哥尼斯堡七桥问题

合集下载

七桥问题Seven Bridges Problem

七桥问题Seven Bridges Problem

七桥问题Seven Bridges Problem著名古典数学问题之一。

在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。

问是否可能从这四块陆地中任一块出发,恰好通过每座桥一次,再回到起点?欧勒于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。

有关图论研究的热点问题。

18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。

当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。

这就是柯尼斯堡七桥问题。

L.欧拉用点表示岛和陆地,两点之间的连线表示连接它们的桥,将河流、小岛和桥简化为一个网络,把七桥问题化成判断连通网络能否一笔画的问题。

他不仅解决了此问题,且给出了连通网络可一笔画的充要条件是它们是连通的,且奇顶点(通过此点弧的条数是奇数)的个数为0或2。

当Euler在1736年访问Konigsberg, Prussia(now Kaliningrad Russia)时,他发现当地的市民正从事一项非常有趣的消遣活动。

Konigsberg城中有一条名叫Pregel的河流横经其中,这项有趣的消遣活动是在星期六作一次走过所有七座桥的散步,每座桥只能经过一次而且起点与终点必须是同一地点。

Euler把每一块陆地考虑成一个点,连接两块陆地的桥以线表示。

后来推论出此种走法是不可能的。

他的论点是这样的,除了起点以外,每一次当一个人由一座桥进入一块陆地(或点)时,他(或她)同时也由另一座桥离开此点。

所以每行经一点时,计算两座桥(或线),从起点离开的线与最后回到始点的线亦计算两座桥,因此每一个陆地与其他陆地连接的桥数必为偶数。

七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成.欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。

哥尼斯堡七桥问题课件

哥尼斯堡七桥问题课件
理论上需要解决的问题是:找到“一个图形可以一 笔画”的充要条件。
欧拉注意到每个点都是若干条线的端点,他把图 形上的点分为两类:奇点和偶点。要想不重复地一笔 画出某个图形,除去起始点和终止点外,其余点,如 果画进去一条线,就一定要画出一条线,从而必须是 偶点。
PPT课件
12
一笔画原理:
一个图如果可以一笔画成,那么这个图中 奇数顶点的个数不是0就是2 。反之亦然。
的事!
PPT课件
7
问题的魔力,竟然吸引了天才的欧拉。这位年轻的瑞士 数学家,以其独具的慧眼,看出了这个似乎是趣味几何问题 的潜在意义。
欧拉 (L.Euler,1707.4.151783.9.18)著名的数学家。生于 瑞士的巴塞尔,卒于彼得堡。大 部分时间在俄国和德国度过。他 早年在数学天才贝努里赏识下开 始学习数学,17岁获得硕士学位, 毕业后研究数学,是数学史上最高 产的作家。在世发表论文700多篇 ,去世后还留下100多篇待发表。
这是不可能的!这正是哈里发悲剧之所在。
PPT课件
30
点A
是 在 内 部 还 是 外 部
31
19世纪中叶,法国数学家若尔当提出了一个精妙绝伦的办
法:在图形外找一点,与需要判定的区域内的某个点连成线段,
如果该线段与封闭曲线相交的次数为奇数,则所判定区域为“
内部”;否则为“外部”。 PPT课件
32
奇异的莫比乌斯带
事实上,中国民间很早就流传着这种一 笔画的游戏,只是很可惜,长期以来,人们 只把它作为一类有趣的游戏,没有对它引起 重视,也没有数学家对它进行经验总结和研 究,这不能不说是一种遗憾。
PPT课件
17
需要 画画成的 个,那么 图形,其

含有 笔划画成

哥尼斯堡七桥问题与一笔画课件

哥尼斯堡七桥问题与一笔画课件
02
在18世纪,人们开始对图论进行 研究,探索图的结构和性质,其 中哥尼斯堡七桥问题成为了图论 研究的重要问题之一。
哥尼斯堡七桥问题的起源
哥尼斯堡七桥问题起源于18世纪初,当时有一位名叫欧拉的 人,他是一位数学家和工程师,对图论进行了深入研究。
欧拉在研究哥尼斯堡的桥梁和河流时,提出了一个问题:是 否存在一条路径,能够遍历哥尼斯堡的所有桥梁,每座桥只 过一次?这就是著名的哥尼斯堡七桥问题。
哥尼斯堡七桥问题对一笔画问题的影响
哥尼斯堡七桥问题的解决推动了数学领域的发展,它证明了不存在一条遍历七座 桥的路径,每座桥只过一次,最后回到开始的地方。
这个问题的解决对于一笔画问题的研究具有重要意义,它揭示了一笔画问题的复 杂性和多样性,也促使数学家们深入研究一笔画问题的性质和规律。
一笔画问题在哥尼斯堡七桥问题中的应用
哥尼斯堡七桥问题是一笔画问题的经典案例,它探讨的是从哥尼斯堡的一个地方开 始,能否遍历城市的七座桥,每座桥只过一次,最后回到开始的地方。
一笔画问题则是一个更广泛的几何问题,研究的是在一个连通图上,是否存在一条 路径能够遍历所有的边,每条边只过一次。
哥尼斯堡七桥问题实际上是几何图形的一笔画问题,它为后续一笔画问题的研究提 供了基础。
哥尼斯堡七桥问题的历史意义
哥尼斯堡七桥问题的解决标志着图论 的诞生,成为图论发展史上的一个里 程碑。
该问题的解决为后续的图论研究提供 了基础和指导,推动了数学和图论的 发展。
02 一笔画问题概述
一笔画问题的定义
一笔画问题,也称为欧拉路径问题,是图论中的一个经典 问题。它主要探讨的是在一个给定的图形中,是否存在一 条路径,使得这条路径能够遍历图形的每一条边且只遍历 一次。
地图导航

哥尼斯堡七桥问题与图论

哥尼斯堡七桥问题与图论

1736年29《哥尼斯堡的七座桥》的论文,创了数学的一个新的分支—一、哥尼斯堡七桥问题哥尼斯堡在俄罗斯境内,现称为加里宁格勒.生和培养过许多伟大人物.格尔河,横贯城中,如图1所示.流,一条称为新河,一条主流,的商业中心.区、北区、东区和南区.桥,两支流上.这一别致的桥群,图1早在18世纪,散步中走过每座桥,发点?”走遍这七座桥共有A77=7!=验,谈何容易.那么在这5040而形成了著名的图2欧拉请他帮助解决这个他似乎看到其中.经过一年的研究,29岁的并于1736年向彼得堡科哥尼斯堡的七座桥》的论文.C(岛区)、A(南区);七座桥看成这四个点、6、7七个数字表示,如图3所示.“一笔画”问题:否能一笔不.布勒格尔河模型蔡思明58遍历的路径称作欧拉路径(一个环或者一条链),如果路径闭合(一个圈),则称为欧拉回路.图论中的欧拉定理(一笔画定理)要分有向图(边有特定方向的图)与无向图(边没有特定方向的图)两种情况进行讨论.1.无向图的情况定理:连通无向图G有欧拉路径的充要条件为:G中奇度顶点(即与其相连的边数目为奇数的顶点)有0个或者2个.证明:必要性.如果图能够被一笔画成,那么对每个顶点,考虑路径中“进入”它的边数与“离开”它的边数(注意前提是无向图,所以我们不能称其为“入边”和“出边”).很显然这两个值要么相同(说明该顶点度数为偶),要么相差1(说明该顶点度数为奇).也就是说,如果欧拉路径不是回路,奇度顶点就有2个,即路径的起点和终点;如果是欧拉回路,起点与终点重合,则不存在奇度顶点.必要性得证.证明:充分性.如果图中没有奇度顶点,那么在G中随机取一个顶点v0出发,尝试构造一条回路c0.如果c0就是原路,则结束;如果不是,那么由于图是连通的,c0和图的剩余部分必然存在某公共顶点v1,从v2出发重复尝试构造回路,最终可将整张图分割为多个回路.由于两条相连的回路可以视为一条回路,所以该图必存在欧拉回路.如果图中有2个奇度顶点u和v,那么若是加一条边将u和v连接起来的话,就得到一个没有奇度顶点的连通图,由上文可知该图必存在欧拉回路,去掉这条新加的边,就是一条以u和v为起终点的欧拉路径.充分性得证.可知,哥尼斯堡七桥问题中的图有4个奇度顶点(1个度数为5,3个度数为3),所以不存在欧拉路径.2.有向图的情况定理:底图连通的有向图G有欧拉路径的充要条件为:G的所有顶点入度和出度都相等;或者只有两个顶点的入度和出度不相等,且其中一个顶点的出度与入度之差为1,另一个顶点的入度与出度之差为1.显然,可以通过与无向图情况相似的思路来证明,过程略.当时的数学界起初并未对欧拉解决七桥问题的意义有足够的认识,甚至有些人仅仅当其为一个数学游戏.图论这一数学分支诞生后并未得到很好的发展,直到200年后的1936年,匈牙利数学家科尼希出版了《有限图与无限图理论》,此为图论的第一部专著,其总结了进200年来有关图论的成果,这是图论发展的第一座里程碑.此后,图论进入发展与突破的阶段,又经过了半个多世纪的发展,现已成为数学科学的一个独立的重要分支.图论原是组合数学中的一个重要课题.我们用点表示事物,用连接点的边表示事物间的联系,便可得到图论中的图.图论为研究任何一类离散事物的关系结构提供了一种框架.图论中的理论已应用于经济学、心理学、社会学、遗传学、运筹学、逻辑学、语言学计算机科学等诸多领域.由于现代科学尤其是大型计算机的迅猛发展,使得图论大有用武之地,无论是数学、物理、化学、地理、生物等基础科学,还是信息、交通、战争、经济乃至社会科学的众多问题,都可以运用图论方法予以解决.当然,图论也是计算机科学的基础学科之一.值得一提的是,欧拉对七桥问题的研究,后演变成多面体理论,得到了著名的欧拉公式V+F=E+2,欧拉公式是拓扑学的第一个定理.哥尼斯堡的七座桥如今只剩下三座,一条新的跨河大桥已经建成,它完全跨过河心岛——内福夫岛,导游们仍向游客讲述哥尼斯堡桥的故事,有的导游甚至仍称“七桥问题”没有被解决,留给游客以遐想.虽然七座哥尼斯堡桥成了历史,但是“七桥问题”留下的“遗产”不像这些桥那样容易破坏,欧拉卓越的解答方式被永载史册.60。

哥尼斯堡七桥问题[欧拉图]

哥尼斯堡七桥问题[欧拉图]

哥尼斯堡七桥问题[欧拉图]⼀、历史背景1736年,年仅29岁的数学家欧拉来到普鲁⼠的古城哥尼斯堡(哲学家康德的故乡,今俄罗斯加⾥宁格勒)。

普瑞格尔河正好从市中⼼流过,河中⼼有两座⼩岛,岛和两岸之间建筑有七座古桥。

欧拉发现当地居民有⼀项消遣活动,就是试图每座桥恰好⾛过⼀遍并回到原出发点,但从来没⼈成功过。

欧拉证明了这种⾛法是不可能的。

现在看来,欧拉的证明过程⾮常简单,但他对七桥问题的抽象和论证思想,开创了⼀个新的学科:图论(Graph)。

如今,⽆论是数学、物理、化学、天⽂、地理、⽣物等基础科学,还是信息、交通、经济乃⾄社会科学的众多问题,都可以应⽤图论⽅法予以解决。

图论还是计算机科学的数据结构和算法中最重要的框架(没有之⼀)。

⾸先能想到的证明⽅法是把⾛七座桥的⾛法都列出来,⼀个⼀个的试验,但七座桥的所有⾛法共⽤7\!=5040种,逐⼀试验将是很⼤的⼯作量。

欧拉作为数学家,当然没那样想。

欧拉把两座岛和河两岸抽象成顶点,每⼀座桥抽象成连接顶点的⼀条边,那么哥尼斯堡的七座桥就抽象成下⾯的图:Processing math: 100%假设每座桥都恰好⾛过⼀次,那么对于A、B、C、D四个顶点中的每⼀个顶点,需要从某条边进⼊,同时从另⼀条边离开。

进⼊和离开顶点的次数是相同的,即每个顶点有多少条进⼊的边,就有多少条出去的边,也就是说,每个顶点相连的边是成对出现的,即每个顶点的相连边的数量必须是偶数。

⽽上图中A、C、D四个顶点的相连边都是3,顶点B的相连边为5,都为奇数。

因此,这个图⽆法从⼀个顶点出发,遍历每条边各⼀次。

欧拉的证明与其说是数学证明,还不如看作是⼀个逻辑证明。

⼀个曾难住那么多⼈的问题,竟然是这样⼀个简单的出⼈意料的推理,还开创了⼀个新的学科。

欧拉⾮常巧妙的把⼀个实际问题抽象成⼀个合适的数学模型,这种研究⽅法就是我们应该掌握的数学模型⽅法。

这并不需要运⽤多么深奥的理论,但能想到这⼀点,却是解决问题的关键。

七桥问题

七桥问题

18世纪著名古典数学问题之 一。在哥尼斯堡的一个公园 里,有七座桥将普雷格尔河 中两个岛及岛与河岸连接起 来(如图)。问是否可能从 这四块陆地中任一块出发, 恰好通过每座桥一次,再回 到起点?欧拉于1736年研究 并解决了此问题,他把问题 归结 “一笔画”问题,证明 上述走法是不可能的。
但是,为什么不可以呢?
拓扑游戏

由左图可知,这个图形 有两个奇结点。
1
2
简单的一笔画问题
3

这个图形就不可以一笔 为什么呢 画。 仔细观察,这个图形有 四个奇结点; 所以不能一笔画。 没有奇数个奇结点的图 形。42源自 1总结一下
两个奇结点的图形可以一笔画 两个奇结点以上的图形不可以一笔画。 所以,奇结点少于三个的图形就可以一
七桥问题基本简介

七桥问题是1736年29岁的欧拉向圣彼得堡科 学院递交《哥尼斯堡的七座桥》论文是提出的, 在解答问题的同时,开创了数学的一个新的分 支——图论与几何拓扑,也由此展开了数学史 上的新进程。问题提出后,很多人对此很感兴 趣,纷纷进行试验,但在相当长的时间里,始 终未能解决。欧拉通过对七桥问题的研究,不 仅圆满地回答了哥尼斯堡居民提出的问题,而 且得到并证明了更为广泛的有关一笔画的三条 结论,人们通常称之为“欧拉定理”。
欧拉:瑞士数学家及自然科学家 在1707年4月15日出生于瑞士 的巴塞尔,1783年9月18日于俄国 的圣彼得堡逝世。欧拉出生于牧 师家庭,自幼受到父亲的教育。 13岁时入读巴塞尔大学,15岁大 学毕业,16岁获得硕士学位。 欧拉(Euler,1707-1783)
欧拉是18世纪数学界最杰出的人物之一,他不但为 数学界作出贡献,更把数学推至几乎整个物理的领域。 此外,他是数学史上最多产的数学家,写了大量的力学、 分析学、几何学、变分法的课本,《无穷小分析引论》 (1748),《微分学原理》(1755),以及《积分学原 理》(1768-1770)都成为数学中的经典著作。

图论经典问题

图论经典问题

图 论哥尼斯堡七桥问题:图论发源于18世纪普鲁士的哥尼斯堡。

普雷格河流经这个城市,河中有两个小岛,河上有七座桥,连接两岛及两岸。

如图所示,当时城里居民热衷于讨论这样一个问题:一个人能否走过这七座桥,且每座桥只经过一次,最后仍回到出发点。

将上面问题中的两座小岛以及两岸用点表示,七座桥用线(称为边)表示,得到下图:于是,上述问题也可叙述为:寻找从图中的任意一个点出发,经过所有的边一次且仅一次并回到出发点的路线。

注意:在上面的图中,我们只关心点之间是否有边相连,而不关心点的具体位置,边的形状以及长度。

一、基本概念:图:由若干个点和连接这些点中的某些“点对”的连线所组成的图形。

顶点:上图中的A ,B,C,D .常用表示。

n 21 v , , v , v 边:两点间的连线。

记为(A,B),(B,C).常用表示。

m 21e , , e , e次:一个点所连的边数。

定点v的次记为d(v).图的常用记号:G=(V,E),其中,}{v V i =,}{e E i =子图:图G的部分点和部分边构成的图,成为其子图。

路:图G中的点边交错序列,若每条边都是其前后两点的关联边,则称该点边序列为图G的一条链。

圈(回路):一条路中所含边点均不相同,且起点和终点是同一点,则称该路为圈(回路)。

有向图:,其中(,)G N A =12{,,,}k N n n n = 称为的顶点集合,A a 称为G 的弧集合。

G {(,)ij i j }n n ==若,则称为的前驱, 为n 的后继。

(,)ij i j a n n =i n j n j n i 赋权图(网络):设是一个图,若对G 的每一条边(弧)都赋予一个实数,称为边的权,。

记为。

G (,,)G N E W =两个结论:1、图中所有顶点度数之和等于边数的二倍; 2、图中奇点个数必为偶数。

二、图的计算机存储:1. 关联矩阵简单图:,对应(,)G N E =N E ×阶矩阵()ik B b =10ik i k b ⎧=⎨⎩点与边关联否则简单有向图:,对应(,)G N A =N A ×阶矩阵()ik B b =110ik ik ik a i b a i ⎧⎪=−⎨⎪⎩弧以点为尾弧以点为头否则2. 邻接矩阵简单图:,对应(,)G N E =N N ×阶矩阵()ij A a =10ij i j a ⎧=⎨⎩点与点邻接否则简单有向图:,对应(,)G N A =N N ×阶矩阵()ij A a =10ij i ja ⎧=⎨⎩有弧从连向否则5v 34v01010110100101011110101000110111101065432166654321⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=×v v v v v v A v v v v v v3. 权矩阵:简单图:,对应(,)G N E =N N ×阶矩阵()ij A a =ij ij i j a ω⎧=⎨∞⎩点与点邻接否则123456781234567802130654.5061002907250473080 v v v v v v v v v v v v v v v v 48∞∞∞∞⎡⎤⎢⎥∞∞∞∞∞⎢⎥⎢⎥∞∞∞∞∞⎢⎥∞∞∞∞∞⎢⎥⎢⎥∞∞∞∞⎢⎥∞∞∞∞⎢⎥⎢⎥∞∞∞∞⎢⎥∞∞∞∞∞∞⎢⎥⎣⎦三、图的应用:例:如图,用点代表7个村庄,边上的权代表村庄之间的路长,现在要在这7个村庄中布电话线,如何布线,使材料最省?分析:需要将图中的边进行删减,使得最终留下的图仍然连通,并且使总的权值最小。

哥尼斯堡七桥问题

哥尼斯堡七桥问题
N
A
B
问题转化为:左图 中是否存在通过每 边一次且仅一次的 封闭路线。
S
欧拉的结论 欧拉证明:一个图中存在通过每边一次且仅一次回 到出发点的路线的充要条件是: 1)图是连通的,即任意两点可由图中的一些边连接 起来; 2)与图中每一顶点相连的边必须是偶数。 由此得出结论:七桥问题无解。 欧拉由七桥问题所引发的研究论文《有关位置的几 何问题的解法”》 (于1736年发表)是图论的 开篇之作,因此称欧拉为图论之父。
18世纪东普鲁士哥尼斯堡被普列戈尔河分为四块, 它们通过七座桥相互连接,如下图.当时该城的市民 热衷于这样一个游戏:“一个散步者怎样才能从某块 陆地出发,经每座桥一次且仅一次回到出发点?”
哥尼斯堡七桥问题
பைடு நூலகம்
七桥问题的分析
七桥问题看起来不难,很多人都想试一试,但没有 人找到答案 .后来有人写信告诉了当时的著名数学家 欧拉.千百人的失败使欧拉猜想,也许那样的走法根本 不可能.1836年,他证明了自己的猜想。 Euler把南北两岸和两个岛抽象成四个点,将连接这 些陆地的桥用连接相应两点的一条线来表示,这样哥 尼斯堡的七桥就转化为如下一个简图:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
起初它是几何学的一支,研究几何图形在连续变形下保持不 变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等 变形,但不许割断和粘合)。
现在已发展成为研究连续性现象的数学分支。
拓扑学应用实例
前面所提的哥尼斯堡七桥问题、四色问题? 左手套能否在空间掉转位置后变成右手套? 一条车胎能否从里朝外的把他翻转过来? 一只有把的茶杯与救生圈更相似,还是与花瓶更相
互相衔接的两两不同的一串“弧”称为“路”。路中弧的端 点称为路的“顶点”。如果起点与终点相同称为“闭路”。 如果闭路的顶点又不相同,称为“圈”。如下所示:

闭路

网络与一笔画问题
于是我们可以给出一笔画的理论叙述。
“一笔画”问题相当于给定一个网络。问: “有没有可能把所有的弧排成一条路”。
如果一个网络的全部弧可以排成一条路,那 么我们称这个网络为一个一笔画。
纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后 把整个纸圈全部抹成一种颜色,不留下任何空白。 这个纸圈应该怎样粘? 如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一 个面再重新涂另一个面,不符合涂抹的要求。 能不能做成只有一个面、一条封闭曲线做边界的纸圈?
莫比乌斯带的发现
对于这样一个看来十分简单的问题,数百年间,曾有许多科 学家进行了认真研究,结果都没有成功。后来,德国的数学 家莫比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验, 也毫无结果。
当地的市民正从事一项非常有趣的消遣活动。这项有趣的消 遣活动是在星期六作一次走过所有七座桥的散步,每座桥只 能经过一次而多人对此很感兴趣,纷纷进行试验,但在相 当长的时间里,始终未能解决。
而利用普通数学知识,每座桥均走一次,那这七座桥所有的 走法一共有5040种,而这么多情况,要一一试验,这将会是 很大的工作量。
多笔画定理:设G是一个有2n个奇顶点的连通网络, n>1. 那么G中的全部弧可以排成n条路,而且至少n 条路。
最短邮递路线问题
一个邮递员送信,每次都要走遍他所负责的投递范 围的每一条街道,完成任务后回到邮局。问:他沿 怎样路线走,所走路程最短?
最理想的路线是,从邮局出发,走遍所有的街道, 但每条街只走一次,最后回到邮局。
不可思议的拓扑变换
哈里发招女婿
相传古波斯穆罕默德的继承人哈里发有位才貌双全的女儿。 姑娘的智慧和美貌使得许多聪明英俊的小伙子为之倾倒。
哈里发决定从中挑选一位才智超群的青年为女婿。于是想出 一道题目,声明说谁能解出这道题,便将女儿嫁给他。
题目是这样的:用线将下图写有相同数字的小圆圈连接起来, 但所有的线不相交。
这是一个象球面那样封闭的(也就是说没有边)曲面,但是它却只有一个面。 在图片上我们看到,克莱因瓶的确就象是一个瓶子。但是它没有瓶底,它的瓶 颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。
如果瓶颈不穿过瓶壁而从另一边和瓶底圈相连的话,我们就会得到一个轮胎面。 我们可以说一个球有两个面——外面和内面,如果一只蚂蚁在一个球的外表面
或者2块以上。就不是单连通的。这是著名的四色猜想。 平面上不可能有两两相连的5个区域。
区域一笔画----七色定理
在一个轮胎状的表面,7个或者7个以下的区域可以构成两两 相连的区域。可以“一笔划”。把下图(上下对折以后,再 左右对折,形成一个轮胎状,7个区域两两相连 两两相连的 区域可以不经过其它区域到达任何一个区域。
似? 光盘和圆柱面是否一样?
拓扑的一些重要思想
“内部”与“外部”,是拓扑学中很重要的一组概 念。
A
A
A
不可思议的拓扑变换
法国著名数学家庞加莱(Poincaré)以他丰富 的想象力及抽象的思维能力,提出下图的两 个物体是等价(同胚)的,也就是说,您可以 从其中一个开始,经由拓扑变换得出另一个, 您认为可能吗?
但现实中,这种路线往往不存在,需要考虑多笔画 问题。而且在一笔画问题中,还需考虑路线长短问 题。
有兴趣的同学可以参看姜伯驹院士写的《一笔画与 邮递路线问题》。
区域一笔画----四色定理
两两相连区域可一笔画。 在平面中,4个或者4个以下的区域可以构成两两相连的区域,
可以一笔画。 每个区域必须是单连通的,就是一个区域不能够是分成2块
有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。 新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑 里仍然只有那个尚未找到的圈儿。
一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”, 他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耸拉下 来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然 扭的方向对接成一个圆圈儿,他惊喜地发现,这“绿色的圆 圈儿”就是他梦寐以求的那种圆圈。
网络的“连通性”
如果一个网络的任意两个顶点都可以用一条 路连接起来,则称该网络是连通的;否则称 为不连通的。
如果以某个顶点为端点的弧的个数是奇数, 该顶点就称为奇顶点;否则称为偶顶点。没 有奇顶点的网络称为偶网络。
命题:网络的奇顶点个数必定是偶数。
一笔画的充要条件
一笔画定理:一个网络是一笔画的充分必要条件是: 它是连通的并且奇顶点的个数是0或者2. 当奇顶点 的个数为0时,则该一笔画为一条闭路。
论文的开头是这样写的:“讨论长短大小的几何分支,一直被人们 热心地研究着。但是还有一个至今几乎完全没有探索过的分支,莱 布尼兹最先提到它,称之“位置几何学”。这个几何分支只讨论与 位置有关的关系,研究位置的性质。它不考虑长短大小,也不涉及 量的计算。但至今未有过令人满意的定义,来刻画这门位置几何学 的课题和方法。”
七桥问题的历史贡献
欧拉的这个考虑非常重要,也非常巧妙,它正表明了数学家处理实 际问题的独特之处——把一个实际问题抽象成合适的“数学模型”。 这种研究方法就是“数学模型方法”。
这并不需要运用多么深奥的理论,但想到这一点,却是解决难题的 关键。
1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报 告中,阐述了他中,阐述了他的解题方法。
莫比乌斯带的发现
莫比乌斯回到办公室,裁出纸条,把纸的一端扭转180°, 再将一端的正面和背面粘在一起,这样就做成了只有一个面 的纸圈儿。
圆圈做成后,莫比乌斯捉了一只小甲虫,放在上面让它爬。 结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。 莫比乌斯激动地说:“公正的小甲虫,你无可辩驳地证明了 这个圈儿只有一个面。” 麦比乌斯圈就这样被发现了。
1
3
2
2
3
1
1
3
2
2
3
1
平面欧拉公式
用数学方法可以证明,无论你用什么绳索织 一片网,无论你织一片多大的网,它的结点 数(V),网眼数(F),边数(E)都必定适合下面 的公式:
V + F– E = 1
多面体欧拉公式
利用拓扑思想,容易证明。
挖个洞,撕成平面
V + F– E =2
一个故事
数学上流传着这样一个故事: 有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个
三、拓扑学(Topology)
拓扑学,是近代发展起来的一个研究连续性现象的数学分支。 中文名称起源于希腊语Τοπολογ的音译。Topology原 意为地貌,于19世纪中期由科学家引入,当时主要研究的是 出于数学分析的需要而产生的一些几何问题。
发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性 质和不变量。 拓扑学是数学中一个重要的、基础的分支。
做几个简单的实验,就会发现“麦比乌斯圈”有许多让我们 感到惊奇而有趣的结果。弄好一个圈,粘好,绕一圈后可以发 现,另一个面的入口被堵住了,原理就是这样啊.
莫比乌斯带
如下图所示,称为莫比乌斯带。
莫比乌斯带
如下图所示,称为莫比乌斯带。
莫比乌斯带与艺术、科技
麦比乌斯带为很多艺术家提供了灵感,比如美术家艾雪就是一个利用这个 结构在他木刻画作品里面的人,最著名的就是麦比乌斯二代,图画中表现 一些蚂蚁在麦比乌斯带上面爬行。
克莱茵瓶
温莎斜屋
如何脱困
1736年,在经过一年的研究之后,29岁的欧拉提交 了《哥尼斯堡七桥》的论文,圆满解决了这一问题。
同时开创了数学新分支---图论以及拓扑学。
欧拉解题方法
在论文中,欧拉将七桥问题抽象出来,把每一块陆地考虑成 一个点,连接两块陆地的桥以线表示。并由此得到了如图一 样的几何图形。 若我们分别用A、B、C、D四个点表示为哥 尼斯堡的四个区域。这样著名的“七桥问题”便转化为是否 能够用一笔不重复的画出过此七条线的问题了。
欧拉的研究开创了数学上的新分支――拓扑学。
二、一笔画问题
所谓一笔画即是:不管什么样的平面图形可以“笔 不离纸”一笔画成。
或者说:是指每条线都必须画出,且每条直线只能 画一次,不能重复。
网络
我们先定义一些概念。
一个图形由有限条“线段”(未必是直线)构成,每条线段 都有两个不同的端点,且互不相交。我们把这种图称为“网 络”,“线段”称为网络中的“弧”,弧的端点称为顶点。
在美国匹兹堡著名肯尼森林游乐园里,就有一部“加强版”的云霄飞 车——它的轨道是一个麦比乌斯圈。乘客在轨道的两面上飞驰。
麦比乌斯圈循环往复的几何特征,蕴含着永恒、无限的意义,因此常被 用于各类标志设计。微处理厂商Power Architecture的商标就是一条麦 比乌斯圈,甚至垃圾回收标志也是由麦比乌斯圈变化而来。
但怎么才能找到成功走过每座桥而不重复的路线呢?因而形 成了著名的“哥尼斯堡七桥问题”。
求救欧拉
1735年,有几名大学生写信给当时正在俄罗斯的彼 得斯堡科学院任职的天才数学家欧拉,请他帮忙解 决这一问题。
欧拉在亲自观察了哥尼斯堡七桥后,认真思考走法, 但始终没能成功,于是他怀疑七桥问题是不是原本 就无解呢?
哥尼斯堡七桥问题
拓扑学
一、七桥问题Seven Bridges Problem
相关文档
最新文档