丙烯酸丙烯酸丁酯共聚物用作弹性皮革鞣剂的研究

丙烯酸丙烯酸丁酯共聚物用作弹性皮革鞣剂的研究
丙烯酸丙烯酸丁酯共聚物用作弹性皮革鞣剂的研究

丙烯酸/丙烯酸丁酯共聚物用作弹性皮革鞣剂的研究

20世纪60年代以来,丙烯酸类聚合物复鞣剂在国内外制革中得到了广泛研究与应用。科研人员采用的单体多种多样,有常规的丙烯酸酯类单体,也有醛类、不饱和长链单体;采用的聚合体系也不尽相同,有的采用水溶液聚合,有的采

用乳液聚合,也有的将胶原蛋白水解液、降解淀粉、纳米二氧化硅等引入丙烯酸复鞣剂中,所得复鞣剂功能各异。但到目前为止,关于提高皮革弹性的丙烯酸复鞣剂鲜见报道。

由于丙烯酸丁酯(BA)为常用的软性单体,与丙烯酸(AA)共聚后共聚物玻璃化转变温度较低,分子链柔软,而且共聚物侧链为非亲水性基团,具有两亲性表面活性剂的特性,与侧链为极性的共聚物相比,更有利于在革纤维中的渗透及对革纤维润滑,使革样在受到外力作用时纤维之间更容易相对滑动,因此本文以复鞣革样弹性为考察指标,采用AA、BA进行共聚制备了可以用于提高皮革弹性的特性复鞣剂。

1.实验部分

1.1原料

丙烯酸(AR),天津市化学试剂三厂;丙烯酸丁酯(AR),天津市博迪化工有限公司;过硫酸铵(AR),天津市化学试剂六厂;异丙醇(CP),天津市化学试剂三厂;氢氧化钠(AR),天津市化学试剂六厂;纯净水,西安万家纯净水厂;甲酸(AR),西安化玻站化学厂。

RST复鞣剂,成都德赛尔公司;标准铬粉〔w(Cr2O3)=(22±1)%〕,内蒙古黄河铬盐股份公司;荆树皮栲胶,广东新会皮革化工有限公司;合成单宁PR-C,拜耳无锡皮革化工有限公司;SC加脂剂,上海皮革化工厂;SE加脂剂,上海皮革化工厂;亚硫酸化鱼油、硫酸化蓖麻油、羊毛脂加脂剂、阳离子油,均产自陕西咸阳轻化工材料厂;NPS-1渗透剂,上海明华公司;直接黑,洛阳瑞丰公司;蓝湿革,河北辛集东明制革厂。

1.2仪器

傅里叶变换红外光谱仪,德国Bruker公司;D/Max2200PC型X射线衍射仪,日本理学公司;热分析系统,美国TA公司;扫描电子显微镜,中科院仪器厂;DV-II+可编程控制式黏度计,美国Brookfield公司;TS2000-S型多功能材料试验机,台湾高铁科技股份有限公司;GSD型不锈钢四联比色实验转鼓,无锡市新达轻工机械有限公司。

1.3系列AA/BA共聚物的合成及应用

在三口烧瓶中加入一定量的去离子水,置于水浴锅内加热并开始搅拌。将单体混合均匀加入恒压滴液漏斗,引发剂加入另一恒压滴液漏斗。升温至

设定温度后,开始同时分管滴加单体及引发剂。

滴加完毕后升温反应一定时间,反应结束后冷却至室温,用氢氧化钠调节pH≈5 0,出料,备用。

复鞣操作同常规。

1.4AA/BA共聚物的纯化

将制得的共聚物溶液和无水乙醇按1∶4体积比加入到烧杯中,白色有弹性的共聚物沉淀出来,用玻璃棒快速搅动,溶液中的聚合物即成为絮状物析出,静置沉淀后弃去上层清液并反复进行洗涤,将沉淀物在110℃左右烘干,即得透明的固体共聚物,用干燥器储存备用。

1.5AA/BA共聚物的性能测试及复鞣革样性能测试

1.5.1丙烯酸类聚合物复鞣剂黏度的测定

开启已经调节水平的黏度计,等待自动校正结束,然后把转子悬挂在仪器的联轴器上,转子应全部浸没于待测液中。待恒温水浴锅内水温为30℃,扭矩恢复至+0 3以内时开始测试。读数时扭距应尽量在30%~70%(不能低于10%或超过90%),每个样品测试两次,取算术平均值。

1.5.2玻璃化转变温度测试

用美国TA公司热分析系统Q1000DSC测试,温度范围:-180~725℃;灵敏度:0 2μW;温度准确度:±0 1℃;温度精度:±0 05℃;加热速率:0 01~200℃/min,升温范围:-100~200℃。

1.5.3红外光谱表征

用德国Bruker公司傅里叶变换红外光谱仪Vector-22测试,固体样品充分干燥后与KBr压片,波数范围400~4000cm-1,分辨率1cm-1。

1.5.4结晶度测试

用日本理学X射线衍射仪D/max2200PC进行测试,测试条件:CuKα辐射,管电压40kV,管电流40mA,石墨单色皿,扫描范围5°~70°。

1.5.5扫描电镜

用冰冻切片机切取待扫描试样,样品干燥后,将样品固定在样品台上,喷金,在扫描电镜下观察革样表面形貌。

1.5.6革样拉伸性能测试及弹性表征

将革样在皮革冲样机上取样,取样为中号试样,样块置于空气调节器中平衡48h,然后进行拉伸性能测试,拉伸条件同常规革样拉伸。

弹性表征采用拉伸曲线上初始阶段弹性形变范围内的杨氏模量(以下简称杨氏模量,Y.M.)进行表征,杨氏模量的数值为4个数值(革样两纵两横)的平均值。

2.结果与讨论

2.1丙烯酸丁酯用量对共聚物复鞣革样杨氏模量的影响

选取BA用量(占单体总物质的量的百分比)分别为5%、10%、15%、20%的共聚物复鞣革样,考察其对革样杨氏模量的影响,见图1。BA细化用量对革样杨氏模量的影响见图2。宜过多。从图1可以看出,BA的加入先使共聚物复鞣革样的杨氏模量有一定程度的下降,随着BA用量的增加,复鞣革样的杨氏模量呈明显上升趋势。对BA用量进一步细化考察后(见图2)可以看出,BA用量在2%时共聚物复鞣革样的杨氏模量最小,即对应革样的弹性最好。由于蓝湿革本身部位差等因素影响,为了增强对比性,

两组实验合成的共聚物分别在不同蓝湿革同部位进行应用对比,由于不同张蓝湿革之间纤维编织存在一定的差异,数据仅在同一图中具有对比性。

2.2引发剂用量对共聚物黏度、结晶度及复鞣革样杨氏模量的影响

引发剂用量对共聚物黏度及复鞣革样杨氏模量的影响,分别见图3、4。

引发剂的用量(占单体总质量的百分比)直接关系到聚合体系中活性自由基的数量,对聚合反应的可控性及聚合物的性质影响很大。从图3黏度变化曲线可以看出,随着引发剂用量的增大,共聚物的黏度逐渐减小,符合一般自由基聚合的基本规律。共聚物复鞣革样的杨氏模量在引发剂用量小于10%时变化规律与黏度变化规律基本一致(见图4),但是当引发剂用量大于10%后杨氏模量反而增大。这是因为皮革本身的特性决定了使用的复鞣剂要有合适的相对分子质量(以下简称分子量)分布范围,它对应着一定的聚合物的黏度,并不一定是聚合物的黏度越大或者越小越好。

丙烯酸/丙烯酸丁酯共聚物用作弹性皮革复鞣剂的研究

聚合物的结晶程度与大分子微结构有关,涉及规整性、分子链柔性、分子间力等。单体以结构单元形式通过共价键形成大分子,大分子之间以次价键相互作用,聚集成聚合物,共价键比次价键键能要大得多,但当聚合物的分子量逐渐增大后,侧链极性或者非极性基团的数量增多,分子间力会有一定的变化,对聚合物结晶度产生一定的影响。

对x(BA)=2%时不同引发剂用量共聚物的结晶度进行了考察,结果见图5、6。

丙烯酸/丙烯酸丁酯共聚物用作弹性皮革复鞣剂的研究

从图5可看出,随着引发剂用量的增大,共聚物的结晶度明显增大;通过结晶度计算(每个结晶度拟合5次得到5个值,去掉最大值与最小值,取其余三值的平均值)也说明结晶度逐渐增大(见图6)。在引发剂用量较少时,共聚物分子量相对较大,链长较长,共聚物分子链侧链极性基团与非极性的丁酯基数目较多,但是由于丁酯基分子链较长,其对分子链之间的排斥作用反而使分子链之间的相互作用减小,即共聚物的结晶度较低;当引发剂用量逐渐增大后,共聚物分子链逐渐变短,丁酯基对分子链之间的排斥作用逐渐减小,所以共聚物的结晶度逐渐增大。

2 3共聚物的表征

由于不同单体在不同条件下的竞聚率不同,聚合物有可能为两种单体均聚物的混合体,实验中采用的单体AA与BA的亲水性不同,考察它们的聚合情况显得更为必要。

对聚合物进行了IR、DSC测试,其结果分别见图7、8。

在共聚物红外谱图中同时存在酯基(1717 55cm-1)和羧酸盐(1404 02,1563 26cm-1)的特征峰,而在1650cm-1附近没有CC的特征吸收峰,说明两种单体中的不饱和双键已经聚合;从DSC曲线可以看出,测试样品只有一个玻璃化转变温度(17 91℃),没有聚丙烯酸及聚丙烯酸丁酯的玻璃化温度出现(两者的玻璃化温度分别为106、-54℃),从以上两点可以说明反应生成了丙烯酸-丙烯酸丁酯共聚物。

丙烯酸/丙烯酸丁酯共聚物用作弹性皮革复鞣剂的研究

2 4AA/BA共聚物用于复鞣的正交实验

AA/BA共聚物用于复鞣的正交实验结果见表1。

丙烯酸/丙烯酸丁酯共聚物用作弹性皮革复鞣剂的研究

表1表明,共聚物用作蓝湿革复鞣剂的优化应用条件为:m(共聚物)∶m(蓝湿革)=1 5∶100,时间30min,m(水)∶m(蓝湿革)=1 0∶1 0,复鞣温度30℃。从极差分析可知,m(水)∶m(蓝湿革)对结果影响较大,属于主要因素,其余因素对结果影响较小,为次要因素。

将优化得到的条件与实验中最优的条件(表1中第9组条件)进行实验对比,复鞣革样的杨氏模量分别为2 86MPa,3 08MPa,表明优化得到的条件应用效果最好。

2 5AA/BA共聚物与RST复鞣剂复鞣革样、铬粉复鞣革样的对比

2 5 13种复鞣剂复鞣革样的杨氏模量比较

表2中3种复鞣剂用量分别为m(AA/BA共聚物)∶m(蓝湿革)=1 5∶100,m(RST复鞣剂)∶m(蓝湿革)=5∶100,m(铬粉)∶m(蓝湿革)=3∶100,分别为各自用于复鞣的较优用量。通过比较发现,AA/BA共聚物、RST复鞣剂、铬粉分别复鞣革样的杨氏模量相差不大,三者对皮革弹性的贡献基本相当。

丙烯酸/丙烯酸丁酯共聚物用作弹性皮革复鞣剂的研究

2 5 2三者复鞣革样扫描电镜纵切面比较

采用AA/BA共聚物复鞣的革样纤维束空隙多(图9a),纤维束间距离较大,表明共聚物已进入纤维束间,纤维束得到充分分散;采用RST复鞣剂复鞣的革样(图9b)与AA/BA 共聚物复鞣革样扫描电镜照片类似;而采用铬粉复鞣的革样(图9c),纤维粗大,饱满,空隙少。

3 结论

(1)在其他条件相同时,引发剂用量越大共聚物黏度越小,共聚物的结晶度越大。

(2)BA用量为单体总物质的量的2%,引发剂用量为单体总质量的10%时,制备的AA/BA共聚物为两种单体的共聚物,其复鞣革样的弹性最好。

(3)共聚物用作蓝湿革复鞣的最佳应用条件为:共聚物用量为蓝湿革质量的1 5%,时间30min,复鞣温度30℃,m(水)∶m(蓝湿革)=1∶1。

(4)AA/BA共聚物用于蓝湿革复鞣对纤维的分散作用明显。

_环糊精包合皮革防霉剂OIT的研究

№.5 陕西科技大学学报 Oct.2008Vol.26 J OU RNAL OF SHAANXI UN IV ERSIT Y OF SCIENCE &TECHNOLO GY ?47? 3 文章编号:100025811(2008)05-0047-04 β2环糊精包合皮革防霉剂OIT 的研究 邵超群,陈均志 (陕西科技大学化学与化工学院,陕西西安 710021) 摘 要:采用β2环糊精包合皮革防霉剂N 2辛基242异噻唑啉232酮(O IT )制得了缓释长效防霉 剂,研究了OIT 与β2环糊精的质量比、包合时间、包合温度对产物包合率的影响,得到了最佳 包合条件,最后对产物进行了表征和缓释性能的测定. 关键词:β2环糊精;N 2辛基242异噻唑啉232酮;包合物;皮革;防霉剂 中图分类号:TS529.1 文献标识码:A 0 前言 N 2辛基242异噻唑啉232酮(O IT )是目前皮革工业常用的一种低毒、高效、广谱型的防霉剂,对霉菌具有很强的杀灭作用,能达到理想的防霉效果[1,2].但其直接使用时药效散发快,持续时间短,产生局部毒性大,因此影响了它的使用效果.本文利用β2环糊精对药品的优良包合与缓释作用对皮革防霉剂OIT 进行了包合,制得了使用方便、安全,可用于皮革的缓释型防霉剂. 1 实验 1.1 主要仪器与试剂 主要仪器:热重分析仪T GA Q500,美国TA 公司;JJ 21型定时电动搅拌器,金坛市华峰仪器有限公司;凯式定氮仪B 2324,瑞士BUC HI 公司. 图1 β2环糊精的立体结构主要试剂:β2环糊精(β2CD ),陕西礼泉化工有限实业公司;N 2辛 基242异噻唑啉232酮(OIT )98%,石家庄博雅化工公司. 1.2 OIT 包合物的制备 1.2.1 环糊精包合OIT 机理 β2环糊精是由淀粉经酶解环化而成的由7个吡喃葡萄糖单元以 α21,4甙键连接的环状低聚糖化合物,它形成了一种中空立体结构 的笼状化合物,如图1所示.吡喃葡萄糖环上的氢原子位于空腔内 并覆盖了配糖氧原子,使空腔内部成为疏水性空间,环糊精分子空 腔边缘含有羟基,使空腔外部表现为吸水性.这种憎水性内腔可与 很多油溶性物质结合形成一种特殊的包合物,而亲水的外腔可增大 油溶性物质在水中的溶解性,形成具有缓释作用的微囊,它已在医药、食品、农药、化肥的缓释上得到了较好的应用[426]. N 2辛基242异噻唑啉232酮(O IT )作为处理高档皮革的一种低毒、高效、广谱型防霉剂,对霉菌具有很强的杀灭作用,但是它仅溶于有机溶剂而微溶于水,使用过程不方便.通过β2环糊精包合OIT 不但可增大它的溶解性,而且可产生缓释作用,延长药物的作用时间. 3收稿日期:2008-05-10 作者简介:邵超群(1984-),男,浙江省温州市人,在读硕士生,研究方向:新型化工材料的开发及应用 基金项目:温州市工业科技开发项目(项目编号:2007G775K )

双乙酸钠的研究及应用综述

双乙酸钠的研究及应用综述 (西华大生物工程学院,崔晓红) 摘要:双乙酸钠,简称SDA,是一种多功能的食用化学品,主要用作食品和饲料工业的防腐剂、防霉剂.螯合剂、调味剂、PH调节剂、肉制品保存剂,也是复合型防霉剂的主要原料。本文介绍了双乙酸钠的特性,防腐机理,生产方法,制备,应用及市场前景等。 关键词:防腐;生产方法;应用;市场前景;特性 1 前言 随着人们生活质量的日益提高和环保意识的增强,对化学防腐剂的毒性和残留问题愈加重视。理想的化学防腐剂应是广谱、高效、低毒或无毒,对人和生物、生存环境没有破坏和副作用,在人体和动物体内不积累、无残留成分,最终代谢产物是水和二氧化碳,适应性好, 价格便宜。防腐防霉剂双乙酸钠就是这样一个产品。双乙酸钠(简称SDA)又称双乙酸氢钠、二醋酸一钠,是醋酸和醋酸钠的复合化合物,外观为白色吸湿性晶体粉末,略有醋酸气味,易溶于水和乙醇。国外商品名称为维他可乐波(YITA-CROP),在美国称为CROP-CURE 或GRATNCURE,日本则称为固体醋酸。由于它安全、无毒、无残留、无致癌、无致畸变, 被联合国卫生组织公认为“O”毒性物质,联合国粮农组织(FAO)和世界卫生组织(WHO)已将双乙酸钠推荐应用于食品、饲料方面的防霉保鲜。双乙酸钠在我国是一种新型的多功能绿色食品添加剂,主要用于粮食、食品的防霉、防腐、保鲜、调味和改善营养价值,此外还广泛用于烘烤食品、调味品、酱菜、雪菜、榨菜、肉食品、果汁饮料等加工食品之中,是目前替代山梨酸钾、苯钾酸钠、丙酸钙等防腐剂的理想产品[2]。 2 双乙酸钠的研究 2.1 双乙酸钠的特性 2.1.1 营养性 能够增加饲料的营养价值是SDA 的独有特性。在动物生产中,添加SDA 的饲料可以降低料肉比,提高猪的瘦肉率和牛奶乳脂率,从而提高饲料报酬。SDA 用于牧草青贮防腐,可提高牧草中蛋白质的利用率。 2.1.2 适口性 在食品中SDA 不仅可起防腐剂作用,还起优良螯合剂作用,可延长食品保存期;同时改善、维持食品风味。饲料中SDA 的酸味掩盖了添加的合成药物及多种微量元素的不适气味,使许多畜禽更喜爱食用含SDA 的混合饲料,从而提高采食量和日增重,大大提高投入产出比。2.1.3 高效性 在新收割的粮食或饲料中添加0.15%~0.75%的SDA 溶液,就能有效防止霉变。SDA的防腐效果优于目前广泛使用的丙酸盐类、山梨酸类,而其添加量比丙酸盐的低,价格却只有丙酸盐的2/3(目前市场价:丙酸盐约15 000 元/t;SDA 约10 000 元/t)。SDA 与山梨酸及其盐、与PM防霉防腐剂均有很好的协同防霉作用;当它与山梨酸以7: 3 比例复配时,能显著提高SDA 的防霉能力,比单独使用时效果提高6.3倍。刘治雄等(1997)以SDA 为主要成分,并加入配料和填充剂,组成增效双乙酸钠,添加0.1%用量时的防霉效果优于同剂量的富马酸二甲酯,且防霉成本较低。 2.1.4 安全性 SDA 的毒性很低,小鼠口服LD50为3.31g/kg;大鼠口服LD50 为4.96g/kg;每人每天允许摄入量(ADI)为0~15mg/kg。SDA 在体内最终代谢产物为二氧化碳和水,无残留,无任何毒副作用,没有致癌、致病因素;同时适量摄入醋酸还有益于人、畜健康,被列为国际开发利用的一种食品及饲料使用的营养型防霉保鲜添加剂。因此,SDA 是一种环境友好的产品,将

甲基丙烯酸丁酯MSDS

1、物质的理化常数 国标编号: 33601 CAS: 97-88-1 中文名称: 甲基丙烯酸丁酯 英文名称: butyl methacrylate;methacrylic acid n-butyl ester 别名: 异丁酸正丁酯 分子式: C8H14O2;CH2C(CH3)COO(CH2)3CH3分子量: 142.22 熔点: <-50℃ 密度: 相对密度(水=1)0.90(20℃) 蒸汽压: 41.1℃ 溶解性: 不溶于水,可混溶于醇、醚,溶于多数有机溶剂 稳定性: 稳定 外观与性状: 无色、具有甜昧和酯气味的液体,商品一般加有阻聚剂 危险标记: 7(易燃液体) 用于有机合成,制造塑料、光学玻璃的粘结剂,纺织、皮 用途: 革及造纸 2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:吸入、口服或经皮肤吸收对身体有害。其蒸气或雾对眼睛、粘膜和呼吸道有刺激作用。中毒表现有烧灼感、咳嗽、喘息、喉炎、气短、头痛、恶心和呕吐。 二、毒理学资料及环境行为 毒性:属微毒类。 急性毒性:LD501490mg/kg(小鼠腑腔内);11300mg/kg(兔经皮);LC5014305mg/m3,4小时(大鼠吸入)

亚急性和慢性毒性:大鼠经5%LD50,4~6个月(喂饲),中度蓄积。 危险特性:易燃,遇明火、高热能引起燃烧爆炸。在受热、光和紫外线的作用下易发生聚合,粘度逐渐增加,严重时整个容器的单体可全部发生不规则爆发性聚合。若遇高热,可能发生聚合反应,出现大量放热现象,引起容器破裂和爆炸事故。 燃烧(分解)产物:一氧化碳、二氧化碳。 3.现场应急监测方法: 4.实验室监测方法: 气相色谱法,参照《分析化学手册》(第四分册,色谱分析),化学工业出版社 空气中微量丙烯酸丁酯和甲基丙烯酸丁酯的鉴定(气相色谱法)[刊俄]/Ozhandzhapanyan A.N.;Puzyan E.A.//ГИГ.caHИT.-1988,(11).-43~45 《分析化学文摘》1992-1993 5.环境标准: 前苏联车间空气中有害物质的最高容许浓度30mg/m3 前苏联(1975) 水体中有害物质最高允许浓度0.02mg/L 6.应急处理处置方法: 一、泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 二、防护措施

丙烯酸正丁酯MSDS

丙烯酸正丁酯安全技术说明书 说明书目录 第一部分化学品名称第九部分理化特性 第二部分成分/组成信息第十部分稳定性和反应活性 第三部分危险性概述第十一部分毒理学资料 第四部分急救措施第十二部分生态学资料 第五部分消防措施第十三部分废弃处置 第六部分泄漏应急处理第十四部分运输信息 第七部分操作处置与储存第十五部分法规信息 第八部分接触控制/个体防护 第一部分:化学品名称 化学品中文名称:丙烯酸正丁酯化学品俗名: 化学品英文名称:n-butyl acrylate 英文名称: 技术说明书编码:253CAS No.:141-32-2 生产企业名称: 地址: 生效日期: 第二部分:成分/组成信息 有害物成分含量CAS No. 丙烯酸正丁酯141-32-2 第三部分:危险性概述 危险性类别:第3.3 类高闪点易燃液体。 侵入途径:皮肤接触、吸入、食入 健康危害:吸入、口服或经皮肤吸收对身体有害,其蒸气或雾对眼睛、粘膜和呼吸道有刺激作用,中毒 表现有烧灼感、咳嗽、喘息、喉炎、气短、头痛、恶心和呕吐。 环境危害:对大气可造成污染。 燃爆危险:本品极度易燃,具刺激性。 第四部分:急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:饮足量温水,催吐。就医。 第五部分:消防措施 危险特性:易燃,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。能与浓硫酸、发烟硝酸猛烈反应, 甚至发生爆炸。与卤化物(如四氯化碳)能发生强烈反应。 有害燃烧产物:一氧化碳、二氧化碳、氧化氮。 灭火方法:尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂:抗溶性泡沫、二氧化碳、 干粉、砂土。用水灭火无效。 第六部分:泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防静电工作服。尽可能切断泄漏源。防止流入下水道、排洪沟 等限制性空间。小量泄漏:用砂土或其它不燃材料吸附或吸收。也可以用大量水冲洗,洗水 稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防 爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 第七部分:操作处置与储存 操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴过滤式防毒面具(半面罩),戴安全防护眼镜,穿防静电工作服,戴橡胶耐油手套。远离火 种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空 气中。避免与氧化剂、还原剂、碱类接触。灌装时应控制流速,且有接地装置,防止静电积 聚。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急 处理设备。倒空的容器可能残留有害物。 储存注意事项:储储存于阴凉、通风的库房。远离火种、热源。保持容器密封。应与氧化剂、还原剂、卤素等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工 具。储区应备有泄漏应急处理设备和合适的收容材料。 第八部分:接触控制/个体防护 中国MAC(mg/m3):未限定标准 前苏联MAC(mg/m3):10 TLVTN:ACGIH 10ppm,52mg/m3[皮] TLVWN:未限定标准 监测方法:气相色谱法;溶剂解析 工程控制:生产过程密闭,全面通风。 呼吸系统防护:空气中浓度超标时,佩戴过滤式防毒面具(半面罩)。 眼睛防护:一般不需要特殊防护,高浓度接触时可戴安全防护眼镜。 身体防护:穿防静电工作服。 手防护:戴橡胶耐油手套。

皮革生产工艺

革leather 又称皮革,由生皮经一系列物理和化学加工制成的一种稳定而耐用的材料或制品。不易腐烂、易保养、易加工成形,有一定物理机械强度并保持由胶原纤维自然编织而成的天然材料的特性,尤其是具有保暖、透气,及透水汽、吸汗及排汗等卫生性能;手感和穿着性能,人造材料难以比拟。因动物皮种类不同可分为牛革、猪革、羊革等;主要品种有重革和轻革两类;按鞣制方法可分为植物鞣革(树膏)、铬鞣革、油鞣革之分;按用途又可分为鞋面革、底革、服装革、手套革、箱包革、工业用革等;按加工和涂饰方法不同又可分类全粒面革、绒面革、苯胺革、修面革、油蜡革、打光革等。 皮革蛋白粉leather protein powder [黄色或微黄色粉末,用于饲料添加剂作优质的蛋白饲料。也可用作优质肥料。将制革厂的含铬皮革下脚料,用水洗去可溶性盐等杂质,经高温水解,压滤除去氢氧化铬残渣,减压蒸发,真空干燥,粉碎后即得。 皮革涂饰leather finish 轻革整理阶段的重要工序;应用涂饰剂修饰革的表面。主要是使革面颜色匀净、光泽、光滑,并掩饰一部分伤残和缺陷以改善革的表观,同时在革面形成保护膜,提高革的防水性、耐磨擦及易保养性。皮革的品种和用途不同,涂饰的材料和方法相应千变万化。采用不同涂饰材料和工艺方法还能开创新的皮革花色和提高次皮利用率。涂饰层次一般分为底层、中层和顶层;涂饰的方式有揩、淋、刷、喷等。在涂饰过程中还须辅以拉软、熨平或打光等整理操作。 皮革涂饰剂leather finishing agent, leather finish ]用于修饰革面增进美感、修正瑕疵、搞高耐用性、增加花色品种和皮革附加值的名色浆液。采用揩、刷、淋、喷等方式施加于革面上,形成一层具有一定粘着牢度和机械强度的薄膜;由成膜剂、着色剂、涂饰助剂和介质等组成;按用途及施加顺序分为底层、中层和顶层光亮层涂饰剂;按介质不同可分有机溶剂型和水基型涂饰剂;有机溶剂型因溶剂易燃、有毒、污染环境已经逐渐被淘汰,而水基型涂饰剂已经成为主流产品。 鞣制tanning 制革的关键工序。是皮胶原与鞣剂发生结合作用使生皮变性为不易腐烂、经久耐用的革的主要过程。生皮在鞣制前应充分完成准备工段。通过鞣制使鞣剂与皮胶原多肽链之间形成多点结合,提高了皮的收缩温度,改善了皮抵抗酸、碱、酶等侵袭的能力,从性质上完成了从生皮到革的转变。鞣制的方法依皮革品种不同而有区别,轻革主要用铬鞣法,重革主要用植物鞣法。此外还有铝鞣、锆鞣、醛鞣、合成鞣剂鞣、油鞣等方法。 制革tanning 将生皮加工成革的过程;有准备、鞣制和整理三个阶段;准备阶段有浸水、去肉、浸灰脱毛、软化、浸酸等工序,使生皮处于准备进入鞣制的状态;鞣制阶段是将生皮转变为革的质变阶段,使易腐烂的生皮变为不易腐败的革。鞣制方法主要有铬鞣和植物鞣法,此外还有醛鞣、

甲基丙烯酸甲酯催化剂简述

两段氧化法生产甲基丙烯酸甲酯工艺所需催化剂的简述 两段氧化法生产甲基丙烯酸甲酯的工艺,其反应部分共分为两个反应阶段。第一段反应为氧化反应,汽化的叔丁醇(或异丁烯)和空气、水蒸气按一定的比例通过装有催化剂的固定床反应器,在催化剂的催化氧化作用下快速反应,生产甲基丙烯醛及一部分副产物,反应生产物经冷却脱水后作为二段反应的原料。 二段反应为氧化酯化反应,在釜式反应器(三相浆态床)内,甲基丙烯醛、甲醇和氧气按一定的比例进行反应,在催化剂的作用下氧化酯化生成甲基丙烯酸甲酯,产物进入精馏工段进行精制提纯。 一段催化剂形状为实心柱状,其生产过程主要分为溶解、搅拌加热、喷雾干燥、压片成型等工序。生产的不同批次的催化剂均要进行充分的单管实验,以验证催化剂各方面的性能,从单管实验结果来看,本公司生产的催化剂大部分均能达到理想的效果,产品性能比较稳定。通过单管实验数据及生产运行的结果来看,热媒温度控制在330℃是较合适的,此时,床层热点温度在360摄氏度(热点温度最高不超过390℃)左右。投入生产以来,催化剂各方面的性能均表现良好。 二段催化剂为黑色粉末状固体,载体过三百目筛,附着钯金属后 灼烧而成。通过微反实验验证催化剂性能(同时要加入两种助催化剂),选择性及转化率均能达到要求,但投入生产后,化工的放大作用影响了催化剂的性能。可能是因为进料方式、气体分布情况、催化剂分布情况等因素,催化剂选择性及转化率没有达到微反实验的效果。同时,反应器的形状、大小、气体分布装置、三相分离设备均一定程度的影

响了生产的顺利进行,同时也限制了催化剂性能的充分体现。 从催化剂投入使用以来,分析生产数据,一段反应的催化剂性能优于二段反应的催化剂。但一段反应的反应器性能及操作均有类似产品可供参考,而二段反应的反应器及分离设施均在摸索阶段,所以二段催化剂没有表现出良好的性能,除了本身的原因之外,反应器的性能也一定程度上影响了其能力的发挥。 此外,一二段催化剂本身均有需要提高的地方,例如其反应表面积及机械强度等。

环保型纺织品抗菌整理剂进展综述

环保型纺织品抗菌整理剂进展综述 董红霞 (上海洁宜康化工科技有限公司,上海,200333) 摘要:本文叙述了抗菌整理剂的作用机理、分类以及选择标准,着重分析了目前抗菌剂行业面临的安全环保法规的压力,并提出了应对这些安全环保压力的方向。 关键词:抗菌剂;环保;安全;法规;进展 随着对天然与健康产品的持续追求,人们更关注纺织品的健康及舒适性,尤其是抗菌防臭加工最受市场的青睐。在气候温暖而且雨量较多的地区,细菌(微生物)容易大量繁殖,而人体穿着纤维制品时,汗、皮脂、污垢等人体代谢物均附着在纤维的表面上,而间接提供细菌所需的营养源进行繁殖,在这过程中代谢所产生挥发性恶臭物质,也会引发其它相关的疾病。 具有抗菌功能的纺织面料对于防止病菌的侵害起着极其重要的作用,用抗菌功能性纺织面料制作的日用品已逐渐为人们所重视,并随着科技的发展,广泛而深入地辐射到生活的细节中。 开发抗菌功能性纺织品所需要的抗菌整理剂是一门牵涉甚广的技术科学。该技术使用在纺织品的抗菌上,可提供不同保护程度的功能。 本文详细叙述了抗菌整理剂的作用机理、抗菌剂的种类以及抗菌剂选择远离等,着重分析了当前安全法规对抗菌整理剂的较高要求,并提出了环保型抗菌整理剂的发展方向。 1、抗菌防臭加工的必要性 纤维或纺织品经抗菌处理后,可以发挥两方面的作用: (1):保护使用纺织品穿著者和使用者的人,如果抗菌纺织品能杀灭金黄色葡萄球菌、大肠杆菌、尿素分解菌等细菌和真菌,则能预防传染性疾 病的传播;防止内衣裤和袜子产生恶臭;防止袜子上脚癣菌的繁殖; 防止婴儿因尿布发生红斑;提高老人和病人的免疫能力;而且可以在 医院内预防交叉感染(即MRSA感染); (2):对纤维材料本身的保护,防止纤维受损,由于具有杀灭黑曲霉菌、球毛壳菌、结核杆菌和柠檬色青霉菌等各种霉菌,可以防止纤维材料变 色、脆损以及纺织品贮藏时发生霉变。 2、纺织品上抗菌剂的作用模式和机理 活的微生物,如细菌和真菌等,主要由多糖组成的最外层的细胞壁。这种细胞壁保证了细胞的完整性,保护细胞避免受到外部环境的影响。紧接细胞壁下层的是半透性的细胞膜,这种细胞膜包括细胞内细胞器和多种酶和核酸。这些酶负责发生在细胞壁内的化学反应,核酸则储存这些微生物的基因信息。这些微生物的存活或生长取决于细胞的完整性、这些组成部分的协同作用和合适状态。 抗菌整理剂抑制微生物的生长(静菌)或杀死微生物(杀菌)。几乎所有的用于纺织品的抗菌剂,如银抗菌剂、三氯生、PHMB和季铵盐化合物等,均为杀菌剂。这些抗菌剂能损坏细胞壁,或改变细胞膜的渗透性,使蛋白质中毒,抑制酶的活性,或抑制脂类的合成,而这些都是细胞存活的必需条件。

皮革鞣制化学

鞣制化学 ISBN 7-5079-4693-0/TS.2742 使生皮变成革的质变过程称为鞣制,所用的化学材料为鞣剂。 鞣剂:铬鞣剂、锆鞣剂、铝鞣剂、植物鞣剂、合成鞣剂、树脂鞣剂 铬鞣剂——铬鞣法——铬鞣革 植物鞣剂——植物鞣法——植物鞣革 铬与铝结合——铬铝鞣法——铬铝鞣革 鞣制和鞣法无机鞣制和鞣法铬鞣剂及鞣法 锆鞣、铝鞣、钛鞣、铁鞣、硅 鞣 有机鞣制及鞣法油鞣 植物鞣 醛鞣 树脂鞣 合成鞣 结合鞣法无机—无机结合 无机—有机结合 有机—有机结合 金属配合物鞣剂及鞣法 生皮在鞣制以前虽经过一系列化学和机械的处理,但还不是革,是生皮。鞣制后的革和生皮不同,革遇水不会膨胀,不易腐烂,变质、较能耐蛋白酶的分解,有较高的耐湿热稳定性并具有一定的成形性。良好的透气性能,耐磨性和丰满性。 生皮:血光皮、定音鼓皮。 鞣制效应 1)增加纤维结构的多孔性 2)减少胶原纤维束,纤维,原纤维之间的粘合性。 3)减少真皮在水中的膨胀性 4)减少胶原的耐湿热,稳定性 5)提高胶原的化学作用以及耐酶作用,以及减少湿皮的挤压变形等。 在各种无机鞣剂中,最优良的是铬盐。 耐温热温度: 生皮(65℃) 油鞣革(60-70℃) 植物鞣革(75-85℃)

铝鞣革(70-75℃) 锆鞣革(90-95℃) 铬鞣革(100℃以上) 铬鞣耐水洗,柔软、丰满、弹性和延伸性好。 铬鞣法:铬鞣液和粉状铬鞣剂。 拜耳公司CHROMSAL法——粉剂 粉剂溶于水,30-60min以后加碱 BAYCHROM法:粉剂加提碱剂支撑自碱化铬鞣剂 影响铬鞣的因素 1)裸皮的状态 生皮的预处理:酸、盐和油处理 浸酸预处理:调节裸皮的PH值,使之适合铬鞣的条件,以防止表面过鞣。浸酸程度根据成革的具体要求和裸皮在准备工段的松散程度灵活掌握。 浸盐预处理:采用无水硫酸钠(元明粉),有脱水作用。利用元明粉预处理后片皮、削匀的方法。 油乳液预处理:缩短鞣制的时间 铬资源: 稀缺,而且皮革工业废料率大。有毒性。 植物鞣质 植物体内多元酚化合物 填充性好 植物鞣革:鞋底革(外底与内底革)、工业用革、装具革、箱包革 是生产重革的基本鞣法:皮革组织紧密、坚实饱满、延伸性小,成形性好。 生产轻革时,也常用它来进行复鞣或者填充。 植物鞣剂 植物鞣剂俗称栲胶,是林产化学工业主产品之一。是重要的化工原材料。 植物鞣料 高等织物特别是双子叶植物才含有较多的鞣质。 工业利用价值的原料:树皮、木材、果荚(壳)和树叶都是栲胶原料。

丙烯酸丙烯酸丁酯共聚物用作弹性皮革鞣剂的研究

丙烯酸/丙烯酸丁酯共聚物用作弹性皮革鞣剂的研究 20世纪60年代以来,丙烯酸类聚合物复鞣剂在国内外制革中得到了广泛研究与应用。科研人员采用的单体多种多样,有常规的丙烯酸酯类单体,也有醛类、不饱和长链单体;采用的聚合体系也不尽相同,有的采用水溶液聚合,有的采 用乳液聚合,也有的将胶原蛋白水解液、降解淀粉、纳米二氧化硅等引入丙烯酸复鞣剂中,所得复鞣剂功能各异。但到目前为止,关于提高皮革弹性的丙烯酸复鞣剂鲜见报道。 由于丙烯酸丁酯(BA)为常用的软性单体,与丙烯酸(AA)共聚后共聚物玻璃化转变温度较低,分子链柔软,而且共聚物侧链为非亲水性基团,具有两亲性表面活性剂的特性,与侧链为极性的共聚物相比,更有利于在革纤维中的渗透及对革纤维润滑,使革样在受到外力作用时纤维之间更容易相对滑动,因此本文以复鞣革样弹性为考察指标,采用AA、BA进行共聚制备了可以用于提高皮革弹性的特性复鞣剂。 1.实验部分 1.1原料 丙烯酸(AR),天津市化学试剂三厂;丙烯酸丁酯(AR),天津市博迪化工有限公司;过硫酸铵(AR),天津市化学试剂六厂;异丙醇(CP),天津市化学试剂三厂;氢氧化钠(AR),天津市化学试剂六厂;纯净水,西安万家纯净水厂;甲酸(AR),西安化玻站化学厂。 RST复鞣剂,成都德赛尔公司;标准铬粉〔w(Cr2O3)=(22±1)%〕,内蒙古黄河铬盐股份公司;荆树皮栲胶,广东新会皮革化工有限公司;合成单宁PR-C,拜耳无锡皮革化工有限公司;SC加脂剂,上海皮革化工厂;SE加脂剂,上海皮革化工厂;亚硫酸化鱼油、硫酸化蓖麻油、羊毛脂加脂剂、阳离子油,均产自陕西咸阳轻化工材料厂;NPS-1渗透剂,上海明华公司;直接黑,洛阳瑞丰公司;蓝湿革,河北辛集东明制革厂。 1.2仪器

年产10万吨丙烯酸工艺设计资料

1引言 1.1 概述 丙烯酸是一种重要的有机化工原料,主要用于生产丙烯酸酯类,还可用于生产高吸水性树脂、助洗涤剂和水处理剂等,广泛应用于涂料、化纤、纺织、皮革、塑 料、粘合剂、石油开采等各个领域[1]。 20世纪20年代末,化学家Otto Rohm从2-氯乙醇制羟基丙腈转而生产丙烯酸,完成了对丙烯酸工业化生产工艺的研究[2]。1939年,德国化学家Reppe发明了以乙炔、一氧化碳和水为原料,用羰基镍为催化剂合成出丙烯酸。1969年,美国联碳公司从英国BP公司引进丙烯直接氧化经丙烯醛生产丙烯酸技术,并建立工业化生 产装置。经过多年不断改进,尤其是对丙烯氧化催化剂的改进,该法已成为制造丙 烯酸的主导生产方法[3]。 1.2 丙烯酸生产工艺技术 丙烯酸在20世纪30年代实现工业化生产,其生产方法经历了氰乙醇法、雷普(Reppe)法、烯酮法、丙烯腈水解法和丙烯氧化法[4,5]。 1.2.1 氰乙醇法 氰乙醇法是最早工业化生产丙烯酸及其酯的方法。德国和美国分别在1927年和1931年用此方法建成了工业化装置。由于反应过程会生成各种聚合物,因此丙 烯酸收率较低,仅为60~70%,且氰化物剧毒,严重污染环境,故采用此法的生产 装置早在50年代就已关闭。 1.2.2 Reppe法 20世纪30年代,德国的Walter Reppe博士发现利用自己发明的Reppe反应可以直接从乙炔生产丙烯酸和丙烯酸酯类。在60年代以前,用Reppe法或改良Reppe 法生产丙烯酸及其酯的工艺曾占统治地位,随着石油化工技术的开发和环境保护要 求的加强,到1976年改良Reppe法的装置已全部停产。 1.2.3 烯酮法 以乙酸或丙酮为原料,磷酸三乙酯为催化剂,在700℃时裂解生成乙烯酮,然后与无水甲醛在AlCl3或BF3催化剂存在下,在25℃进行气相反应生成β-丙内酯,再与热的磷酸接触异构化生成丙烯酸。乙烯酮法产品纯度高,收率也高,副产物和 第 1 页共35页

抗菌防霉剂-防霉防腐剂-纺织品防霉剂-皮革防霉剂-纺织防霉助剂-防霉整理剂-纺织防霉剂-织物布料面料防霉剂

纺织品抑菌整理技术进展的回顾(二) yd5710 杨栋梁(全国染整新技术应用推广协作网) 原载:全国染整新技术应用推广协作网简讯2005/10/28 注:本文第(一)部分,已在本网页[讨论园地]第54期中转载 三、抑菌整理[12-19] 1996年1l月,日本纤维制品新功能评估协议会JAFET(原名纤维制品卫生加工协议会,简称SEK)在原有抗菌防臭加工部外,增设了抑菌加工部,规划开发更高抗菌性能的抑菌整理产品,以满足防止"院内感染"以抑制MRSA繁殖为主要目标的新产品开发和探讨产品达到的防菌性能。在1998年2月制订抑菌整理产品通过SEK认证标准,同年6月在原有抗菌防臭整理产品外,开始了一般用途的抑菌整理产品SEK(橙色)认证,特殊用途抑菌整理产品SEK(红色)认证,则于同年9月才实施认证。 原有抗菌防臭整理目的是以抗菌防臭为诉求,提供抑制细菌在纤维上繁殖,防止产生臭味的纺织品。其合格产品的标志为兰色SEK,作为对消费者保证质量。而抑菌整理目的 是提高生活环境,与医护环境质量为诉求,提供抑制细菌在纤维上繁殖的纺织品,根据产品的用途,可分成二种:一般家庭用纺织品,其合格产品以橙色SEK标志表示,特殊用途,如医院以及相应的医疗、保健等机构用的纺织品,其合格产品以红色SEK标志表示。生产以上两类产品所用的抗菌整理剂及整理产品的安全性评估方法和标准是完全相同的,这里不再列出。但抗菌防臭整理产品与抑菌整理产品评估的标准是有区别的,今简单归纳如表2所示。 然抗菌剂的应用。 纳米抗菌材料中,以纳米级TiO2和或ZnO的光催化型抗菌剂,最受人注目。它们本身无毒、无味、无刺激性、对人体安全性高耐热稳定性好,不会燃烧,呈白色,以其优异的抗菌性而成为研究开发的热点之一。它们的结构属有氧空位的典型N型半导体,能吸收能量高于禁带宽度的短波光辐射,使价带电子跃到导带,同时形成空穴。一般情况下,电子处于价带中,受到晶体场的限制和禁锢,不能自由运动;如果受到外来可见光或紫外线照射,价带电子被激活到导带,形成空穴-电子对,它与吸附在其表面的H2O和02作用生成具有极强化学活泼性的羟基自由基(OH·)和活性氧离子 (-0-2);它能与细菌内有机物及其分泌毒素反应,

丙烯酸正丁酯

英文名:n-butyl acrylate 分子式:C 7H 12 O 2 分子量: CAS号:141-32-2 1、物理与化学性质 外观与性状:无色液体 熔点(℃): 沸点(℃): 相对密度(水=1): 相对蒸气密度(空气=1): 饱和蒸气压(kPa):(35.5℃) 溶解性:不溶于水,可混溶于乙醇、乙醚 2、主要用途 用作有机合成中间体、粘合剂、乳化剂。 3、燃烧爆炸危险性 燃烧性:可燃 闪点(℃): 37 爆炸上限%(V/V): 爆炸下限%(V/V): 危险特性:易燃,遇明火、高热或与氧化剂接触,有引起燃烧爆炸的危险。容易自聚,聚合反应随着温度的上升而急骤加剧。 有害燃烧产物:一氧化碳、二氧化碳。 禁配物:强氧化剂、强碱、强酸 灭火方法:消防人员必须穿全身防火防毒服,在上风向灭火。遇大火,消防人员须在有防护掩蔽处操作。灭火剂:泡沫、干粉、二氧化碳、砂土。用水灭火无效,但可用水保持火场中容器冷却。 4、毒性及健康危害 中国MAC(mg/m3):未制定标准 前苏联MAC(mg/m3):10

TLVTN:ACGIH 10ppm,52mg/m3 TLVWN:未制定标准 侵入途径:吸入、食入、经皮吸收 健康危害:吸入、口服或经皮肤吸收对身体有害。其蒸气或雾对眼睛、粘膜和呼吸道有刺激作用。中毒表现有烧灼感、咳嗽、喘息、喉炎、气短、头痛、恶心和呕吐。 5、包装与储运、操作 储存:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。包装要求密封,不可与空气接触。应与氧化剂、酸类、碱类分开存放,切忌混储。不宜大量储存或久存。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。 包装类别:053 包装方法:安瓿瓶外普通木箱;螺纹口玻璃瓶、铁盖压口玻璃瓶、塑料瓶或金属桶(罐)外普通木箱水运卸装时,控制流速和流量,严格执行初始流速1m/s 和作业最大流速3m/s及流量。 运输注意事项:运输时运输车辆应配备相应品种和数量的消防器材及泄漏应急处理设备。夏季最好早晚运输。运输时所用的槽(罐)车应有接地链,槽内可设孔隔板以减少震荡产生静电。严禁与氧化剂、酸类、碱类、食用化学品等混装混运。运输途中应防曝晒、雨淋,防高温。中途停留时应远离火种、热源、高温区。装运该物品的车辆排气管必须配备阻火装置,禁止使用易产生火花的机械设备和工具装卸。公路运输时要按规定路线行驶,勿在居民区和人口稠密区停留。铁路运输时要禁止溜放。严禁用木船、水泥船散装运输 操作注意事项:密闭操作,加强通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴直接式防毒面具(半面罩),戴化学安全防护眼镜,穿防静电工作服,戴橡胶耐油手套。远离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏到工作场所空气中。避免与氧化剂、酸类、碱类接触。充装要控制流速,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。

复鞣剂的作用机理

复鞣剂的作用机理、种类、应用及发展前景 轻化1101 丁帅帅 04 摘要:复鞣剂用于皮革复鞣的化工材料。可包括主鞣剂(如铬鞣剂、植物鞣剂等),主要是指为复鞣目的而研制开发的鞣革材料,例如丙烯酸树脂复鞣剂、氨基树脂复鞣剂、恶唑烷鞣剂等。本文主要介绍了丙烯酸树脂类复鞣剂的作用机理、应用及前景。 关键词:复鞣剂丙烯酸树脂机理应用前景 1.前言 复鞣是现代制革工业中的一项重要工序,被誉为皮革加工中的“点金术”。对于轻革而言,复鞣几乎是一项必不可少的工序。常用的复鞣剂可分为无机鞣剂、有机鞣剂和金属有机鞣剂,大类。细分则可分为无机盐复鞣剂、植鞣剂、芳香族合成鞣剂、醛鞣剂、丙烯酸类树脂复鞣剂等。丙烯酸类单体种类繁多、资源丰富,丙烯酸树脂开发空间大,因此在皮革工业中具有广阔的应用前景。 2.丙烯酸树脂类复鞣剂 2.1丙烯酸树脂复鞣剂的复鞣机理 Heideman假定丙烯酸树脂复鞣剂的竣基与胶原的氨基之间存在质子交换。而Mage kurth 指出丙烯酸对天然胶原的亲和力较弱,但丙烯酸与铬盐在皮内络合是可能的反应机理。Anslovar用 NMR技术证实了在pH3-5之间发生丙烯酸复鞣剂的梭基与铬盐的络合,而在pH10-12 之间出现丙烯酸基与胶原的氨基的质子交换。由于整个皮革生产过程中,都是在pH 低于7的情形下完成,所以可以认为“络合”是主要的反应。徐学诚等在研究 SA复靴剂的基础上,借鉴交联橡胶的唯象理论,提出了树脂复鞣革的交联—缠结或吸附网络结构模型。魏德卿通过对ART的研究发现梭基和铬揉革的铬发生配位结合,它少量地渗人胶原分子螺旋状碳链之间,更多地与超分子尺寸以上各级纤维作用。因此,丙烯酸树脂复鞣剂的复鞣机理可概括为:通过改变纤维间、多肤链间缠结的填充效果,以及进人原纤维的鞣剂与铬鞣剂进行络合反应,而使革具有不同的手感和力学性能。 2.2新型丙烯酸树脂复鞣剂Z-1的机理 将Z-1作为鞣剂对酸皮进行鞣制,通过Ts的测定考察其作用效果。试验结果显示,酸皮收缩温度有一定程度提高,鞣制22h后,Ts由62°C升高至71°C ,单独用作复鞣剂对铬鞣革进行复鞣时,Ts则无明显升高。共聚物分子中含有大量-COOH的及链端-OH ,可与胶原肽链上的氨基形成氢键或结合,同时具有一定的填充效果。烷氧基长链及部分未反应聚乙二醇分子具有表面活性,可促进大分子渗透,同时对染色具有一定的匀染作用。复鞣时-COOH

丙烯酸的生产工艺与技术路线的选择分析

丙烯酸的生产工艺与技术路线的选择分析 2.1 丙烯酸生产方法及比较 就世界范围而言,丙烯酸的生产历程经历了这几个阶段:a,氯乙醇法b,氰乙醇法c,高压Reppe法d,烯酮法e,丙烯腈水解法f,丙烯直接氧化法。在本世纪70年代以前上述前6种方法并存,自70年代初日本触媒公司和美国UCC公司采用丙烯氧化生产装置以来,该法已占有主导地位。 前五种方法中,除了高压Reppe法直接制造丙烯酸之外,其余都是制取丙烯酸低级酯,若要得到高级醇酯,还需要通过丙烯酸甲酯的酯交换反应。因此80年代以后,上述方法只有德国BASF的高压Reppe法和美国Rohm&Hass公司的改良Reppe法的生产装置,以及各国因地制宜、规模较小的丙烯腈水解法的生产装置尚保留。至90年代初,上述公司的生产装置改造成丙烯直接氧化法已基本完成。 不同原料制备丙烯酸对比见下表。 表2.1 几种生产丙烯酸方法的比较

2.1.1丙烯直接氧化法基本原理 丙烯直接氧化法又可分为一步法和两步法。当前,丙烯酸的工业生产方法主要为丙烯两步氧化法。在20世纪80年代后新(扩)建的工业生产装置采用丙烯两步氧化法约占95%-96%,我国丙烯酸生产装置均采用丙烯两步氧化法。 丙烯两步氧化法是在复合金属氧化物催化剂存在下,经空气氧化先生成丙烯醛,再进一步催化氧化成丙烯酸。 …… 2.1.2丙烯直接氧化法各工艺及特点 工业生产中应用的丙烯两步氧化法技术主要有:美国索亥俄(Sohio)技术、日本触媒技术、日本三菱油化技术、日本化药技术、德国BASF技术等。丙烯酸两步氧化法生产的技术水平主要取决于催化剂的性能,这是丙烯酸生产的关键。目前,国内丙烯酸装置采用的丙烯酸催化剂主要有日本触媒催化剂、日本三菱油化催化剂、日本化药催化剂、德国BASF催化剂和中石油兰州化工研究中心催化剂。 1、美国索亥俄技术 … 2、德国巴斯夫(BASF)技术 … 3、日本触媒化学(Nsfac)技术 … 4、日本三菱油化(MPCL)技术 … 5、日本化药技术 采用的催化剂为涂裹型催化剂,形状规则,为球形,利于装填,机械强度较好,目的产物选择性好。缺点是反应热点温度较高,如果飞温容易烧坏催化剂。丙烯氧化制丙烯醛采用Mo、m、Ni、Co、Pe系催化剂,丙烯醛氧化制丙烯酸采用Mo、V、Cu、Sb系催化剂。反应器均为固定床列管式反应器。主要应用在上海华谊、江苏裕廊和兰州石化等部分装置上。

皮革废水处理现状及其研究进展[文献综述]

文献综述 皮革废水处理现状及其研究进展 一、前言部分 随着改革开放的发展,制革行业已形成了相对独立的行业队伍,企业经济类型结构也发生了较大变化。国有企业在逐步退出制革行业,民营、三资企业将成为制革行业发展的主力军。虽然目前80%以上的制革企业已经建有污水处理设施,但由于处理模式和投入不同,承接设计和施工单位也存在不规范之处,凸现的问题很多,制革废水处理的达标率很低。 制革工业是一个污染严重的产业,主要是因为制革废水中含有大量蛋白质、染料、油脂、硫化物、铬盐以及毛渣等生化耗氧量高的有机和无机的可溶物及悬浮物,以及有潜在毒性的金属盐类。此外,在制革过程中,硫化氢、氨水和其它一些易挥发的有机化合物,以及蛋白质固体废料分解都会产生有毒气体或不良气味。虽然环境恶化与高浓度氨氮和铬对人体及生物种群的危害目前尚无数量化,但是可以肯定高浓度的氨氮和铬将会对人体带来一定的危害。 在"十二五"时期,水环境保护仍是环保工作的重中之重,并且根据我国的具体情况,决定在经济条件、水域条件和管理条件相对适宜的重点区域开展总氮总磷控制试点。因此当务之急[1],必须尽快制定制革废水设计规范和行业排放标准,推行制革企业区域集中,污染物集中治理和集中管理、加快技术进步和治理力度,才能实现制革废水全面稳定达标排放的目标。 二、主题部分 2.1 制革业简述 制革生产过程中只有20%原料转化成皮革,80%转化成副产品和废物。制革废水是一种高浓度有机废水。颜色是由染料和鞣剂造成的,臭味是由硫化钠和蛋白质分解引起的。毒性主要是硫化物或及三价铬引起的[2]。 2.2制革工艺

表一:制革工艺及其产物 生产工艺生产过程废水主要来源主要污染物 准备工段浸水、去肉、脱脂、浸 灰脱毛膨胀浸水、脱毛、去肉 及洗涤水 蛋白质、油脂含料高,显碱性,含易产生泡沫 的洗剂 鞣制工段脱灰、软化、浸酸、鞣 制、水洗、中和、染色、 加脂脱灰、浸酸、铬鞣、 染色加脂及洗水 脱灰水显碱性,硫化钠、石灰、蛋白质含量高; 浸酸、铬鞣水显酸性,含有铬;染色加脂水显 酸性,含染料,色度高 整饰工段干燥、整理、和涂饰, 使皮革定型和美观主要为干操作,废 水量极少 污染较轻 2.3 制革废水的来源、种类及性质 制革业是产生大量污水的行业,制革过程中使用了大量化工材料,如酸、碱、盐、硫化钠、石灰、表面活性剂、铬鞣剂、加脂剂、染料、及一些有机助剂的,其中部分进入废水造成污染。主要污染物是COD、BOD、三价铬、硫化物。 制革污水不仅量大,而且是一种成分复杂、高浓度的有机废水[3],其中含有大量石灰、染料、蛋白质、盐类、油脂、氨氮、硫化物、铬盐以及毛类、皮渣、泥砂等有毒有害物质[4,5]。制革污水中cr COD、5 BOD、硫化物、氨氮、悬浮物等非常高,是一种较难治理的工业废水。在制革生产中,由于原料皮的不同、加工工艺不同、成品的不同,污水水质差别很大,尤其是COD的差别,就山羊皮和绵羊皮而言,COD的差别都在1800~6100mg/l;制革废水的毒性来自高浓度硫化物和三价铬,废铬液中铬的含量可达数千mg/L;制革废水的臭味主要由蛋白质分解和添加的硫化钠造成;制革废水的色度主要是染料和鞣剂造成,废水的色度可达数千倍;制铬废水总体显碱性,pH值常在9—10,而且有较多的氨氮。 2.4 我国制革废水的处理现状 制革废水是污染严重、较难处理的工业废水。制革综合废水处理工艺可分为一级处理和二级处理,如有必要还可进行三级处理。一级处理主要由各种格栅、格网、沉砂池、调节池和沉淀池等组成。还可采用化学混凝、气浮等技术操作强化处理效果。二级处理单元是制革废水处理流程中最重要的操作单元,根据有无生物系统,可将目前国内制革综合废水处理工艺分为全物化处理和生物处理两大类[6,7],无论那种方法预处理都是必要的,在去除铬的同时还可以沉淀大量COD和SS[8,9],而且对色度也有一定的去除效果[10]。预处理工艺:综合废水—格栅—预沉淀池(去除泥.、沙及易沉淀物)—调解池(预曝气和沉淀絮凝)。目前采用的治理技术有混凝沉淀、气浮、活性污泥、生物膜、氧化沟、厌氧等方法,一些新污染治理技术如低温厌氧技术、膜技术、电解技术等正在推广使用。 制革废水全物化处理是指废水二级处理也采用物化法[11],整个工艺系统不包含生化处理单元。近年来。人们对微电解、超声波和高效絮凝剂等技术在制革废水中的应用进行深入

甲基丙烯酸正丁酯

1、物质的理化常数 2.对环境的影响: 一、健康危害 侵入途径:吸入、食入、经皮吸收。 健康危害:吸入、口服或经皮肤吸收对身体有害。其蒸气或雾对眼睛、粘膜和呼吸道有刺激作用。中毒表现有烧灼感、咳嗽、喘息、喉炎、气短、头痛、恶心和呕吐。 二、毒理学资料及环境行为 毒性:属微毒类。 急性毒性:LD501490mg/kg(小鼠腑腔内);11300mg/kg(兔经皮);LC5014305mg/m3,4小时(大鼠吸入)

亚急性和慢性毒性:大鼠经5%LD50,4~6个月(喂饲),中度蓄积。 危险特性:易燃,遇明火、高热能引起燃烧爆炸。在受热、光和紫外线的作用下易发生聚合,粘度逐渐增加,严重时整个容器的单体可全部发生不规则爆发性聚合。若遇高热,可能发生聚合反应,出现大量放热现象,引起容器破裂和爆炸事故。 燃烧(分解)产物:一氧化碳、二氧化碳。 3.现场应急监测方法: 4.实验室监测方法: 气相色谱法,参照《分析化学手册》(第四分册,色谱分析),化学工业出版社 空气中微量丙烯酸丁酯和甲基丙烯酸丁酯的鉴定(气相色谱法)[刊俄]/Ozhandzhapanyan A.N.;Puzyan E.A.//ГИГ.caHИT.-1988,(11).-43~45 《分析化学文摘》1992-1993 5.环境标准: 前苏联车间空气中有害物质的最高容许浓度 30mg/m3 前苏联(1975) 水体中有害物质最高允许浓度 0.02mg/L 6.应急处理处置方法: 一、泄漏应急处理 迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿消防防护服。尽可能切断泄漏源。防止进入下水道、排洪沟等限制性空间。小量泄漏:用不燃性分散剂制成的乳液刷洗,洗液稀释后放入废水系统。大量泄漏:构筑围堤或挖坑收容。用泡沫覆盖,降低蒸气灾害。用防爆泵转移至槽车或专用收集器内,回收或运至废物处理场所处置。 二、防护措施 呼吸系统防护:空气中浓度超标时,应该佩戴直接式防毒面具(半面罩)。必要时,佩戴导管式防毒面具或自给式呼吸器。 眼睛防护:戴化学安全防护眼镜。 身体防护:穿防静电工作服。

相关文档
最新文档