一阶线性偏微分方程求解例题

合集下载

王高雄《常微分方程》(第3版)(章节题库 一阶线性偏微分方程)【圣才出品】

王高雄《常微分方程》(第3版)(章节题库 一阶线性偏微分方程)【圣才出品】

第7章 一阶线性偏微分方程一、填空题与曲面族z=axy(a为任意常数)正交的曲面为______.【答案】F(x2+z2,x2-y2)=0,其中F(u,v)为任意连续可微函数.【解析】与曲面族z=axy正交的曲面z=z(x,y)满足偏微分方程;其特征方程组为二.判断题1.偏微分方程的通解可表示为其中是其变元的任意连续可微函数.()【答案】√2.偏微分方程的特征方程为.()【答案】×【解析】偏微分方程的特征方程应为.三、解答题1.求下列方程组的通积分及满足指定条件的解.(1);(2);当t=0时,x=y=1;(3)解:(1)将方程组的两式相加,得;将x+y视为未知函数,则上方程为一阶线性方程,解之得即得一个首次积分为方程组的两式相减,得解之得另一个首次积分为易验证.因此,Φ1(t,x,y)=C1和Φ2(t,x,y)=C2是两个独立的首次积分,所以,方程组的通积分为从中可解得通解为其中.(2)方程组的两式相比得,变形得恰当方程xdx+2ydy-ydx-xdy=0解之得一个首次积分为x2+2y2-2xy=C21,即Φ1(t,x,y)=(x-y)2+y2=C21给方程组第一式乘以y,第二式乘以x,再相减得两边积分,得另一个首次积分为易验证Φ1(t,x,y)=C21和Φ2(t,x,y)=C2是两个独立的首次积分,所以,方程组的通积分为(x-y)2+y2=C21,,通解为其中'1C=C1sinC2,'2C=C1cosC2.容易得满足t=0时,x=y=1的解为(3)三个分式相加,得则得一个首次积分为x+y+z=C1.给三个分式的分子分母分别乘以x,y,z,再相加,得又得另一个首次积分为x 2+y 2+z 2=C2.容易验证x +y +z =C 1,x 2+y 2+z 2=C 2是两个独立的首次积分,所以方程组的通积分为x +y +z =C 1,x 2+y 2+z2=C 2.2.求解下列微分方程(1)(2)(3)(4)(5)解:(1)特征方程组为由可得一个首次积分为 x 2z =C 1再由得x d y +y d x -xy 2ln x d x=0即两边积分,有,得另一个首次积分容易验证这两个首次积分相互独立,因此所求方程的通解为其中 为任意二元连续可微函数.(2)方程的特征方程组为利用比例性质,有由以上三式分别得再积分,得到三个首次积分容易验证它们是独立的,且它们的个数等于原方程未知函数自变量的个数,故所求方程的通解为其中F (v 1,v 2,v 3)为v 1,v 2,v 3的任意连续可微函数.(3)方程的特征方程组为对于方程分离变量后积分得到一个首次积分t (ln t -1)+x 2=C 1.再利用比例的性质有从而有d (tx +y )=0,由此得到另一个首次积分tx +y =C 2.容易验证这两个首次积分相互独立,故原方程的通解为u =φt (ln t -1)+x 2,tz +y ]其中F 为任意的二元连续可微函数.(4)由原方程组可得即d (x 2+y 2)=2(x 2+y 2)(x 2+y 2-1)dt 令x 2+y 2=z ,则上式可变为积分得因此易求得原方程组的一个首次积分再由原方程组得即有由此得到原方程组的另一个首次积分由于,雅可比矩阵为而,所以这两个首次积分是相互独立的,它们构成方程组的通积分.如果要得到显式通解,考虑到首次积分的具体形式,采用极坐标变换x =rcosθ,y =rsinθ得,由此解得.因此微分方程组的通解为.另外,方程组有零解x =0,y =0.(5)把原方程组写为。

中北大学数学物理方程典型例题与解法范例

中北大学数学物理方程典型例题与解法范例

例1下列各方程是线性的, 还是非线性的? 如果是线性的, 指出是齐次的,还是非齐次的, 并确定它的阶数. (1) 22sin sin 0xx xy yy u xu xu ++=, (2) 12=+y x u u u (3) 320xxxx xxyy yyyy u u u ++=(4)0ln =++u u u xyy xxx , (5) 5352sin xxx xy yy y u u xu u u x -+++=解:(1) 原方程为二阶齐次线性方程(2) 由于2,x y u uu 都为非线性项,因此原方程为一阶非线性方程(3) 原方程为四阶齐次线性方程(4) 由于ln u 为非线性项,因此原方程为三阶非线性方程 (5) 原方程为三阶非齐次线性方程(非齐次项2sin x ) 例2 验证函数 (3)u f x y =+ 是方程: 30x y u u -=的解, 其中f 为任意连续可微函数.证:左(3)3(3)f x y f x y x y ∂∂=+-+∂∂()(3)3()(3)f x y f x y x y ξξ∂∂''=+-+∂∂ 3()3()0f f ξξ''=-==右 (3)x y ξ=+例3 验证函数 22ln()u x y =+是方程: 0xx yy u u +=的一个解证: 222222,x y x y u u x y x y ==++,2222222222222(02)24,()()xx yy x x y u u x y x y x y x y -=+=-++++ 左22222222222224240()()x y x y x y x y x y =-+-==++++右 例4 (1) 长为l 的弦, 两端点固定, 且在初始时刻0=t 处于水平状态, 初始速度为23sinxlπ, 作微小横振动, 试写出此定解问题.(2) 设有一长度为l 的杆, 它的表面是绝热的, 在0=x 的一端温度为5C ,另一端l x=处外界媒介的温度为5C ,且初始温度分布为)(x ϕ, 试写出此定解问题.解:(1) 定解问题为 0(0,)(,)02(,0)0,3s i n t t x x t u u u t u l t u x u x t lπ==⎧⎪==⎪⎨∂⎪==⎪∂⎩(2) 定解问题为 (0,)5,[(,)]5(,0)()t x x x lu u u u t u x t x u x x κϕ==⎧⎪∂⎪=+=⎨∂⎪⎪=⎩例5 将下列二阶线性偏微分方程化为标准型(1)22222320u u u x x y y∂∂∂++=∂∂∂∂,解:(1)特征方程2320y y ''-+=,特征线12,2x y C x y C -=-=,作变量代换2x yx yξη=-⎧⎨=-⎩2,x y u u u u u u ξηξη=+=-- , 22444xx u u u u u u u u ξξξηηξηηξξξηηη=+++=++ 32xy u u u u ξξξηηη=---,2yy u u u u ξξξηηη=++代入原方程,化为0u ξη-=, 所以原方程的标准型为 0u ξη=(2) 22222u u a t x∂∂=∂∂ 解 :特征方程22()dx a dt =,特征线12,x at C x at C +=-=, 作变量代换x at x atξη=+⎧⎨=-⎩, 原方程化为 2222a u a u ξηξη-=,所以原方程的标准型为 0u ξη=(3)22222320u u u u u x x y y x y∂∂∂∂∂++++=∂∂∂∂∂∂解:特征方程2320y y ''-+=,特征线12,2x y C x y C -=-=,作变量代换2x y x y ξη=-⎧⎨=-⎩原方程化为0u u ξηη-+=, 所以原方程的标准型为 0u u ξηη-=例6.证明直角坐标系下的拉普拉斯方程: 22220u ux y∂∂+=∂∂在极坐标系下为01122222=∂∂+∂∂+∂∂θu r r u r ru证:cos ,sin tan r x r y y r x θθθ⎧==⎧⎪⎨⎨=⎩=⎪⎩2()x r x y u u u r r θ=+- , 2y r y xu u u r rθ=+222234412[]xx rr r x x x xyu u u u u r r r r r θθθ=+-++222234412[]yy rr r y y y xyu u u u u r r r r rθθθ=+-+-2222222342[]xx yy rr r x y x y x y u u u u u r r r rθθ++++=+-+222()r x y =+2221111[]rr r rr r u u u u u u r r r r rθθθθ=+-+==++,所以拉普拉斯方程:22220u ux y ∂∂+=∂∂在极坐标系下为 01122222=∂∂+∂∂+∂∂θu r r u r r u。

2. 一阶偏微分方程

2. 一阶偏微分方程

§2 一阶偏微分方程一、 柯西-柯娃列夫斯卡娅定理[一阶偏微分方程的通解] 一阶偏微分方程的一般形式 是0),,,,,,,,(2121=∂∂∂∂∂∂nn x ux u x u u x x x F或()0,,,,,,,211=n n p p p u x x F ,其中()n i x up ii ,,2,1 =∂∂=如解出p 1,可得:p 1 = f (x 1 , x 2 ,…, x n , u , p 2 ,…, p n )当方程的解包含某些“任意元素”(指函数),如果适当选取“任意元素”时,可得方程的任意解(某些“奇异解”除外),则称这样的解为通解.在偏微分方程的研究中,重点在于确定方程在一些附加条件(即定解条件)下的解,而不在于求通解.[一阶方程的柯西问题]()()⎪⎩⎪⎨⎧==∂∂=n x x n n x x u p p u x x x f x u,,|,,,,,,,22211011 ϕ 称为柯西问题,式中),,(2n x x ϕ为已知函数,对柯西问题有如下的存在惟一性定理.[柯西-柯娃列夫斯卡娅定理] 设 f ( x 1 , x 2 ,, x n , u , p 2 ,, p n ) 在点 ( x 10 , x 20 ,, x n 0 , u 0 , p 20 ,, p n 0 ) 的某一邻域内解析,而),,(2n x x ϕ在点( x 20 ,, x n 0 ) 的某邻域内解析,则柯西问题在点 ( x 10 ,, x n 0 ) 的某一邻域内存在着惟一的解析解.这个定理应用的局限性较大,因它要求f 及初始条件都是解析函数,一般的定解问题未必能满足这种条件.对高阶方程也有类似定理.二、 一阶线性方程1. 一阶齐次线性方程[特征方程∙特征曲线∙初积分(首次积分)] 给定一阶齐次线性方程()()0,,,,,,211211=∂∂++∂∂n n n n x ux x x a x u x x x a (1)式中a i 为连续可微函数,在所考虑的区域内的每一点不同时为零(下同).方程组在有些书中写作0),,,,,,,,,(121=∂∂∂∂∂∂nn x ux u t u u x x x t F()n i ix x x a tx ,,,d d 21 = ( i = 1,2,, n ) 或()()()n n n n n x x x a x x x x a x x x x a x ,,,d ,,,d ,,,d 2121222111 === (2) 称为一阶齐次线性偏微分方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n )满足特征方程(2),就称曲线l 为一阶齐次线性方程的特征曲线.如果函数ψ ( x 1 , x 2 ,, x n )在特征曲线),,2,1()(n i t x x i i ==上等于常数,即ψ ( x 1(t ) , x 2(t ) ,, x n (t ) ) = c 就称函数ψ ( x 1, x 2,, x n )为特征方程(2)的初积分(首次积分). [齐次方程的通解]1o 连续可微函数u = ψ ( x 1, x 2,, x n ) 是齐次线性方程(1)的解的充分必要条件是: ψ ( x 1, x 2,, x n )是这个方程的特征方程的初积分.2o 设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 是特征方程(2)在区域D 上连续可微而且相互独立的初积分(因此在D 内的每一点,矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂---n n n n n n x x x x x x x x x 121112221212111ψψψψψψψψψ的秩为n 1-) ,则u = ω ( ψ1 ( x 1 , x 2 ,, x n ) ,, ψn -1 ( x 1 , x 2 ,, x n ) ) 是一阶齐次线性方程(1)的通解,其中ω为n 1-个变量的任意连续可微函数. [柯西问题] 考虑方程的柯西问题()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni ini x x u x u x x x a ,,|0,,,2121011 ϕ 式中ϕ ( x2 ,, x n )为已知的连续可微函数.设ψi ( x 1 , x 2 ,, x n ) ( i = 1,2,, n 1-) 为特征方程的任意n 1-个相互独立的初积分,引入参变量 i ψ (1,,2,1-=n i ),从方程组()()()⎪⎪⎩⎪⎪⎨⎧===--120112201212011,,,,,,,,,n n n n n x x x x x x x x x ψψψψψψ解出x 2 ,, x n 得()()⎪⎩⎪⎨⎧==--12112122,,,,,,n n nn x x ψψψωψψψω 则柯西问题的解为u = ϕ ( ω2 ( ψ1 , ψ2 ,, ψn -1 ) ,, ωn ( ψ1 , ψ2 ,, ψn -1 ) )2.非齐次线性方程它的求解方法与拟线性方程相同.三、 一阶拟线性方程一阶拟线性方程为()()∑==∂∂ni n in i u x x x R x uu x x x a 12121,,,,,,,, 其中a i 及R 为x 1 , x 2 ,, x n , u 的连续可微函数且不同时为零. [一阶拟线性方程的求解和它的特征方程]()()⎪⎩⎪⎨⎧===u x x x R tun i u x x x a t x n n i i,,,,d d ),,2,1(,,,,d d 2121 或()()()ux x R uu x x a x u x x a x n n n n n ,,,d ,,,d ,,,d 11111 === 为原拟线性方程的特征方程.如果曲线l : x i = x i (t ) ( i =1,2,, n ) , u = u (t ) 满足特征方程,则称它为拟线性方程的特征曲线.设 ψi ( x 1 ,, x n ,u ) ( i = 1,2,, n ) 为特征方程的n 个相互独立的初积分,那末对于任何连续可微函数ω,ω ( ψ1 ( x 1,, x n , u ) , ψ2 ( x 1,, x n , u ) ,, ψn ( x 1,, x n , u ) ) = 0 都是拟线性方程的隐式解.[柯西问题] 考虑方程的柯西问题()()()⎪⎩⎪⎨⎧==∂∂==∑n x x ni n i ni x x u u x x x R x u u x x x a ,,|,,,,,,,,212121011 ϕ ϕ为已知的连续可微函数.设 ψ1 ( x 1 , x 2 ,, x n , u ) ,, ψn ( x 1 , x 2 ,, x n , u ) 为特征方程的n 个相互独立的初积分,引入参变量 n ψψψ,,,21 , 从()()()⎪⎪⎩⎪⎪⎨⎧===nn n n n u x x x u x x x u x x x ψψψψψψ,,,,,,,,,,,,2012201212011解出 x 2 ,, x n , u()()()⎪⎪⎩⎪⎪⎨⎧===n n n n n u x x ψψψωψψψωψψψω,,,,,,,,,21212122 则由()()()()()()()0,,,,,,,,,,,,,,,,,,,,,,2121221221121=-≡n n n n n n u x x x u x x x u x x x V ψψψωψψψωϕψψω给出柯西问题的隐式解.四、 一阶非线性方程[完全解·通解·奇异解] 一阶非线性方程的一般形式为()()n i x u p p p p u x x x F ii n n ,,2,10,,,,,,,,2121 =∂∂==若一阶偏微分方程的解包含任意n 个独立的常数,则称这样的解为完全解(全积分). 若V ( x 1, x 2 ,, x n , u , c 1 , c 2,, c n ) = 0为方程的完全解,从()n i c VV i ,,2,10,0 ==∂∂= 消去c i ,若得一个解,则称它为方程的奇异解(奇积分).以两个独立变量为例说明完全解与通解、奇异解的关系,设方程()yzq x z p q p z y x F ∂∂=∂∂==,,0,,,,有完全解V (x ,y ,z ,a ,b )=0 ( a ,b 为任意常数),则方程等价于从方程组()⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂=0,00,,,,q z Vy V p z V x V b a z y x V 消去a ,b 所得的方程.利用常数变易法把a ,b 看作x , y 的函数,将V (x ,y ,z ,a ,b )=0求关于x , y 的偏导数,得00=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂=∂∂⋅∂∂+∂∂⋅∂∂+∂∂+∂∂ybb V y a a V q z V y V xbb V x a a V p z V x V那末0,0=∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂y b b V y a a V x b b V x a a V 与V=0联立可确定a ,b .有三种情况:1︒ 0≡∂∂≡∂∂bV a V ,将其与V (x ,y ,z ,a ,b )=0联立可确定不含任意常数的奇异解.2︒ 如0=∂∂=∂∂=∂∂=∂∂y bx b y a x a ,即回到完全解.3︒ 当0/,0/≡∂∂≡∂∂b V a V 时,必有()()0,,=∂∂y x b a ,这时,如果不属于情形2︒ ,则a 与b 存在函数关系:b=ω(a ),这里ω为任意可微函数,并从方程V (x ,y ,z ,a ,b )=0和()∂∂∂∂ωV a Vba +'=0消去a ,b ,可确定方程的通解.定理 偏微分方程的任何解包含在完全解内或通解内或奇异解内. [特征方程·特征带·特征曲线·初积分] 在一阶非线性方程:()F x x x u p p p n n 12120,,,,,,,, =中,设F 对所有变量的二阶偏导数存在且连续,称()n i uF p x F t p p Fp t u p F t x i i i ni ii i i ,,2,1)(d d d d ,1 =∂∂+∂∂-=∂∂=∂∂=∂∂∑=或up x p up x p p Fp up x p xp x n n n ni iinn ∂+∂-==∂+∂-=∂∂=∂==∂=∂∑=d d d d d d 11112211为非线性方程的特征方程.设特征方程的解为x i =x i (t ), u=u (t ), p i =p i (t ) (i =1,2,…,n )称它为非线性方程的特征带.在x 1,x 2,, x n ,u 空间的曲线x i =x i (t ), u=u (t ) (i=1,2,…,n )称为非线性方程的特征曲线.如果函数()n n p p p u x x x G ,,,,,,,,2121 在特征方程的任一解x i =x i (t ) (i =1,2,, n ), u=u (t ), p i =p i (t ) (i =1,2,, n )上等于常数,即()()()()()()()()G x t x t x t u t p t p t p t C n n 1212,,,,,,,, =那末函数()n n p p p u x x x G ,,,,,,,,2121 称为特征方程的初积分.[求完全解的拉格朗日-恰比方法] 考虑两个变量的情况.对于方程F (x ,y ,z ,p ,q )=0,选择使雅可比式()()0,,≠∂∂q p G F 的一个初积分G (x ,y ,z ,p ,q ).解方程组 ()()F x y z p q G x y z p q a ,,,,,,,,==⎧⎨⎪⎩⎪0(a 为任意常数) 得p (x ,y ,z ,a )及q (x ,y ,z ,a ).则方程d z=p d x+q d y的通解V (x ,y ,z ,a ,b )=0(b 是积分d z=p d x+q d y 出现的任意常数)就是方程F (x ,y ,z ,p ,q )=0的完全解. 例 求方程()z p q x y 22222+=+的完全解.解 方程的特征方程为()()()qy x z y qp q p z x p q p z z q z y p z x 22222222222d 22d 2d 2d 2d +-=+-=+== 这里成立zpxx p z z p d d d =+ 所以特征方程的一个初积分为z 2p 2 -x 2 .解方程组 ()()z p q x y z p x a22222222+-+=-=⎧⎨⎪⎩⎪ (a 为任意常数) 得 p a x zq y az=+=-22, 积分微分方程得完全解z x x a y y a a x x a y y ab 22222=++-++++-+ln(b 为任意常数)[某些容易求完全解的方程] 1︒ 仅含p ,q 的方程F (p ,q )=0G =p 是特征方程的一个初积分.从F (p ,q )=0与p=a (a 为任意常数)得q=ψ(a ),积分d z=a d x+ψ(a )d y得完全解z=ax+ψ(a )y+b (b 为任意常数)2︒ 不显含x ,y 的方程F (z ,p ,q )=0 特征方程为z Fqqz F p p q F q p F p z q F y p F x ∂∂-=∂∂-=∂∂+∂∂=∂∂=∂∂d d d d d 因此q d p-p d q =0,显然G qp=为一个初积分,由F (z ,p ,q )=0,q=pa (a 为任意常数)解得p=ψ(z ,a ).于是由d z=ψ(z ,a )d x+a ψ(z ,a )d y得()⎰++=b ay x a z z,d ψ (b 为任意常数) 可确定完全解.3︒ 变量分离形式的方程()f x p i i i i n,=∑=10特征方程为nn n ni iiinn n x f p x f p p f p zp f x p f x ∂∂-==∂∂-=∂∂=∂∂==∂∂∑=d d d d d 1111111可取初积分G i =f i (x i ,p i ) , (i =1,2,, n ).从f i (x i ,p i )=a i (i =1,2,, n )解出p i =ϕi (x i ,a i )得完全解()∑⎰=+=ni i i i i b x a x z 1d ,ϕ式中a i ,b 为任意常数,且a i i n=∑=10.[克莱罗方程] 方程()z p x f p p p i i n i n=+=∑121,,,称为克莱罗方程,其完全解为()z c x f c c c i i n i n=+=∑121,,,对c i 微分得x fc i i=-∂∂ (i =1,2,…,n ) 与完全解的表达式联立消去c i 即得奇异解.例 求方程z -xp -yq -pq =0的完全解和奇异解. 解 这是克莱罗方程,它的完全解是z=ax+by+ab对a,b 微分,得x=-b,y=-a ,消去a ,b 得奇异解z=-xy[发甫方程] 方程P (x,y,z )d x+Q (x,y,z )d y+R (x,y,z )d z=0 (1) 称为发甫方程,如果P,Q,R 二次连续可微并满足适当条件,那末方程可积分.如果可积分成一关系式时,则称它为完全可积.1︒ 方程完全可积的充分必要条件 当且仅当P,Q,R 满足条件0)()()(=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂yP x Q R x R z P Q z Q y R P (2) 时,存在一个积分因子μ(x,y,z ),使d U 1=μ(P d x+Q d y+R d z )从而方程的通解为U 1(x,y,z )=c特别,当0,0,0=∂∂-∂∂=∂∂-∂∂=∂∂-∂∂yPx Q x R z P z Q y R 时,存在一个函数U (x,y,z )满足zUR y U Q x U P ∂∂=∂∂=∂∂=,, 从而 d U=P d x+Q d y+R d z 所以方程的通解为U (x,y,z )=c 所以完全可积的发甫方程的通解是一单参数的曲面族.定理 设对于发甫方程(1)在某区域D 上的完全可积条件(2)成立,则对D 内任一点M (x,y,z )一定有方程的积分曲面通过,而且只有一个这样的积分曲面通过. 2︒ 方程积分曲面的求法设完全可积条件(2)成立.为了构造积分曲面,把z 看成x,y 的函数(设R (x,y,z )≠0),于是原方程化为y RQ x R P z d d d --=由此得方程组()()()()⎪⎪⎩⎪⎪⎨⎧≡-=∂∂≡-=∂∂4,,3,,11z y x Q R Q y z z y x P R P x z发甫方程(1)与此方程组等价.把方程(3)中的y 看成参变量,积分后得一个含有常数 c 的通解()cy x z ~;,ϕ= 然后用未知函数()~cy 代替常数 c ,将()()z x y c y =ϕ,;~代入方程(4),在完全可积的条件下,可得()~cy 的一个常微分方程,其通解为 ()()~,cy y c =ψ c 为任意常数,代回()()z x y cy =ϕ,;~中即得发甫方程的积分曲面 z=ϕ(x,y,ψ(y,c ))由于发甫方程关于x,y,z 的对称性,在上面的讨论中,也可把x 或y 看成未知函数,得到同样的结果.例 求方程yz d x+2xz d y+xy d z=0的积分曲面族.解 容易验证完全可积条件成立,显然存在一个积分因子μ=1xyz,用它乘原方程得 0d d 2d =++zz y y x x 积分后得积分曲面族xy 2z=c也可把方程化为等价的方程组⎪⎪⎩⎪⎪⎨⎧-=∂∂-=∂∂y z yz x z xz 2 把y 看成参变量,积分xzx z -=∂∂得通解 zx c= 用未知函数()~cy 代替 c ,将()y c zx ~=代入方程y z y z 2-=∂∂得 ()()yy cy y c ~2d ~d -= 积分后有()~cy c y =2所以原方程的积分曲面族是xy 2z=c五、 一阶线性微分方程组[一阶线性偏微分方程组的一般形式] 两个自变量的一阶线性方程组的形式是()n i F u C x u B t u A i n j j ij n j n j jij j ij ,,2,10111 ==++∂∂+∂∂∑∑∑=== 或()n i f u b x u a t u i n j j ij n j j ij i,,2,1011 ==++∂∂+∂∂∑∑== (1) 其中A ij ,B ij ,C ij ,F i ,a ij ,b ij ,f i 是(x,t )的充分光滑函数.[特征方程·特征方向·特征曲线]⎩⎨⎧=≠==-ji ji txa ij ij ij ,1,0,0)d d det(δδ称为方程组(1)的特征方程.在点(x,t )满足特征方程的方向txd d 称为该点的特征方向.如果一条曲线l ,它上面的每一点的切线方向都和这点的特征方向一致,那末称曲线l 为特征曲线.[狭义双曲型方程与椭圆型方程] 如果区域D 内的每一点都存在n 个不同的实的特征方向,那末称方程组在D 内为狭义双曲型的.如果区域D 内的每一点没有一个实的特征方向,那末称方程组在D 内为椭圆型的. [狭义双曲型方程组的柯西问题] 1︒ 化方程组为标准形式——对角型因为det(a ij -δij λ)=0有n 个不同的实根λ1(x,t ) ,, λn (x,t ),不妨设),(),(),(21t x t x t x n λλλ<<<那末常微分方程()()n i t x txi ,,2,1,d d ==λ的积分曲线l i (i =1,2,…,n )就是方程组(1)的特征曲线. 方程()()aijk ij k i i n-==∑λδλ1的非零解(λk (1) ,, λk (n ))称为对应于特征方向λk 的特征矢量.作变换()()n i u v nj jj i i ,,2,11==∑=λ可将方程组化为标准形式——对角型()()()()n i t x v t x a x v t x t v i nj j ij ii i ,,2,1,,,1=+=∂∂+∂∂∑=βλ 所以狭义双曲型方程组可化为对角型,而一般的线性微分方程组(1)如在区域D 内通过未知函数的实系数可逆线性变换可化为对角型的话,(此时不一定要求 λi 都不相同),就称这样的微分方程组在D 内为双曲型的. 2︒ 对角型方程组的柯西问题 考虑对角型方程组的柯西问题()()()()()()n i x x v t x v t x a x v t x tv i inj i j ij i i i,,2,10,,,,1 =⎪⎩⎪⎨⎧=+=∂∂+∂∂∑=ϕβλϕi (x )是[a,b ]上的连续可微函数.设αij ,βi ,λi 在区域D 内连续可微,在D 内可得相应的积分方程组()()()n i tv x t x v il i n j j ij i i i ,,2,1d ,~1 =⎥⎦⎤⎢⎣⎡++=⎰∑=βαϕ 式中 l i 为第i 条特征曲线l i 上点(x,t )与点(x i ,0)之间的一段,(x i ,0)为l i与x 轴上[a,b ]的交点.上式可以更确切地写为()()[]()[]()[]()[]⎰∑⎭⎬⎫⎩⎨⎧+⋅+==t n j i i i j i ij i i i t x x t x x v t x x a t x x t x v 01d ,,,,,,,,,0,,,τττβττττϕ(i =1,2,, n )式中x i =x i (x ︒,t ︒,t )为过点(x ︒,t ︒)的第i 条特征曲线,利用逐次逼近法可解此积分方程.为此令()()()[]()()()()[]()[]()()[]()[]()()()()[]()[]()()[]()[]()n i t x x t x x v t x x a t x x t x v n i t x x t x x v t x x a t x x t x v n i t x x t x v i i tnj i k j i ij i i k ii i tn j i j i ij i i ii i i ,,2,1d ,,,,,,,,,0,,,,,2,1d ,,,,,,,,,0,,,,,2,10,,,}{}{01101010=+⋅+==+⋅+===⎰∑⎰∑=-=τττβττττϕτττβττττϕϕ序列{v i(k )} (k =0,1,2 ,)一致收敛于积分方程的连续可微解v i (x,t ) (i =1,2,, n ),这个v i (x,t )也就是对角型方程组的柯西问题的解.设在区域D 内对角型方程组的柯西问题的解存在,那末解与初值有下面的关系:(i) 依赖区间:过D 中任意点M (x,t )作特征曲线l 1,l n ,交x 轴于B,A ,称区间[A,B ]为M 点的依赖区间(图14.1(a )),解在M 点的值由区间[A,B ]的初值确定而与[A,B ]外的初值无关.(ii) 决定区域:过点A,B 分别作特征曲线l n ,l 1,称l n ,l 1 与区间[A,B ]围成的区域D 1为区间[A,B ]的决定区域(图14.1(b )),在区域D 1中解的值完全由[A,B ]上的初值决定.(iii) 影响区域:过点A,B 分别作特征曲线l 1,l n ,称l 1,l n 与[A,B ]围成的区域D 2为区间[A,B ]的影响区域(图14.1(c )).特别当区间[A,B ]缩为一点A 时,A 点的影响区域为D 3(图14.1(d )).在区域D 2中解的值受[A,B ]上的初值影响,而在区域D 2外的解的值则不受[A,B ]上的初值影响.图14.1[线性双曲型方程组的边值问题] 以下列线性方程组来说明:()⎪⎪⎩⎪⎪⎨⎧<++=∂∂+∂∂++=∂∂+∂∂2122221111λλλλc v b u a x v t v c v b u a xu t u (1) 1︒ 第一边值问题(广义柯西问题) 设在平面(x,t )上给定曲线段⋂AB ,它处处不与特征方向相切.过A,B 分别引最左和最右的特征曲线l 1及l 2.要求函数u (x,t ),v (x,t )在⋂AB ,l 1及l 2围成的闭区域D 上满足方程组,且在⋂AB 上取给定的函数值(图14.2(a )).2︒ 第二边值问题(古沙问题) 设l 1是过P 点的第一族特征线,l 2是第二族特征线,在l 1的一段PA 上给定v (x,t )的数值,在l 2的一段PB 上给定u (x,t )的数值,过A 点作第二族特征线,过B 点作第一族特征线相交于Q .求在闭区域PAQB 上方程组的解(图14.2(b )).3︒ 第三边值问题 设AB 为非特征曲线的曲线弧,AC 为一特征线弧,且在AB 与AC 之间不存在过A 点的另外特征曲线,过C 点作第二族特征线与过B 点的第一族特征线交于E 点,在AC 上给定v (x,t )的数值,在AB 上给定u (x,t )的数值,求ACEBA 所围成的闭区域D 上的方程组的解(图14.2(c )).图14.2[边值问题的近似解——特征线法] 以上定解问题,可用逐步逼近法求解,也可用特征线法求解的近似值.以第一边值问题为例说明.在曲线AB 上取n 个分点A 1,A 2,, A n ,并记A 为A 0,B 为A n +1,过A 0按A 0的第二特征方向作直线与过A 1按A 1的第一特征方向作直线相交于B 0;过A 1按A 1第二特征方向作直线与过A 2按A 2的第一特征方向作直线相交于B 1,最后得到B n (图14.3).用如下的近似公式来确定方程组(1)的解u (x,t ),v (x,t )在B i (i =0,1,2,…,n )的数值:()()()()()()(){}()[]()()()()()()(){}()[]u B u A B A a A u A b A v A c A A v B v A B A a A u A b A v A c A A i i i i i i i i i i i i i i i i i i i i -=++⨯+-=++⨯+⎧⎨⎪⎩⎪+++++++--11111111112122212121211λλ于是在一个三角形网格的节点上得到u,v 的数值.再经过适当的插值,当n 相当大,A i 、A i +1的距离相当小时,就得到所提问题的足够近似的解.[特殊形式的拟线性方程组——可化约系统] 一般的拟线性方程组的问题比较复杂,目前研究的结果不多,下面介绍一类特殊形式的拟线性方程组——可化约系统.如果方程组⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂0022221111x v D t v C x u B t u A x v D t v C x u B t uA 中所有的系数只是u,v 的函数,称它为可化约系统.考虑满足条件()()0,,≠∂∂t x v u 的方程组的解u=u (x,t ),v=v (x,t ).x,t 可以表示成u,v 的函数,且图14.3()()()()()()()()v u t x u tx vv u t x u x t v v u t x v tx u v u t x v xtu,,,,,,,,,,∂∂∂∂=∂∂∂∂∂∂-=∂∂∂∂∂∂-=∂∂∂∂∂∂=∂∂ 原方程化为⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂-∂∂-∂∂=∂∂+∂∂-∂∂-∂∂0022221111u t D u x C v t B vx A u t D u x C v t B v xA 这是关于自变量u,v 的线性方程组.这样就把求拟线性方程组满足()()0,,≠∂∂tx v u 的解,化为解线性方程组的问题.而此线性方程组满足条件()()0,,≠∂∂v u t x 的解,在(x,t )平面上的象即为原来拟线性方程组的解.。

1.3一阶线性偏微分方程的通解法

1.3一阶线性偏微分方程的通解法

1.3 一阶线性偏微分方程的通解法1.3.1 (3),1.3.2 (3),1.3.3(2)通解法:对某些偏微分方程,通过积分先求出通解,再由定解条件定出特解的解法。

1.3.1 两个自变量的一阶线性偏微分方程(,)(,)(,)(,)0.1(,),(,),(,),(,)D (,),(,)u ua x yb x yc x y u f x y x y a x y b x y c x y f x y a x y b x y ∂∂++=∂∂()其中,为平面区域上的连续函数,且不同时为0.1D (,)0,(,)0,(,)(,)(,)(,)(,)(,)(,)(,)=exp -exp ()0.3(,)(,)(,)()a x y b x y u c x y f x y u y b x y b x y x c x y c x y f x y u x y dy dy dy g x b x y b x y b x y g x C ≡≠∂+=∂⎡⎤⎛⎞⎛⎞+⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦∫∫∫若在上,则(0.2)可看做含参数的常微,其通解.(其中,为任意函数。

)D (,)(,)0,=,)(,)(,)(,)0(,)a x y b x y x y x y xyJ x y xyξϕηψϕϕϕψϕψψψ≠⎧⎨=⎩∂∂∂∂∂==≠∂∂∂∂∂若在上,则方程(0.2)不能直接积分求解。

试作变量代换((0.4)要求其雅可比行列式(保证新变量的独立性)利用链式法则++(,)=((,,(,)(,.=,)(,)(,)=0u u u u u ux x x y y y u x y u u x y u u u a b a b cu f xy x y x y a x y b x y x y ϕψϕψξηξηξηξηξηϕϕψψξηξϕϕϕ∂∂∂∂∂∂∂∂∂∂==∂∂∂∂∂∂∂∂∂∂=⎛⎞⎛⎞∂∂∂∂∂∂++++=⎜⎟⎜⎟∂∂∂∂∂∂⎝⎠⎝⎠∂∂+∂∂,的方程(0.1)变成)))的新方程(0.5)若取(是一阶齐次线性偏微分方程(0.6)的解,则新(,(,)u a b cu f xy u u ψψηηξη⎛⎞∂∂∂++=⎜⎟∂∂∂⎝⎠方程(0.5)成为(0.2)型的方程,(0.7)对积分即可求出其通解),代回原自变量即得通解。

一阶线性微分方程及其解法

一阶线性微分方程及其解法
一阶线性微分方程
一、一阶线性微分方程及其解法
1. 一阶线性微分方程的定义
在微分方程中,若未知函数和未知函数的导数都是一次的,则称
其为一阶线性微分方程。
例1 判下列微分方程是否为一阶线性微分方程:
(1) 3 y 2 y x 2
(3) y y 2 x 2
(5) y y y x
y u( x )e
P ( x )dx
u( x )e
P ( x )dx
( P ( x ))
将 y, y 代入原方程有
[u( x )e
P ( x )dx
u( x )e
P ( x )dx
( P ( x ))] P ( x )u( x )e
P ( x )dx


例4 求 x dy ( 2 xy x 1)dx 0 满足 y x 1 0 的特解. 解
dy 2 x 1 y , 其中 原方程变形为 2 dx x x 2 x 1 P ( x ) , Q( x ) 则通解为 2 x x
2
y
2 dx e x
例3

1 求 y y x 2 的通解. x
1 P( x) , x
Q( x) x 2 ,
x
2
则通解为
y
1 dx e x
e

1 dx x dx C
e
ln x
x
2
e
ln x
dx C


1 x 3 dx C x 1 3 C x 4 x
2)解法 常数变易法 3)通解公式
ye
Ce

偏微分方程解析解

偏微分方程解析解

偏微分方程解析解偏微分方程(Partial Differential Equation,简称PDE)是数学中研究最广泛的领域之一,它涉及到物理、工程、金融等众多领域中的实际问题。

解析解是指通过解析方法得到的能够精确描述偏微分方程解的解析表达式。

本文将介绍偏微分方程解析解的求解方法,并通过一些具体的例子进行说明。

一、一阶线性偏微分方程1.1 一维线性传热方程考虑一维线性传热方程:$$\frac{{\partial u}}{{\partial t}} = k\frac{{\partial^2 u}}{{\partialx^2}}$$其中,$u(t,x)$表示时间$t$和空间$x$上的温度分布,$k$为传热系数。

为了求解这个方程,我们引入一个新的变量,令$v(t,x) = u(t,x) -F(x)$,其中$F(x)$是由于边界条件所确定的函数。

将$v(t,x)$代入上面的方程得到:$$\frac{{\partial v}}{{\partial t}} = k\frac{{\partial^2 v}}{{\partialx^2}}$$接下来,我们可以使用分离变量法求解这个二阶偏微分方程。

假设$v(t,x)$可以表示为$v(t,x) = T(t)X(x)$的形式,则将这个表达式代入上面的方程中,得到:$$\frac{{T'(t)}}{{T(t)}} = k\frac{{X''(x)}}{{X(x)}}$$由于左边是关于$t$的表达式,右边是关于$x$的表达式,它们只能等于一个常数,即:$$\frac{{T'(t)}}{{T(t)}} = \frac{{X''(x)}}{{X(x)}} = -\lambda^2$$其中,$\lambda$是常数。

对于关于$x$的方程,我们可以得到:$$X''(x) + \lambda^2 X(x) = 0$$这是一个常微分方程,可以求解出$X(x)$的形式。

一阶偏微分方程初步

一阶偏微分方程初步

第六章 一阶偏微分方程初步6.2 一阶常微分方程的首次积分1.求下列方程的首次积分及通积分。

(1)⎪⎪⎩⎪⎪⎨⎧==z y dxdz y z dx dy 22(上式为(1)式,下式为(2)式)解:(2)式除以(1)式可得 33z y dy dz = 即033=-dy y dz z 积分可得: 144c y z =- 从而求得一个首次积分:44y z -=φ其次,由⎩⎨⎧==dxy zdz dxz ydy 22 (上式为(3)式,下式为(4)式) 将(3)和(4)相加可得:()dx z y zdz ydy 22+=+ 即dx zy zdzydy 22222=++ 积分可得到又一个首次积分xez y 222+=ψ。

于是微分方程组的通积分为 ⎪⎩⎪⎨⎧=+=-2222144c e z y c y z x(2)⎪⎪⎩⎪⎪⎨⎧-=-=yx x dt dy yx y dt dx(上式为(1)式,下式为(2)式)解:(1)式除以(2)式,可得,xydy dx =即ydy xdx =积分后得122c y x =-。

从而求得一个首次积分22y x -=φ(2)-(1)可得1)(=-dtx y d 即dt x y d =-)( 积分可得2c t x y =--。

从而有得到一个首次积分t x y --=ψ于是微分方程组的通积分为 ⎩⎨⎧=--=-2122c t x y c y x(3)xydzxz dy yz dx == 解:由xzdy yz dx =,可得0=-ydy xdx 。

积分可得:122c y x =- 从而求得一个首次积分22y x -=φ 由xydz xz dy =,可得0=-zdz ydy ,积分可得222c z y =-。

于是又得到一个首次积分: 22z y -=ψ于是微分方程组的通积分为 ⎩⎨⎧=-=-222122c z y c y x (4)xy dzz x dy y z dx -=-=- 解:利用合比定理可得:x y dz z x dy y z dx -=-=-=()0z y x d ++ 由此可得()0=++z y x d ,于是得到一个首次积分:z y x ++=φ另外,我们有()()()()222222222z y x d x y z zdz z x y ydy y z x xdx ++=-=-=-于是得到另一个首次积分222z y x ++=ψ。

第七章-7.2一阶线性偏微分方程

第七章-7.2一阶线性偏微分方程

xi' fi (t, x1,, xn ) i 1,2,, n
D Rn1
其中 fi (t, x1,, xn ) 对 x1, x2 ,, xn 是连续可微的.
设 (t, x1, x2 ,, xn ) 连续可微,且不是常数, 把方程组任一解 xi xi (t)代入 使 (t, x1, x2 ,, xn ) 成为与t 无关的常数,
dx1 = dx2 = ... = dxn
X1
X2
Xn
则 (x1, x2, , xn) c 是方程组的首次积分的充要条件为:
x1 X1 x2 X 2 xn X n 0
10 2021/5/7
定理7.1 设已知微分方程组(7.1)的 n个独立的首次积分
i (t, x1, x2, , xn ) Ci , (i 1, 2, , n)
n
的解,则 ciu i也为此方程的解。(ci为任意常数) i 1
定理2:若ui是L[u] fi (i 1, 2,...)的解,且 ciui收敛, i 1
则u ciui是L[u] ci fi的解。
i 1
i 1
定理3:一个给定的线性偏微分方程的解能够表示为它 的一个特解和它所对应的齐次方程的解的和。
c2
1 1
D( 1, 2 )
D(x, y)
x
2
y 2( x y)2 0
2
x y
故首次积分 1 c1, 2 c2是相互独立的,
所以原方程组通解为
x2 y2 c1
1 2
(
x
y)2
t
c2
13 2021/5/7
小结:寻找首次积分的方法(技巧性强)
为了求得首次积分,通常把如下方程组
如果在某区域内它们的Jacobi行列式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一阶线性偏微分方程求解例题
CH1典型方程和定解条件
【内容提要】
方程的建立(步骤:确定物理量;微元法建立等式;化简得方程) 主要方法:微元法;
泛定方程:
波动方程(双曲型):
弦振动方程:
传输线方程:
电磁场方程:
热传导方程/扩散方程(抛物型):
导热杆(无热源),
导热片(无热源)
稳恒方程(椭圆型):
Poisson方程:
Laplace方程:
2.定解条件:初始条件及边界条件
边界条件(1)第一类边界条件(Dirichlet条件):
(2)第二类边界条件(Neumann条件):
(3)第三类边界条件(Robin条件):
3.定解问题的提法:
4.线性偏微分方程的基本性质
(1).线性迭加原理
(2.)齐次化原理(冲量原理)
Duhamel原理:设是方程的解,
(是方程的解。

【典型习题】
1:长为的均匀杆,侧面绝缘,一端温度为零,另一端有恒定热流进入(即单位时间内通过单位截面积流入的热量为),杆的初始温度分布是,试写出相应的定解问题
解:初始条件:,杆的初始温度分布是,
边界条件:由杆的一端温度为零
,杆的另一端有恒定热流q,)(Fourier实验定律
故定解问题为:
该定解问题为齐次方程第二类非齐次边界条件的混合问题
3:长为的弦两端固定,开始时在受冲量的作用,试写出相应的定解问题
解:设弦的两端为:,由题意有
弦的振动方程为
边界条件为:
初始条件为:
在点,取小段(是无穷小量),
由冲量定理有,(冲量=动量改变量);

于是,
故定解问题为
该定解问题为齐次方程第一类齐次边界条件的混合问。

相关文档
最新文档