可得:2sinBcosC=sinAcosC,因为△ABC为锐角三角形,所以2sinB=sinA,由正弦定理可得:2b=a.故选:A.【点评】本题考查两角和与差的三角函数,正弦定理的应用,考查计算能力.10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)【分析】根据题意,由二次函数的性质分析可得:y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,②、当m>1时,有<1,结合图象分析两个函数的单调性与值域,可得m的取值范围,综合可得答案.【解答】解:根据题意,由于m为正数,y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y=+m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx﹣1)2为减函数,且其值域为[(m﹣1)2,1],函数y=+m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx﹣1)2在区间(0,)为减函数,(,1)为增函数,函数y=+m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m﹣1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞);故选:B.【点评】本题考查函数图象的交点问题,涉及函数单调性的应用,关键是确定实数m的分类讨论.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=4.【分析】利用通项公式即可得出.=(3x)r=3r x r.【解答】解:(1+3x)n的展开式中通项公式:T r+1∵含有x2的系数是54,∴r=2.∴=54,可得=6,∴=6,n∈N*.解得n=4.故答案为:4.【点评】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.【点评】本题考查了单位向量和平面向量数量积的运算问题,是中档题.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为2+.【分析】由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的,根据长方体及圆柱的体积公式,即可求得几何体的体积.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2=×π×12×1=,则该几何体的体积V=V1+2V1=2+,故答案为:2+.【点评】本题考查利用三视图求几何体的体积,考查长方体及圆柱的体积公式,考查计算能力,属于基础题.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为y=±x.【分析】把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴y A+y B=,∵|AF|+|BF|=4|OF|,∴y A+y B+2×=4×,∴=p,∴=.∴该双曲线的渐近线方程为:y=±x.故答案为:y=±x.【点评】本题考查了抛物线与双曲线的标准方程定义及其性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.15.(5分)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为①④.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.【分析】把①②代入e x f(x),变形为指数函数判断;把③④代入e x f(x),求导数判断.【解答】解:对于①,f(x)=2﹣x,则g(x)=e x f(x)=为实数集上的增函数;对于②,f(x)=3﹣x,则g(x)=e x f(x)=为实数集上的减函数;对于③,f(x)=x3,则g(x)=e x f(x)=e x•x3,g′(x)=e x•x3+3e x•x2=e x(x3+3x2)=e x•x2(x+3),当x<﹣3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于④,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2xe x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.∴具有M性质的函数的序号为①④.故答案为:①④.【点评】本题考查函数单调性的性质,训练了利用导数研究函数的单调性,是中档题.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【分析】(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f()=0求出ω的值;(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[﹣,]时g(x)的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωxcos﹣cosωxsin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.【点评】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.【分析】(1)利用组合数公式计算概率;(2)使用超几何分布的概率公式计算概率,得出分布列,再计算数学期望.【解答】解:(I)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)==.(II)X的可能取值为:0,1,2,3,4,∴P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.∴X的分布列为X01234PX的数学期望EX=0×+1×+2×+3×+4×=2.【点评】本题考查了组合数公式与概率计算,超几何分布的分布列与数学期望,属于中档题.19.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成+1的区域的面积T n.【分析】(I)列方程组求出首项和公比即可得出通项公式;(II)从各点向x轴作垂线,求出梯形的面积的通项公式,利用错位相减法求和即可.【解答】解:(I)设数列{x n}的公比为q,则q>0,由题意得,两式相比得:,解得q=2或q=﹣(舍),∴x1=1,∴x n=2n﹣1.(II)过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,记梯形P n P n+1Q n+1Q n的面积为b n,则b n==(2n+1)×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+(2n+1)×2n﹣2,①∴2T n=3×20+5×21+7×22+…+(2n+1)×2n﹣1,②①﹣②得:﹣T n=+(2+22+…+2n﹣1)﹣(2n+1)×2n﹣1=+﹣(2n+1)×2n﹣1=﹣+(1﹣2n)×2n﹣1.∴T n=.【点评】本题考查了等比数列的性质,错位相减法求和,属于中档题.20.(13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【分析】(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx),可得h′(x)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna),(0,+∞)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a ﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].【点评】本题考查了利用导数研究函数的单调性极值、方程的解法、不等式的解法、三角函数求值、分类讨论方法,考查了推理能力与计算能力,属于难题.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT 的最大值,并求取得最大值时直线l的斜率.【分析】(Ⅰ)由题意得关于a,b,c的方程组,求解方程组得a,b的值,则椭圆方程可求;(Ⅱ)设A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,利用根与系数的关系求得A,B的横坐标的和与积,由弦长公式求得|AB|,由题意可知圆M的半径r,则r=.由题意设知.得到直线OC 的方程,与椭圆方程联立,求得C点坐标,可得|OC|,由题意可知,sin=.转化为关于k1的函数,换元后利用配方法求得∠SOT的最大值为,取得最大值时直线l的斜率为.【解答】解:(Ⅰ)由题意知,,解得a=,b=1.∴椭圆E的方程为;(Ⅱ)设A(x1,y1),B(x2,y2),联立,得.由题意得△=>0.,.∴|AB|=.由题意可知圆M的半径r为r=.由题意设知,,∴.因此直线OC的方程为.联立,得.因此,|OC|=.由题意可知,sin=.而=.令t=,则t>1,∈(0,1),因此,=≥1.当且仅当,即t=2时等式成立,此时.∴,因此.∴∠SOT的最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为.【点评】本题考查直线与圆、圆与椭圆位置关系的应用,训练了利用配方法求函数的最值,考查计算能力,是压轴题.。
2017届山东高考数学理科试卷及答案解析

a1 1, a n 1 2a n 1, 在数列 {bn } 中, b1 a1 , 当 n 2 已知 n 为正整数, 在数列 {a n } 中,
时,
bn 1 1 1 . a n a1 a 2 a n1
(1)求数列 {a n } 的通项公式;
-2-
2017 届山东高考数学文科试卷及答案解析
A.
3 7
B.
4 7
C.
1 14
D.
13 14
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分.把答案填在 答题卡的相应位置.
11. 已知 i 为虚数单位,复数 z 满足 =i,则|z|= . .
12. 执行如图所示的程序框图,则输出的结果是
A.4
Hale Waihona Puke B.C.D.7 设△AnBnCn 的三边长分别是 an,bn,cn,△AnBnCn 的面积为 Sn,n∈N*,若 b1>c1,b1+c1=2a1, bn+1= A.{Sn}为递减数列 C.{S2n﹣1}为递增数列,{S2n}为递减数列 ,则( ) B.{Sn}为递增数列 D.{S2n﹣1}为递减数列,{S2n}为递增数列
相邻的 f(x)的零点为 x=
(Ⅰ)讨论函数 f(x)在区间
上的单调性;
(Ⅱ)设△ABC 的内角 A,B,C 的对应边分别为 a,b,c,且 c= (1,sinA)与向量 =(2,sinB)共线,求 a,b 的值.
,f(C)=1,若向量 =
17. (本小题满分 12 分)一个多面体的直观图及三视图如图所示,M、N 分别是 AB1、A1C1 的中点. (1)求证:MN⊥AB1,MN∥平面 BCC1B1;
2017高考数学二轮复习 专题27 转化与化归思想、数形结合思想(含解析)

2017高考数学二轮复习专题27 转化与化归思想、数形结合思想(含解析)一、选择题1.已知f (x )=2x,则函数y =f (|x -1|)的图象为( )[答案] D[解析] 法一:f (|x -1|)=2|x -1|.当x =0时,y =2.可排除A 、C . 当x =-1时,y =4.可排除B . 法二:y =2x→y =2|x |→y =2|x -1|,经过图象的对称、平移可得到所求.[方法点拨] 1.函数图象部分的复习应该解决好画图、识图、用图三个基本问题,即对函数图象的掌握有三方面的要求:①会画各种简单函数的图象;②能依据函数的图象判断相应函数的性质; ③能用数形结合的思想以图辅助解题. 2.作图、识图、用图技巧(1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.描绘函数图象时,要从函数性质入手,抓住关键点(图象最高点、最低点、与坐标轴的交点等)和对称性进行.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象结合研究.3.利用基本函数图象的变换作图 ①平移变换:y =f (x )――→h >0,右移|h |个单位h <0,左移|h |个单位y =f (x -h ), y =f (x )――→k >0,上移|k |个单位k <0,下移|k |个单位y =f (x )+k .②伸缩变换:y =f (x )错误!y =f (ωx ),y =f (x )――→0<A <1,纵坐标缩短到原来的A 倍A >1,纵坐标伸长到原来的A 倍y =Af (x ). ③对称变换:y =f (x )――→关于x 轴对称y =-f (x ), y =f (x )――→关于y 轴对称y =f (-x ), y =f (x )――→关于直线x =a 对称y =f (2a -x ), y =f (x )――→关于原点对称y =-f (-x ).2.(文)(2014·哈三中二模)对实数a和b ,定义运算“*”:a *b =⎩⎪⎨⎪⎧a ,a -b ≤1b ,a -b >1,设函数f (x )=(x 2+1)*(x +2),若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(2,4]∪(5,+∞)B .(1,2]∪(4,5]C .(-∞,1)∪(4,5]D .[1,2][答案] B[解析] 由a *b 的定义知,当x 2+1-(x +2)=x 2-x -1≤1时,即-1≤x ≤2时,f (x )=x 2+1;当x <-1或x >2时,f (x )=x +2,∵y =f (x )-c 的图象与x 轴恰有两个公共点,∴方程f (x )-c =0恰有两不同实根,即y =c 与y =⎩⎪⎨⎪⎧x 2+1 -1≤x ≤2 ,x +2 x <-1或x >2 ,的图象恰有两个交点,数形结合易得1<c ≤2或4<c ≤5.[方法点拨] 关于函数零点的综合题,常常将幂函数、指数函数、对数函数、三角函数、二次函数揉合在一起组成一个大题,零点作为其条件的构成部分或结论之一,解题时主要依据题目特点:①分离参数,将参数的取值范围转化为求函数的值域;②数形结合,利用图象的交点个数对参数取值的影响来讨论;③构造函数,借助于导数来研究.(理)已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )cos x <0的解集是( )A .(-3,-π2)∪(0,1)∪(π2,3)B .(-π2,-1)∪(0,1)∪(π2,3)C .(-3,-1)∪(0,1)∪(1,3)D .(-3,-π2)∪(0,1)∪(1,3)[答案] B[分析] 由奇函数图象的对称性可画出f (x )的图象,不等式f (x )·cos x <0可等价转化为⎩⎪⎨⎪⎧f x >0cos x <0或⎩⎪⎨⎪⎧f x <0cos x >0,结合图形可得出解集.[解析] 不等式f (x )cos x <0等价于⎩⎪⎨⎪⎧f x >0,cos x <0,或⎩⎪⎨⎪⎧f x <0,cos x >0.画出f (x )在(-3,3)上的图象,cos x 的图象又熟知,运用数形结合,如图所示,从“形”中找出图象分别在x 轴上、下部分的对应“数”的区间为(-π2,-1)∪(0,1)∪(π2,3).3.(文)已知a n =32n -11,数列{a n }的前n 项和为S n ,关于a n 及S n 的叙述正确的是( )A .a n 与S n 都有最大值B .a n 与S n 都没有最大值C .a n 与S n 都有最小值D .a n 与S n 都没有最小值[答案] C[解析] 画出a n =32n -11的图象,点(n ,a n )为函数y =32x -11图象上的一群孤立点,(112,0)为对称中心,S 5最小,a 5最小,a 6最大(理)(2015·安徽理,9)函数f (x )=ax +bx +c2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <0[答案] C[解析] 考查函数的图象与应用.由f (x )=ax +b x +c 2及图象可知,x ≠-c ,-c >0,则c <0;当x =0时,f (0)=bc2>0,所以b >0;当y =0,ax +b =0,所以x =-ba>0,所以a <0.故a <0,b >0,c <0,选C .[方法点拨] 1.给出解析式判断函数图象的题目,一般借助于平移、伸缩、对称变换,结合特殊点(与坐标轴的交点、最高(低)点、两图象的交点等)作出判断.2.由函数图象求解析式或求解析式中的参数值(或取值范围)时,应注意观察图象的单调性、对称性、特殊点、渐近线等然后作出判断.3.数形结合的途径(1)通过坐标系“形”题“数”解借助于建立直角坐标系、复平面可以将图形问题代数化.在高考中主要以解析几何作为知识载体来考查.值得强调的是,“形”“题”“数”解时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理).实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义.如等式(x -2)2+(y -1)2=4.(2)通过转化构造“数”题“形”解许多代数结构都有着对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a >0与距离互化,将a 2与面积互化,将a 2+b 2+ab =a 2+b 2-2|a ||b |cos θ(θ=60°)与余弦定理沟通,将a ≥b ≥c >0且b +c >a 中的a 、b 、c 与三角形的三边沟通,将有序实数对(或复数)和点沟通,将二元一次方程与直线对应,将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的).另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常相伴而充分地发挥作用.4.(文)已知函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时,f (x )=x 2,则方程f (x )=lg x 解的个数是( )A .5B .7C .9D .10[答案] C[分析] 由f (x +1)=f (x -1)可知f (x )为周期函数,结合f (x )在[-1,1]上的解析式可画出f (x )的图象,方程f (x )=lg x 的解的个数就是函数y =f (x )与y =lg x 的图象的交点个数.[解析] 由题意可知,f (x )是以2为周期,值域为[0,1]的函数.由方程f (x )=lg x 知x ∈(0,10]时方程有解,画出两函数y =f (x )与y =lg x 的图象,则交点个数即为解的个数.又∵lg10=1,故当x >10时,无交点.∴由图象可知共9个交点.[方法点拨] 数形结合在函数、方程、不等式中的应用(1)用函数的图象讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解的个数是一种重要的解题思路,其基本思想是先把方程两边的代数式看作是两个熟悉函数的表达式(不熟悉时,需要作适当变形转化为两熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解的个数.(2)解不等式问题经常联系函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化数量关系来解决不等式的解的问题,往往可以避免繁琐的运算,获得简捷的解答.(3)函数的单调性经常联系函数图象的升、降;奇偶性经常联系函数图象的对称性;最值(值域)经常联系函数图象的最高、最低点的纵坐标.(理)已知m 、n 是三次函数f (x )=13x 3+12ax 2+2bx (a 、b ∈R )的两个极值点,且m ∈(0,1),n ∈(1,2),则b +3a +2的取值范围是( )A .(-∞,25)∪(1,+∞)B .(25,1)C .(-4,3)D .(-∞,-4)∪(3,+∞)[答案] D[解析] f ′(x )=x 2+ax +2b ,由题意知⎩⎪⎨⎪⎧f ′ 0 >0,f ′ 1 <0,f ′ 2 >0,∴⎩⎪⎨⎪⎧b >0,a +2b +1<0,a +b +2>0.(*)b +3a +2表示不等式组(*)表示的平面区域内的点与点(-2,-3)连线的斜率,由图形易知选D .5.(文)直线x +3y -m =0与圆x 2+y 2=1在第一象限内有两个不同的交点,则m 的取值范围是( )A .1<m <2B .3<m <3C .1<m < 3D .3<m <2[答案] D[分析] 动直线x +3y -m =0是一族平行直线,直线与圆在第一象限内有两个不同交点,可通过画图观察找出临界点,求出m 的取值范围.[解析] 直线斜率为定值k =-33.如图,平移直线到过点A (0,1)时,m =3,到相切时,|m |2=1,∴m =2,∴3<m <2.(理)若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是( ) A .[1-22,1+22] B .[1-2,3] C .[-1,1+22] D .[1-22,3][答案] D[解析] 本题考查了直线与圆的位置关系问题,考查数形结合思想的应用.曲线y =3-4x -x 2对应的图象如图所示,为圆(x -2)2+(y -3)2=4的下半圆,若直线y =x +b 与此半圆相切,则可得2=|2-3+b |2,解得b =1-22,当且仅当b ∈[1-22,3]时,直线与半圆有公共点,故应选D .[点评] 对于曲线y =3-4x -x 2,在转化过程中易被看作是一个完整的圆而致误. [方法点拨] 数形结合法在解析几何中的应用数形结合包括“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.解析几何中,常利用一些表达式的几何意义用图形直观助解.或将几何问题转化为方程或函数问题求解.解析几何是数形结合的典范.6.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC→|AC →|),λ∈[0,+∞),则点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心 D .垂心[答案] B[分析] 因为AB→|AB →|是AB →的单位向量,故λ(AB →|AB →|+AC →|AC →|)对应向量若以A 为起点,则终点在∠BAC 的平分线上,结合OP →-OA →=AP →可知点P 的轨迹.[解析] 如图所示,易知AP →=λ(AB →|AB →|+AC →|AC →|),而AB →|AB →|与AC →|AC →|是单位向量,故点P 在∠BAC 的平分线上,所以点P 的轨迹通过△ABC 的内心,应选B .[方法点拨] 数形结合法在三角函数、平面向量、复数等知识中的应用 三角函数的图象、平面向量都是天然的数形结合点和数形结合的工具.7.(文)已知点P 在抛物线x 2=-2y 上,抛物线的焦点为F ,则点P 到点Q (-1,-2)与点F 距离之和的最小值为( )A .2B .32C .52D .3[答案] C[解析] 过P 向抛物线的准线作垂线PP ′,垂足为P ′,由抛物线的定义知|PF |=|PP ′|,因此当P ,Q ,P ′三点共线时,即P 为P 1点时,|PP ′|+|PQ |取到最小值|P 1′Q |=52. (理)设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M 、N ,则当|MN |达到最小时t 的值为( )A .1B .12C .52D .22[答案] D[解析] 在同一坐标系中画出函数f (x )=x 2与g (x )=ln x 的图象如图,作直线x =t ,由题意知t >0,则|MN |=t 2-ln t ,令y =t 2-ln t (t >0),则y ′=2t -1t ,由y ′>0得t >22,由y ′<0得0<t <22,∴y =t 2-ln t 在(0,22)上单调递减,在(22,+∞)上单调递增,故t =22时,y 取最小值,即t =22时,|MN |取最小值.8.(文)设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g x +x +4,x <g xg x -x ,x ≥g x ,则f (x )的值域是( )A .⎣⎢⎡⎦⎥⎤-94,0∪(1,+∞)B .[0,+∞)C .⎣⎢⎡⎭⎪⎫-94,+∞ D .⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)[答案] D [解析] 由题意知f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <g x ,x 2-x -2,x ≥g x ,=⎩⎪⎨⎪⎧x 2+x +2,x ∈ -∞,-1 ∪ 2,+∞ ,x 2-x -2,x ∈[-1,2],=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x +122+74,x ∈ -∞,-1 ∪ 2,+∞ ,⎝ ⎛⎭⎪⎫x -122-94,x ∈[-1,2].所以结合图形,可得当x ∈(-∞,-1)∪(2,+∞)时,f (x )的值域为(2,+∞);当x∈[-1,2]时,f (x )的值域为⎣⎢⎡⎦⎥⎤-94,0.故选D .(理)对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1,设函数f (x )=(x 2-2)⊗(x-x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-∞,2]∪(-1,32)B .(-∞,-2]∪(-1,-34)C .(-1,14)∪(14,+∞)D .(-1,-34)∪[14,+∞)[答案] B[解析] 由已知得f (x )=⎩⎪⎨⎪⎧x 2-2 -1≤x ≤32,x -x 2x <-1或x >32,如图,要使y =f (x )-c 与x 轴恰有两个公共点, 则-1<c <-34或c ≤-2,应选B .[点评] 本小题考查分段函数及函数图象与x 轴的交点及平移等基础知识,考查理解和处理新信息的创新能力及数形结合思想的应用,难度较大.9.函数y =11-x 的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于( )A .2B .4C .6D .8[答案] D[解析] 依题意:两函数的图象如图所示:由两函数的对称性可知:交点A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8的横坐标满足x 1+x 8=2,x 2+x 7=2,x 3+x 6=2,x 4+x 5=2,即x 1+x 2+x 3+x 4+x 5+x 6+x 7+x 8=8,故选D .10.(文)函数f (x )=-4log 2x 8·log 24x 在区间⎣⎢⎡⎦⎥⎤18,4上的最大值等于( ) A .-24 B .16 C .25 D .24[答案] C[解析] 设log 2x =t ,则t ∈[-3,2],故函数f (x )可转化为y =g (t )=-4(t -3)(t +2)=-4t 2+4t +24=-4(t -12)2+25,因为t ∈[-3,2],所以当t =12时,函数g (t )取得最大值为25.故选C .[方法点拨] 1.化归的原则(1)目标简单化原则,即复杂的问题向简单的问题转化;(2)和谐统一性原则,即化归应朝着待解决的问题在表现形式上趋于和谐,在量、形、关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当;(3)具体化原则,即化归方向应由抽象到具体;(4)低层次原则,即将高维空间问题化归成低维空间问题.基于上述原则,化归就有一定的策略.我们在应用化归方法时,应“有章可循,有法可依”通常可以从以下几个方面去考虑:(1)抽象问题向具体问题化归; (2)一般问题向特殊问题化归; (3)正向思维向逆向思维化归; (4)命题向等价命题化归. 2.转化与化归的常见方法(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题. (2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)参数法:引进参数,使原问题的变换具有灵活性,易于转化. (5)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(6)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径. (7)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(8)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(9)一般化方法:若原问题是某个一般化形式问题的特殊形式且又较难解决,可将问题通过一般化的途径进行转化.(10)等价命题法:把原问题转化为一个熟悉的或易于解决的等价命题,达到转化目的. (11)补集法:如果正面解决原问题有困难,可把原问题结果看作集合A ,而把包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集∁U A 获得原问题的解决.以上所列的一些方法有些是互相交叉的,不能截然分割,只能说在哪一方面有所侧重. (理)已知集合A ={a |∀x ∈R,4x-a ·2x +1+1>0},B ={a |∃x ∈R ,a ·sin x +3cos x <-2},则A ∩B 等于( )A .{a |a <-1}B .{a |a <1}C .{a |a ≠1}D .{a |a <-1或a >1}[答案] A[解析] 由已知条件可得不等式a <4x+12x +1=12(2x +12x )对任意的x ∈R 恒成立,由12(2x+12x )≥12×22x ×12x =1可得a <1,即A ={a |a <1};又由不等式a sin x +3cos x =a 2+3sin(x+φ)<-2有解,可得-a 2+3<-2,解得a >1或a <-1,即得B ={a |a >1或a <-1},则A ∩B ={a |a <-1},故应选A .二、填空题11.已知等差数列{a n }的公差d ≠0,且a 1、a 3、a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10的值是________.[分析] 利用满足条件的具体数列代入求值. [答案]1316[解析] 由题意知,只要满足a 1、a 3、a 9成等比数列的条件,{a n }取何种等差数列与所求代数式的值是没有关系的.因此,可把抽象数列化归为具体数列.比如,可选取数列a n =n (n ∈N *),则a 1+a 3+a 9a 2+a 4+a 10=1+3+92+4+10=1316.[方法点拨] 抽象问题具体化、复杂问题简单化的化归思想(1)本题如果从已知条件a 23=a 1·a 9⇒(a 1+2d )2=a 1(a 1+8d ),解得a 1与d 的关系后,代入所求式子:a 1+a 3+a 9a 2+a 4+a 10=a 1+ a 1+2d + a 1+8da 1+d + a 1+3d + a 1+9d,也能求解,但计算较繁琐,易错.因此,把抽象数列转化为具体的简单的数列进行分析,可以很快得到答案.(2)对于某个在一般情况下成立的结论或恒成立问题,可运用一般与特殊相互转化的化归思想,将一般性问题特殊化、具体化,使问题变得简便.三、解答题12.如图所示,在四棱锥S -ABCD 中,底面ABCD 是菱形,SA ⊥平面ABCD ,M 、N 分别为SA 、CD 的中点.(1)证明:直线MN ∥平面SBC ; (2)证明:平面SBD ⊥平面SAC .[解析] (1)如图所示,取SB 中点E ,连接ME ,CE .因为M 为SA 的中点, 故ME ∥AB ,且ME =12AB .因为N 为菱形ABCD 中边CD 的中点,故CN 綊12AB ,ME 綊CN ,所以四边形MECN 是平行四边形,即MN ∥EC .又因为EC ⊂平面SBC ,MN ⊄平面SBC , 所以直线MN ∥平面SBC . (2)连接AC ,BD ,相交于点O . 因为SA ⊥底面ABCD ,故SA ⊥BD . 因为四边形ABCD 是菱形, 所以AC ⊥BD .又因为SA ∩AC =A ,故BD ⊥平面SAC . 又因为BD ⊂平面SBD , 所以平面SBD ⊥平面SAC . [方法点拨] 1.转化与化归思想转化与化归的基本内涵是:人们在解决数学问题时,常常将待解决的问题A ,通过某种转化手段,归结为另一问题B ,而问题B 是相对较容易解决的或已经有固定解决模式的问题,且通过问题B 的解决可以得到原问题A 的解.用框图可直观地表示为:其中问题B 称为化归目标或方向,转化的手段称为化归策略.化归思想有着坚实的客观基础,它着眼于揭示联系,实现转化,通过矛盾转化解决问题.2.立体几何中的沿表面最短距离问题一般都转化为侧面展开图中两点间距离或点到直线的距离求解.3.立体几何问题要注意利用线线、线面、面面平行与垂直的相互转化探寻解题思路,对于不易观察的空间图形可部分地画出其平面图形.利用线面位置关系的判定与性质定理将空间问题向平面转化.4.立体几何中常采用等体积法将求距离问题转化为体积的计算问题.5.熟悉化原则,对于比较生疏的问题,要善于展开联想与想象,寻找学过知识中与其相近、相似或有联系的内容,探求切入点.13.已知奇函数f (x )的定义域为实数集R ,且f (x )在 [0,+∞)上是增函数.当0≤θ≤π2时,是否存在这样的实数m ,使f (cos2θ-3)+f (4m -2m cos θ)>f (0)对所有的θ∈[0,π2]均成立?若存在,求出所有适合条件的实数m ;若不存在,则说明理由.[解析] 由f (x )是R 上的奇函数可得f (0)=0. 又在[0,+∞)上是增函数, 故f (x )在R 上为增函数.由题设条件可得f (cos2θ-3)+f (4m -2m cos θ)>0. 又由f (x )为奇函数,可得f (cos2θ-3)>f (2m cos θ-4m ).∵f (x )是R 上的增函数,∴cos2θ-3>2m cos θ-4m , 即cos 2θ-m cos θ+2m -2>0.令cos θ=t ,∵0≤θ≤π2,∴0≤t ≤1.于是问题转化为对一切0≤t ≤1, 不等式t 2-mt +2m -2>0恒成立.∴t 2-2>m (t -2),即m >t 2-2t -2恒成立.又∵t 2-2t -2=(t -2)+2t -2+4≤4-22,(当且仅当t =2-2时取等号),∴m >4-2 2.∴存在实数m 满足题设的条件,m >4-2 214.试求常数m 的范围,使曲线y =x 2的所有弦都不能被直线y =m (x -3)垂直平分. [分析] 正面解决较难,考虑到“不能”的反面是“能”,被直线垂直平分的弦的两端点关于此直线对称,于是问题转化为“抛物线y =x 2上存在两点关于直线y =m ·(x -3)对称,求m 的取值范围”,再求出m 的取值集合的补集即为原问题的解.[解析] 先求m 的取值范围,使抛物线y =x 2上存在两点关于直线y =m (x -3)对称. 由题意知m ≠0,∴设抛物线上两点(x 1,x 21),(x 2,x 22)关于直线y =m (x -3)对称,于是有⎩⎪⎨⎪⎧12 x 21+x 22=m [12 x 1+x 2-3],x 21-x 22x 1-x 2=-1m ,所以⎩⎪⎨⎪⎧x 21+x 22=m x 1+x 2-6 ,x 1+x 2=-1m ,消去x 2得2x 21+2mx 1+1m2+6m +1=0. 因为存在x 1∈R 使上式恒成立, 所以Δ=(2m )2-4×2×(1m2+6m +1)>0.即12m 3+2m 2+1<0, 也即(2m +1)(6m 2-2m +1)<0.因为6m 2-2m +1>0恒成立,所以2m +1<0, 所以m <-12.即当m <-12时,抛物线上存在两点关于直线y =m (x -3)对称,所以当m ≥-12时,曲线y =x 2的所有弦都不能被直线y =m (x -3)垂直平分.[方法点拨] 正难则反、逆向思维的化归思想(1)正面思考问题一时无从着手,遇到困难时,可正难则反,逆向思维,即考虑问题的反面,用补集思想去探索研究.(2)在运用补集的思想解题时,一定要搞清结论的反面是什么,“所有弦都不能被直线y =m (x -3)垂直平分”的反面是“至少存在一条弦能被直线y =m (x -3)垂直平分”,而不是“所有的弦都能被直线y =m (x -3)垂直平分”.(3)反证法也是正难则反的转化思想的体现.15.(文)(2014·沈阳市质检)投掷质地均匀的红、蓝两颗骰子,观察出现的点数,并记红色骰子出现的点数为m ,蓝色骰子出现的点数为n .试就方程组⎩⎪⎨⎪⎧x +2y =2mx +ny =3解答下面问题.(1)求方程组只有一个解的概率; (2)求方程组只有正数解的概率. [解析] (1)方程组只有一解,则n ≠2mP =36-336=1112. (2)由方程组⎩⎪⎨⎪⎧x +2y =2,mx +ny =3,解得⎩⎪⎨⎪⎧x =2 3-n2m -n ,y =2m -32m -n .若要方程组只有正解,则需⎩⎪⎨⎪⎧2 3-n2m -n >0,2m -32m -n >0.由上表得可知方程组只有正解的概率P =36.(理)已知正项数列{a n }满足4S n =(a n +1)2. (1)求数列{a n }的通项公式; (2)设b n =1a n a n +1,求数列{b n }的前n 项和T n .[解析] (1)∵4S n =(a n +1)2, ∴4S n -1=(a n -1+1)2(n ≥2),相减得a n -a n -1=2,又4a 1=(a 1+1)2, ∴a 1=1,∴a n =2n -1.(2)由(1)知,b n =12n -1 2n +1=12(12n -1-12n +1). 所以T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=n2n +1.[方法点拨] 给出数列的递推关系求数列的通项、前n 项和等一般要化归为基本数列;数列通项或前n 项和中含有参数研究数列的单调性及最大(小)项等问题常常要分类讨论;给出某项或项的关系式或给出前n 项和的关系等,常借助公式、性质列方程求解.。
2017年高考山东卷数学(理)【答案加解析】
绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设函数A ,函数y=ln(1-x)的定义域为B,则A B =(A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.(2)已知a R ∈,i是虚数单位,若,4z a z z =⋅=,则a= (A )1或-1 (B(C )(D【答案】A【解析】由,4z a z z =⋅=得234a +=,所以1a =±,故选A.(3)已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是(A ) p q ∧ (B )p q ⌝∧ (C ) p q ⌝∧ (D )p q ⌝⌝∧ 【答案】B(4)已知x,y 满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6【答案】C【解析】由x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x 画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线3x +y 50=+与x -3=的交点(3,4)-时,2z x y =+最大为3245z =-+⨯=,选C.(5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225i i x ==∑,1011600i i y ==∑,ˆ4b =.该班某学生的脚长为24,据此估计其身高为(A )160 (B )163 (C )166 (D )170【答案】C【解析】22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.(6)执行两次右图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为(A )0,0 (B )1,1 (C )0,1 (D )1,0【答案】D【解析】第一次227,27,3,37,1x b a =<=>= ;第二次229,29,3,39,0x b a =<===,选D.(7)若0a b >>,且1ab =,则下列不等式成立的是 (A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b <+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<【答案】B【解析】221,01,1,log ()log 1,2a ba b a b ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B. (8)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是(A )518 (B )49 (C )59(D )79【答案】C【解析】125425989C C =⨯ ,选C. (9)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.(10)已知当[]0,1x ∈时,函数()21y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 (A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞(C )()23,⎡+∞⎣(D )([)3,+∞【答案】B二、填空题:本大题共5小题,每小题5分,共25分(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】()1C 3C 3rr r r r r n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =.(12)已知12,e e 12-e 与12λ+e e 的夹角为60,则实数λ的值是 .【解析】)()221212112122333e e e e e e e e e λλλλ-⋅+=+⋅-⋅-=,()2221233232e e e e e e e -=-=-⋅+=,()22221221e e e e e e e e λλλλ+=+=+⋅+=+,2cos601λ==+λ=. (13)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .【答案】22π+【解析】该几何体的体积为21V 112211242ππ=⨯⨯⨯+⨯⨯=+. (14)在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】2y x =±(15)若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+【答案】①④【解析】①()22xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2xf x -=具有M 性质;②()33xxxxe ef x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3xxe f x e x =⋅,令()3xg x e x =⋅,则()()32232xxxg x e x e x x ex '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴()3x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④()()22x x e f x e x =+,令()()22xg x ex =+,则()()()2222110xx x g x e x e x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.三、解答题:本大题共6小题,共75分。
[6416219](精校版)2017年山东理数高考真题文档版(含答案)
绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
学.科.网答案写在试卷上无效。
3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4、填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤。
参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A)+P(B);如果事件A 、B 独立,那么P (AB )=P(A)﹒P(B)第I 卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设函数x 2y=4-的定义域A ,函数y=ln(1-x)的定义域为B ,则A B ⋂= (A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) (2)已知a R ∈,i 是虚数单位,若3,4z a i z z =+⋅=,则a= (A )1或-1 (B )7-7或 (C )-3 (D )3(3)已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是 (A ) ∧p q (B )⌝∧p q (C ) ⌝∧p q (D )⌝⌝∧p q(4)已知x,y 满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6(5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225ii x==∑,1011600i i y ==∑,ˆ4b=.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170 (6)执行两次右图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为(A )0,0 (B )1,1 (C )0,1 (D )1,(7)若0a b >>,且1ab =,则下列不等式成立的是 (A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b <+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<(8)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 (A )518 (B )49 (C )59(D )79 (9)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A (10)已知当[]0,1x ∈时,函数()21y mx =-的图象与y x m =+的图象有且只有一个交点,则正实数m的取值范围是(A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞(C )()0,223,⎤⎡+∞⎦⎣(D )([)0,23,⎤+∞⎦第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = .(12)已知12,e e 是互相垂直的单位向量,若123-e e 与12λ+e e 的夹角为60 ,则实数λ的值是 . (13)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .(14)在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .(15)若函数()x e f x ( 2.71828e = 是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+三、解答题:本大题共6小题,共75分。
2017年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2017 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z 满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5 分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D.各年1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳4.(5 分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5 分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,且与椭圆+ =1 有公共焦点,则C 的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5 分)已知圆柱的高为1,它的两个底面的圆周在直径为2 的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5 分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6 成等比数列,则{a n}前6 项的和为()A.﹣24 B.﹣3 C.3 D.810.(5 分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2 为直径的圆与直线bx﹣ay+2ab=0 相切,则C 的离心率为()A.B.C.D.11.(5 分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5 分)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ 的最大值为()A.3 B.2C.D.2二、填空题:本题共4 小题,每小题5 分,共20 分。
2017高考数学(理)(新课标版)考前冲刺复习讲义:第1部分第2讲分类讨论、转化与化归思想含答案
第2讲分类讨论、转化与化归思想一分类讨论思想(1)不重不漏(2)标准要统一,层次要分明(3)能不分类的要尽量避免,决不无原则的讨论,(1)由数学概念而引起的分类讨论(2)由数学运算要求而引起的分类讨论(3)由性质、定理、公式的限制而引起的分类讨论(4)由图形的不确定性而引起的分类讨论(5)由参数的变化而引起的分类讨论分类讨论的思想是将一个较复杂的数学问题分解成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的策略(2016·高考浙江卷)已知a,b〉0,且a≠1,b≠1.若log a b>1,则()A.(a-1)(b-1)<0 B.(a-1)(a-b)>0C.(b-1)(b-a)<0 D.(b-1)(b-a)〉0【解析】根据题意,log a b〉1⇔log a b-log a a〉0⇔log a错误!>0⇔错误!或错误!,即错误!或错误!。
当错误!时,0<b<a〈1,所以b-1〈0,b-a<0;当错误!时,b〉a〉1,所以b-1〉0,b-a〉0。
所以(b-1)(b-a)>0,故选D。
【答案】D[名师点评] (1)应用指数、对数函数时,往往对底数是否大于1进行讨论,这是由它的性质决定的.在处理分段函数问题时,首先要确定自变量的取值属于哪个区间段,再选取相应的对应法则,离开定义域讨论问题是产生错误的重要原因之一.(2)引起分类讨论的因素有很多,如除法运算中除数不为零,偶次方根为非负,对数运算中真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.[变式训练]1.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________.[解析] 当a >1时,函数f (x )=a x +b 在[-1,0]上为增函数,由题意得错误!无解.当0<a 〈1时,函数f (x )=a x +b 在[-1,0]上为减函数,由题意得{a -1+b =0,a 0+b =-1,解得错误!所以a +b =-错误!.[答案] -32设F 1,F 2是椭圆错误!+错误!=1的两个焦点,P 为椭圆上一点.已知P ,F 1,F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,则错误!的值为________.【解析】若∠PF2F1=90°,则|PF1|2=|PF2|2+|F1F2|2,又由题意可知|PF1|+|PF2|=6,|F1F2|=25,解得|PF1|=错误!,|PF2|=错误!,所以错误!=错误!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结合 可解得 .
综上,知所求实数a的取值范围是 .12分
山东省2017年高考数学(理科)专题练习
转化与化归思想
解 析
1.命题“存在x0∈R,使e|x0-1|-m≤0”是假命题,可知它的否定形式“任意x∈R,使e|x-1|-m>0”是真命题,可得m的取值范围是(-∞,1),而(-∞,a)与(-∞,1)为同一区间,故a=1.
从而知 不是最大,这与 最大矛盾,所以命题成立.12分
6.
7.
8.
9.解:因为 ,2分
所以令 ,解得 , .3分
由 ,知 .
所以令 ,得 或 ;4分
令 ,得 ,
所以函数 在 上单调递减,在 上单调递增.5分
所以函数 在 上的最小值为 ,最大值为 .6分
因为当 时, ;7分
当 时, ,8分
由对任意 , , ,都有 恒成立,得 .
山东省2017年高考数学(理科)专题练习
转化与化归思想
答 案
1.C
2.D
3.
4.
5.解:(1)由椭圆定义,知 ,所以 .所以 .2分
把 代入,得 ,得 ,所以椭圆方程为 .4分
所以 ,即 .
故两焦点坐标为 , .6分
(2)反证法:假设 , 两点关于原点 对称,则 点坐标为 ,7分
此时 ,而当点 取椭圆上一点 时,则| ,所以 .10分
∴ ≤a2≤ .
又a>0,
∴ ≤a≤ .
故当椭圆与线段AB没有公共点时,实数a的取值范围为 ∪ .
5.
6.∵f(x)是R上的增函数,
∴1-ax-x2≤2-a,a∈[-1,1].①
①式可化为(x-1)a+x2+1≥0,对a∈[-1,1]恒成立.
令g(A)=(x-1)a+x2+1,
则
解得x≥0或x≤-1.
则当x=1时,f(p)=0,所以x≠1.
f(p)在0≤p≤4上恒正,等价于
即 解得x>3或x<-1.
9.
2.甲或乙被录用的对立面是甲、乙均不被录用,故所求事件的概率为1- = .
3.如果在[-1,1]内没有值满足f(C)>0,则 ⇒ ⇒p≤-3或p≥ ,取补集为-3<p< ,即为满足条件的p的取值范围.
故实数p的取值范围为 .
4.易知线段AB的方程为y=x+1,x∈[1,3],
由 得a2= x2+2x+1,x∈[1,3],
即实数x的取值范围是(-∞,-1]∪[0,+∞).
7.由题意,知g(x)=3x2-ax+3a-5,
令φ(A)=(3-x)a+3x2-5,-1≤a≤1.
对-1≤a≤1,恒有g(x)<0,即φ(A)<0,
∴ 即
解得- <x<1.
故当x∈ 时,对满足-1≤a≤1的一切a的值,都有g(x)<0.
8.设f(p)=(x-1)p+x2-4x+3,