高三数学二轮专题复习教案――立体几何

高三数学二轮专题复习教案――立体几何
高三数学二轮专题复习教案――立体几何

高三数学二轮专题复习教案――立体几何

一、本章知识结构:

二、重点知识回顾

1、空间几何体的结构特征

(1)棱柱、棱锥、棱台和多面体

棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、

五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等; ②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.

棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.

棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.

多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.

(2)圆柱、圆锥、圆台、球

分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球 圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥. 2、空间几何体的侧面积、表面积

(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.

因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c ,高为h ,则侧面积S ch

=侧.

若长方体的长、宽、高分别是a 、b 、c ,则其表面积

2()

S ab bc ca =++表.

(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l ,底面半径为r ,那么圆柱的侧面积2πS rl

=侧,此时圆柱底

面面积

2

πS r =底.所以圆柱的表面积

222π2π2π()

S S S rl r r r l =+=+=+侧底.

(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r ,母线长为

l ,则侧面积πS rl =侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为

2πππ()

S S S rl r r r l =+=+=+侧底.

(4)正棱锥的侧面展开图是n 个全等的等腰三角形.如果正棱锥的周长为c ,斜高为

h ',则它的侧面积12S ch '

=侧.

(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是

c c ',,斜高是h ',那么它的侧面积是1

2S ch '

=侧.

(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r ',,母线长为l ,那么它的侧面积是

π()S r r l

'=+侧.

圆台的表面积等于它的侧面积与上、下底面积的和, 即

2222π()πππ()

S S S S r r l r r r r r l rl ''''=++=+++=+++侧上底下底.

(7)球的表面积2

4πS R =,即球的表面积等于其大圆面积的四倍. 3、空间几何体的体积

(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh

=柱体.其中底

面半径是r ,高是h 的圆柱的体积是

2πV r h

=圆柱.

(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是

13V Sh =

锥体.其中底面半径是r ,高是h 的圆锥的体积是21

π3V r h =圆锥,就是说,锥体的

体积是与其同底等高柱体体积的1

3.

(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h ,

那么它的体积是

1

()3V S S h

=台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221

π()3V r Rr R h

=++圆台.

(4)球的体积公式:

3

34R V π=

.

4、中心投影和平行投影

(1)中心投影:投射线均通过投影中心的投影。 (2)平行投影:投射线相互平行的投影。 (3)三视图的位置关系与投影规律

三视图的位置关系为:俯视图在主视图的下方、左视图在主视图的右方. 三视图之间的投影规律为:

主、俯视图———长对正;主、左视图———高平齐;俯、左视图———宽相等. 5、直观图画法 斜二测画法的规则:

(1)在空间图形中取互相垂直的x 轴和y 轴,两轴交于O 点,再取z 轴,使xOz ∠=90°,且yOz ∠=90°.

(2)画直观图时把它们画成对应的x '轴、y '轴和z '轴,它们相交于O ',并使x O y '''∠=45°,x O z '''∠= 90°。

(3)已知图形中平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x '轴、y '

轴和z '轴的线段.

(4)已知图形中平行于x 轴和z 轴的线段,在直观图中长度相等;平行于y 轴的线段,

长度取一半.

6.平面

(1)对平面的理解

平面是一个不加定义、只须理解的最基本的原始概念.

立体几何中的平面是理想的、绝对平且无限延展的模型,平面是无大小、厚薄之分的.类似于我们以前学的直线,它可以无限延伸,它是不可度量的.

(2)对公理的剖析

(1)公理1的内容反映了直线与平面的位置关系,公理1的条件“线上不重合的两点在平面内”是公理的必要条件,结论是“线上所有点都在面内”.这个结论阐述了两个观点:一是整条直线在平面内;二是直线上所有点在平面内.

其作用是:可判定直线是否在平面内、点是否在平面内.

(2)公理2中的“有且只有一个”的含义要准确理解.这里的“有”是说图形存在,“只有一个”是说图形唯一,确定一个平面中的“确定”是“有且只有”的同义词,也是指存在性和唯一性这两方面.这个术语今后也会常常出现,要理解好.

其作用是:一是确定平面;二是证明点、线共面.

(3)公理3的内容反映了平面与平面的位置关系,它的条件简而言之是“两面共一点”,结论是“两面共一线,且过这一点,线唯一”.对于本公理应强调对于不重合的两个平面,只要它们有公共点,它们就是相交的位置关系,交集是一条直线.

其作用是:其一它是判定两个平面是否相交的依据,只要两个平面有一个公共点,就可以判定这两个平面必相交于过这点的一条直线;其二它可以判定点在直线上,点是两个平面的公共点,线是这两个平面的公共交线,则这点在交线上.

7. 空间直线.

(1)空间直线位置分三种:相交、平行、异面. 相交直线—共面有且有一个公共点;平行直

线—共面没有公共点;异面直线—不同在任一平面内。

(2)异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)

(3)平行公理:平行于同一条直线的两条直线互相平行.

(4)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等

推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.

8. 直线与平面平行、直线与平面垂直.

(1)空间直线与平面位置分三种:相交、平行、在平面内.

(2)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)

(3)直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)

(4)直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.

直线与平面垂直判定定理:如果一条直线和一个平面内的两条相交直线垂直,则这条直线与这个平面垂直。

推论:如果两条直线同垂直于一个平面,那么这两条直线平行.

9. 平面平行与平面垂直.

(1)空间两个平面的位置关系:相交、平行.

(2)平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)

推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.

(3)两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)

(4)两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直. 两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)

(5)两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面. 10. 空间向量.

(1)a.共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合.

(2)空间向量基本定理:如果三个向量,,不共面,那么对空间任一向量,存在一个唯一的有序实数组x 、y 、z ,使

c

z b y a x p ++=.

推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使

z y x ++=(这里隐含x+y+z≠1).

(3)a.空间向量的坐标:空间直角坐标系的x 轴是横轴(对应为横坐标),y 轴是纵轴(对应为纵轴),z 轴是竖轴(对应为竖坐标). ①令a =(a1,a2,a3),),,(321b b b =,则

)

,,(332211b a b a b a ±±±=+,

)

)(,,(321R a a a ∈=λλλλλ,

3

32211b a b a b a ++=? ,

∥)(,,332211R b a b a b a ∈===?λλλλ3

3

2211b a b a b a ==?

332211=++?⊥b a b a b a 。

2

223

21a a a ++==(用到常用的向量模与向量之间的转化:

O

A

B

C

D

a

a=

?

?

=

)

空间两个向量的夹角公式

2

3

2

2

2

1

2

3

2

2

2

1

3

3

2

2

1

1

|

||

|

,

cos

b

b

b

a

a

a

b

a

b

a

b

a

b

a

b

a

b

a

+

+

?

+

+

+

+

=

?

?

>=

<

(a=123

(,,)

a a a,b=

123

(,,)

b b b)。

②空间两点的距离公式:21

2

2

1

2

2

1

2

)

(

)

(

)

(z

z

y

y

x

x

d-

+

-

+

-

=.

b.法向量:若向量所在直线垂直于平面α,则称这个向量垂直于平面α,记作α

⊥,如果α

a那么向量a叫做平面α的法向量.

c.用向量的常用方法:

①利用法向量求点到面的距离定理:如图,设n是平面α的法向量,AB是平面α的一条射线,其中α

A,则点B到平面α的距离为.

②.异面直线间的距离

||

||

CD n

d

n

?

=

(12,l l是两异面直线,其公垂向量为n,C D

、分别是12

,l l

上任一点,d为12

,l l

间的距离).

③.点B到平面α的距离

||

||

AB n

d

n

?

=

(n为平面α的法向量,AB是经过面α的一条斜线,Aα

∈).

④直线AB与平面所成角

sin

||||

AB m

arc

AB m

β

?

=

(m为平面α的法向量).

⑤利用法向量求二面角的平面角定理:设2

1

,n分别是二面角β

α-

-l中平面β

α,的法向量,则2

1

,n

n所成的角就是所求二面角的平面角或其补角大小(

2

1

,n

n方向相同,则为补角,2

1

,n

n反方,则为其夹角).

二面角

l

αβ

--的平面角

cos

||||

m n

arc

m n

θ

?

=

cos

||||

m n

arc

m n

π

?

-

(m,n为平面α,β的法向量).

三、考点剖析

考点一:空间几何体的结构、三视图、直观图

【内容解读】了解柱、锥、台、球体及其简单组合体的结构特征,并能运用这些特征描述现实生活中的简单物体的结构。能画出简单空间几何体的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图。能用平行投影与中心投影两种方法画出简单空间几何体的三视图与直观图。了解空间几何体的不同表示形式。会画某建筑物的视图与直观图。

空间几何体的结构与视图主要培养观察能力、归纳能力和空间想象能力,能通过观察几何体的模型和实物,总结出柱、锥、台、球等几何体的结构特征;能识别三视图所表示的空间几何体,会用材料制作模型,培养动手能力。

【命题规律】柱、锥、台、球体及其简单组合体的结构特征在旧教材中出现过,而三视图为新增内容,一般情况下,新增内容会重点考查,从2007年、2008年广东、山东、海南的高考题来看,三视图是出题的热点,题型多以选择题、填空题为主,也有出现在解答题里,如2007年广东高考就出现在解答题里,属中等偏易题。

例1、(2008广东)将正三棱柱截去三个角(如图1所示A

B C ,,分别是GHI △三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )

解:在图2的右边放扇墙(心中有墙),可得答案A

点评:本题主要考查三视图中的左视图,要有一定的空间想象能力。

例2、(2008江苏模拟)由大小相同的正方体木块堆成的几何体的三视图如图所示,则该几何体中正方体木块的个数是 .

E F

D

I

A H G

B

C E

F D A

B C

侧视 图1

图2 B

E

A .

B

E

B . B

E

C .

B

E

D .

解:以俯视图为主,因为主视图左边有两层,表示俯视图中左边最多有两个木块,再看左视图,可得木块数如右图所示,因此这个几何体的正方体木块数的个数为5个。

点评:从三视图到确定几何体,应根据主视图和俯视图情况分析,再结合左视图的情况定出几何体,最后便可得出这个立体体组合的小正方体个数。 考点二:空间几何体的表面积和体积

【内容解读】理解柱、锥、台的侧面积、表面积、体积的计算方法,了解它们的侧面展开图,及其对计算侧面积的作用,会根据条件计算表面积和体积。理解球的表面积和体积的计算方法。

把握平面图形与立体图形间的相互转化方法,并能综合运用立体几何中所学知识解决有关问题。

【命题规律】柱、锥、台、球的表面积和体积以公式为主,按照新课标的要求,体积公式不要求记忆,只要掌握表面积的计算方法和体积的计算方法即可。因此,题目从难度上讲属于中档偏易题。

例3、(2007广东)已知某几何体的俯视图是如图5所示的矩形,正视图(或称主 视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视 图)是一个底边长为6、高为4的等腰三角形.

主视图

左视图

俯视图

(1)求该几何体的体积V ; (2)求该几何体的侧面积S

解: 由已知可得该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥V-ABCD 。

(1) ()1

86464

3V =???=

(2) 该四棱锥有两个侧面VAD. VBC 是全等的等腰三角形,且BC 边上的高为

1h == 另两个侧面VAB. VCD 也是全等的等腰三角形, AB 边上的高为

25

h ==

因此

11

2(685)4022S =????=+点评:在课改地区的高考题中,求几何体的表面积与体积的问题经常与三视图的知识结合在一起,综合考查。 例4、(2008山东)右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( ) A .9π B .10π

C .11π

D .12π

解:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的简单几何体, 其表面及为:

22411221312.S ππππ=?+??+??=,故选D 。

点评:本小题主要考查三视图与几何体的表面积。既要能识别简单几何体的结构特征,又要掌握基本几何体的表面积的计算方法。

例5、(湖北卷3)用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为

俯视图

正(主)视图 侧(左)视图

( )

A. 38π

B. 328π

C. π28

D. 332π

解:截面面积为π?截面圆半径为1,又与球心距离为1?

所以根据球的体积公式知

3433R V π==

球,故B 为正确答案. 点评:本题考查球的一些相关概念,球的体积公式的运用。 考点三:点、线、面的位置关系

【内容解读】理解空间中点、线、面的位置关系,了解四个公理及其推论;空间两直线的三种位置关系及其判定;异面直线的定义及其所成角的求法。

通过大量图形的观察、实验,实现平面图形到立体图形的飞跃,培养空间想象能力。会用平面的基本性质证明共点、共线、共面的问题。

【命题规律】主要考查平面的基本性质、空间两条直线的位置关系,多以选择题、填空题为主,难度不大。

例6、如图1,在空间四边形ABCD 中,点E 、H 分别是边AB 、AD

的中点,F 、G 分别是边BC 、CD 上的点,且CF CB =CG CD =2

3,则

( )

(A )EF 与GH 互相平行 (B )EF 与GH 异面

(C )EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上 (D )EF 与GH 的交点M 一定在直线AC 上

解:依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,由公理2可知,E 、F 、G 、H 共面,因为

EH =12BD ,FG BD =2

3,故EH ≠FG ,所以,EFGH 是梯形,EF 与GH 必相交,设交点为M

图1

因为点M 在EF 上,故点M 在平面ACB 上,同理,点M 在平面ACD 上,即点M 是平面ACB 与平面ACD 的交点,而AC 是这两个平面的交线,由公理3可知,点M 一定在平面ACB 与平面ACD 的交线AC 上。 选(D )。

点评:本题主要考查公理2和公理3的应用,证明共线问题。利用四个公理来证明共点、共线的问题是立体几何中的一个难点。

例7、(2008全国二10)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( )

A .13

B .

C .

D .23

解:连接AC 、BD 交于O ,连接OE ,因OE ∥SD.所以∠AEO 为异面直线SD 与AE 所成的角。设侧棱长与底面边长都等于2,则在⊿AEO 中,OE =1,AO =2,AE=3122

=

-,

于是

33

3

11

32)2(1)3(cos 2

22=

=

??-+=

∠AEO ,故选C 。

点评:求异面直线所成的角,一般是平移异面直线中的一条与另一条相交构成三角形,再用三角函数的方法或正、余弦定理求解。

考点四:直线与平面、平面与平面平行的判定与性质

【内容解读】掌握直线与平面平行、平面与平面平行的判定与性质定理,能用判定定理证明线面平行、面面平行,会用性质定理解决线面平行、面面平行的问题。

通过线面平行、面面平行的证明,培养学生空间观念及及观察、操作、实验、探索、合情推理的能力。

【命题规律】主要考查线线、面面平行的判定与性质,多以选择题和解答题形式出现,解答题中多以证明线面平行、面面平行为主,属中档题。

例8、(2008安徽)如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,

4ABC π

∠=

, OA ABCD ⊥底面, 2OA =,M 为OA 的

中点,N 为BC 的中点

(Ⅰ)证明:直线MN OCD

平面‖;

(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。

方法一:(1)证明:取OB 中点E ,连接ME ,NE

ME CD ME CD ∴,‖AB,AB ‖‖

又,NE OC MNE OCD ∴平面平面‖‖

MN OCD ∴平面‖

(2)

CD ‖AB,

MDC ∠∴为异面直线AB 与MD 所成的角(或其补角) 作,AP CD P ⊥于连接MP

⊥⊥平面A B C D ,∵OA ∴CD MP

,4

2ADP π

∠=

∵∴DP =

MD ==1cos ,23DP MDP MDC MDP MD π

∠=

=∠=∠=∴

所以 AB 与MD 所成角的大小为3π

(3)AB 平面∵∴‖OCD,

点A 和点B 到平面OCD 的距离相等,连接OP ,过点A 作 AQ OP ⊥ 于点Q ,,,,AP CD OA CD CD OAP AQ CD ⊥⊥⊥⊥平面∵∴∴

又 ,AQ OP AQ OCD ⊥⊥平面∵∴,线段AQ 的长就是点A 到平面OCD 的距离

N

B

2OP ==

==∵,2AP DP ==

2

2

23OA AP AQ OP ===∴,所以点B 到平面OCD

的距离为23

方法二(向量法)

作AP CD

⊥于点P ,如图

,分别以AB,AP ,AO 所在直线为,

,x y z 轴建立坐标系

(0,0,0),(1,0,0),(0,

((0,0,2),(0,0,1),(1,22244A B P D O

M N --,

(1)

2222(1,,1),(0,,2),(2)44222MN OP OD =-

-=-=-

-

设平面OCD 的法向量为

(,,)n x y

z =,则0,n OP n OD ==即

202022

y z x y z -=?

?-+-=??

取z =

解得(0,n =

22(1,,1)(0,4,2)0

4

4MN n =--

=∵

MN OCD ∴平面‖

(2)设AB 与MD 所成的角为θ,

(1,0,0),(1)22AB MD ==-

-∵

1cos ,23

AB MD AB MD

π

θθ=

=

=

?∴∴ , AB 与MD 所成角的大小为3π

(3)设点B 到平面OCD 的交流为d ,则d 为OB 在向量

(0,n =上的投影的绝对值,

(1,0,2)OB =-, 得

23

OB n d n

?=

=

.所以点B 到平面OCD 的距离为2

3

点评:线面平行的证明、异面直线所成的角,点到直线的距离,既可以用综合方法求解,也

可以用向量方法求解,后者较简便,但新课标地区文科没学空间向量。

例9、(2008江苏模拟)一个多面体的直观图和三视图如图所示,其中M 、N 分别是AB 、AC 的中点,G 是DF 上的一动点. (1)求证:;AC GN ⊥

(2)当FG=GD 时,在棱AD 上确定一点P ,使得GP//平面FMC,并给出证明.

证明:由三视图可得直观图为直三棱柱且底面ADF 中AD ⊥DF,DF=AD=DC (1)连接DB ,可知B 、N 、D 共线,且AC ⊥DN 又FD ⊥AD FD ⊥CD ,

∴FD ⊥面ABCD ∴FD ⊥AC

∴AC ⊥面FDN FDN GN 面? ∴GN ⊥AC (2)点P 在A 点处

证明:取DC 中点S ,连接AS 、GS 、GA G 是DF 的中点,∴GS//FC,AS//CM ∴面GSA//面FMC GSA GA 面?

∴GA//面FMC 即GP//面FMC

点评:证明线面平行,在平面内找一条直线与平面外的直线平行,是证明线面平行的关键。 考点五:直线与平面、平面与平面垂直的判定与性质

【内容解读】掌握直线与平面垂直、平面与平面垂直的判定与性质定理,能用判定定理证明线线垂直、线面垂直、面面垂直,会用性质定理解决线面垂直、面面垂直的问题。

通过线面垂直、面面垂直的证明,培养学生空间观念及及观察、操作、实验、探索、合情推理的能力。

【命题规律】主要考查线线、面面垂直的判定与性质,多以选择题和解答题形式出现,解答题中多以证明线线垂直、线面垂直、面面垂直为主,属中档题。 例10、(2008广东五校联考)正方体ABCD —A1B1C1D1中O 为正方形ABCD 的中心,M 为BB1的中点,求证: (1)D1O//平面A1BC1; (2)D1O ⊥平面MAC. 证明: (1)连结

11

,BD B D 分别交

11

,AC A C 于

1

,O O 在正方体

1111

ABCD A B C D -中,对角面

11BB D D

为矩形

1

,O O 分别是

11

,BD B D 的中点

11

//BO D O ∴

∴四边形11BO D O 为平行四边形11//BO D O ∴

1D O ?

平面

11A BC ,

1BO ?

平面

11A BC 1//

D O ∴平面

11

A BC

(2)连结MO ,设正方体1111

ABCD A B C D -的棱长为a ,

在正方体1111ABCD A B C D -中,对角面

11BB D D

为矩形且

1,BB a BD ==

,O M 分别是1,BD BB 的中点

,2a BM BO OD ∴===

1BM BO OD DD ∴=

1ODD Rt MBO Rt ??? 1B O M D D O ∴∠=∠

在1ODD Rt ?中,

1190

DD O D OD ∠+∠=

190B O M D O D ∴∠+∠=

,即

1D O MO

在正方体1111

ABCD A B C D -中

1DD ⊥平面ABCD

1DD A C ∴⊥

又AC BD ⊥,1

DD BD D

= AC ∴⊥平面

11BB D D

1D O ?

平面

11BB D D

1A C D O

∴⊥

又AC

MO O = 1D O ∴⊥平面MAC

点评:证明线面垂直,关键是在平面内找到两条相交直线与已知直线垂直,由线线垂直推出线面垂直,证明线线垂直有时要用勾股定理的逆定理.

例11、(2008广东中山模拟)如图,四棱锥P —ABCD 中, PA ⊥平面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,CD ⊥AD ,CD=2AB ,E 为PC 中点. (I) 求证:平面PDC ⊥平面PAD ; (II) 求证:BE//平面PAD .

证明:(1)由PA ⊥平面ABCD

????

?

?

=?⊥⊥A

AD PA CD PA )AD (CD 已知

???

?

?⊥PAD CD PAD CD 面面

?平面PDC ⊥平面PAD ;

(2)取PD 中点为F ,连结EF 、AF ,由E 为PC 中点, 得EF 为△PDC 的中位线,则EF//CD ,CD=2EF . 又CD=2AB ,则EF=AB .由AB//CD ,则EF ∥AB . 所以四边形ABEF 为平行四边形,则EF//AF . 由AF ?面PAD ,则EF//面PAD .

A

B

C

D E

P

A

B C

D E

P F

点评:证明面面垂直,先证明线面垂直,要证线面垂直,先证明线线垂直.

例12、(2008广东深圳模拟)如图,四棱锥ABCD S -的底面是正方形,⊥SA 底面

ABCD ,E 是SC 上一点.

(1)求证:平面⊥EBD 平面SAC ;

(2)设4=SA ,2=AB ,求点A 到平面SBD 的距离; (1)证明: ⊥SA 底面ABCD BD SA ⊥∴ 且AC BD ⊥ ∴S AC 平面⊥BD

∴平面⊥EBD 平面SAC

(2)解:因为

ABD

-S SBD -A V V =,且

232221

S SBD

??=?,

可求得点A 到平面SBD 的距离为34

点评:求点到面的距离,经常采用等体积法,利用同一个几何体,体积相等,体现了转化思想.

考点六:空间向量

【内容解读】用空间向量解决立体几何问题的“三步曲”

(1)用空间向量表示问题中涉及的点、直线、平面,建立立体图形与空间向量的联系,从而把立体几何问题转化为向量问题(几何问题向量化);

(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间的距离和夹我有等问题(进行向量运算);

(3)把向量的运算结果“翻译”成相应的几何意义(回归几何问题).

E

D C

B

A

S

【命题规律】空间向量的问题一般出现在立体几何的解答题中,难度为中等偏难. 例13、如图1,直三棱柱111ABC A B C -中,1CA CB ==,

90BCA ∠=°,棱12AA M N =,,分别是111A B A A ,的中点.

求BN 的长; 求

11

cos BA CB ,的值.

解:如图1,建立空间直角坐标系O xyz -. (1)依题意,

得(010)(101)B N ,,,,,

,(1BN =∴ (2)依题意,得11(102)(010)(000)(012)A B C B ,,,,,,,,,,,, 11(112)(012)

BA CB =-=,,,,,∴.

1111365BA CB BA CB ===,,∴·

111111

30

cos BA CB BA CB BA CB =

=,·∴.

点评:本题主要考查了空间向量的概念及坐标运算的基本知识,考查了空间两向量的夹角、长度的计算公式.解题的关键是恰当地建立空间直角坐标系和准确地表示点的坐标

例14、如图2,在四棱锥-P ABCD ,底面ABCD

为矩形,PD ⊥底面ABCD ,E 是AB 上

一点,PE EC ⊥.已知

1

22PD CD AE ===

.求:

异面直线PD 与EC 的距离; 二面角E PC D --的大小.

高三数学知识点总结:立体几何

2019年高三数学知识点总结:立体几何 由查字典数学网高中频道提供,2019年高三数学知识点总结:立体几何,因此老师及家长请认真阅读,关注孩子的成长。 立体几何初步 (1)棱柱: 定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。 (3)棱台:

定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台 几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点 (4)圆柱: 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥: 定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台: 定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

高三数学二轮复习教学案一体化:函数的性质及应用(2)

专题1 函数的性质及应用(2) 高考趋势 1.函数历来是高中数学最重要的内容,不仅适合单独命题,而且可以综合运用于其它内容.函数是中学数学的最重要内容,它既是工具,又是方法和思想.在江苏高考文理共用卷中,函数小题(不含三角函数)占较大的比重,其中江苏08年为3题,07年为4题. 2.函数的图像往往融合于其他问题中,而此时函数的图像有助于找出解决问题的方向、粗略估计函数的一些性质。另外,函数的图像本事也是解决问题的一种方法。这些高考时常出现。图像的变换则是认识函数之间关系的一个载体,这在高考中也常出现。通过不同途径了解、洞察所涉及到的函数的性质。在定义域、值域、解析式、图象、单调性、奇偶性、周期性等方面进行考察。在上述性质中,知道信息越多,则解决问题越容易。 考点展示 1. “龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它 醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2 分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是 B 2. 函数x y 1=的图像向左平移2个单位所得到的函数图像的解析式是 21 +=x y 3. 函数 )(x f 的图像与函数2)1(2---=x y 的图像关于 x 轴对称,则函数 )(x f 的解析式是 2)1(2+-x 4. 方程22 3x x -+=的实数解的个数为 2 5. 函数)1(x f y +=的图像与)1(x f y -=的图像关于 x=0 对称 函数图象对称问题是函数部分的 一个重要问题,大致有两类:一类是同一个函数图象自身的对称性;一类是两个不同函数之间的对称性。 定理1 若函数y=f(x) 对定义域中任意x 均有f(a+x)=f(b-x),则函数y=f(x)的图象关于直线2 a b x += 对称。 定理2 函数()y f a x ω=+与函数()y f a x ω=-的图象关于直线2b a x ω -=对称 特殊地,函数y=f(a+x)与函数y=f(b-x)的图象关于直线2 b a x -= 对称。 6. 函数2 1()2 f x x x =-+定义域为[]n m ,,值域为[]n m 2,2,m n <,则m n += -2 样题剖析 例1. 已知R 上的奇函数)(x f 在),0[+∞上是单调递增函数,且2)3(=f ,若函数)(x f 的图像向右 平移1个单位后得到函数)(x g 的图像,试解不等式: 02 )(2 )(>+-x g x g ),4()2,(+∞--∞ 变式:若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是 (-2,2) . 例2. 已知函数x b b ax x f 22242)(-+-=,R b a a x x g ∈---=,,)(1)(2 其中 (1) 当b=0时,若)(x f 在),2[+∞上单调递增,求a 的取值范围;1≥a (2) 求满足下列条件的所有实数对),(b a :当a 为整数时,存在0x ,使得)(0x f 是)(x f 的最大值, )(0x g 是)(x g 的最小值。 (2224b b a -+=2)1(5--=b ,502≤

高考数学二轮复习 第一部分 专题篇 专题四 立体几何 第一讲 空间几何体课时作业 文

2017届高考数学二轮复习第一部分专题篇专题四立体几何第 一讲空间几何体课时作业文 1.如图为一个几何体的侧视图和俯视图,则它的正视图为( ) 解析:根据题中侧视图和俯视图的形状,判断出该几何体是在一个正方体的上表面上放置一个四棱锥(其中四棱锥的底面是边长与正方体棱长相等的正方形、顶点在底面上的射影是底面一边的中点),因此结合选项知,它的正视图为B. 答案:B 2.以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于( ) A.2πB.π C.2 D.1 解析:所得圆柱体的底面半径为1,母线长为1,所以其侧面积S=2π×1×1=2π,故选A. 答案:A 3.一个侧面积为4π的圆柱,其正视图、俯视图是如图所示的两个边长相等的正方形,则与这个圆柱具有相同的正视图、俯视图的三棱柱的相应的侧视图可以为( )

解析:三棱柱一定有两个侧面垂直,故只能是选项C中的图形. 答案:C 4.(2016·郑州质量预测)已知长方体的底面是边长为1的正方形,高为2,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该长方体的正视图的面积等于( ) A.1 B.2 C.2 D.22 解析:由题意知,所求正视图是底边长为2,腰长为2的正方形,其面积与侧视图面积相等为2. 答案:C 5.(2016·河北五校联考)某四面体的三视图如图,则其四个面中最大的面积是( ) A.2 B.22 C. 3 D.23 解析:在正方体ABCD-A1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1-BCB1,如图所示,其四个面的面积分别为2,22,22,23,故选D. 答案:D 6.(2016·郑州模拟)如图是一个四面体的三视图,这三个视图均是腰长为2的等腰直角三角形,正视图和俯视图中的虚线是三角形的中线,则该四面体的体积为( )

届高三文科数学立体几何专题训练

2015届高三数学(文)立体几何训练题 1、如图3,AB 是⊙O 的直径,PA 垂直于⊙O 所在的平面,C 是圆周上不同于A 、B 的一点. ⑴求证:平面PAC ⊥平面PBC ; ⑵若PA=AB=2,∠ABC=30°,求三棱锥P -ABC 的体积. 2、如图,已知P A ?⊙O 所在的平面,AB 是⊙O 的直径,AB =2,C 是⊙O 上一点,且AC =BC =P A ,E 是PC 的中点,F 是PB 的中点. (1)求证:EF 3、如图,四棱柱1111D C B A ABCD -中,A A 1?底面ABCD ,且41=A A . 梯 形ABCD 的面积为6,且AD 平面DCE A 1与B B 1交于点E . (1)证明:EC D A 111A ABB 4、如图,已知正三棱柱ABC —A 1B 1C 1,AA 1=AB =2a ,D 、E 分别为CC 1、A 1B 的中 点. (1)求证:DE ∥平面ABC ; (2)求证:AE ⊥BD ; (3)求三棱锥D —A 1BA 的体积 . 5.如图,矩形ABCD 中,3AB =,4=BC .E ,F 分别在线段BC 和AD 上,EF ∥AB , 将矩形ABEF 沿EF 折起.记折起后的矩形为MNEF ,且平面⊥MNEF 平面ECDF . (Ⅰ)求证:NC ∥平面MFD ; P A B C O E F A B C D E A 1 B 1 C 1 D 1 A D F

F E A (Ⅱ)若3EC =,求证:FC ND ⊥; (Ⅲ)求四面体CDFN 体积的最大值. 6、如图,在三棱锥P ABC -中,PA ⊥底面ABC,090=∠BCA ,AP=AC, 点D ,E 分别在棱,PB PC 上,且BC (Ⅰ)求证:D E ⊥平面PAC ; (Ⅱ)若PC ⊥AD ,且三棱锥P ABC -的体积为8,求多面体ABCED 的体积。 7、如图:C 、D 是以AB 为直径的圆上两点,==AD AB 232,BC AC =,F 是AB 上一点, 且AB AF 3 1 =,将圆沿直径AB 折起,使点C 在平面ABD 的射影E 在BD 上,已知2=CE . (1)求证:⊥AD 平面BCE ; (2)求证://AD 平面CEF ; (3)求三棱锥CFD A -的体积. 8、如图甲,在平面四边形ABCD 中,已知45,90,105,o o o A C ADC ∠=∠=∠=A B BD =,现将四边 形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图乙),设点E 、F 分别为棱AC 、AD 的中点. (1)求证:DC ⊥平面ABC ;

高中数学立体几何专题

高中课程复习专题——数学立体几何 一空间几何体 ㈠空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 ㈡几种空间几何体的结构特征 1 棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形, 并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的几何体叫做棱柱。 棱柱的分类 棱柱的性质 ⑴侧棱都相等,侧面是平行四边形; ⑵两个底面与平行于底面的截面是全等的多边形; ⑶过不相邻的两条侧棱的截面是平行四边形; ⑷直棱柱的侧棱长与高相等,侧面的对角面是矩形。 长方体的性质 ⑴长方体的一条对角线的长的平方等于一个顶点上三 条棱的平方和:AC12 = AB2 + AC2 + AA12 ⑵长方体的一条对角线AC1与过定点A的三条棱所成图1-2 长方体

的角分别是α、β、γ,那么: cos2α + cos2β + cos2γ = 1 sin2α + sin2β + sin2γ = 2 ⑶ 长方体的一条对角线AC1与过定点A的相邻三个面所组成的角分别为α、β、γ,则: cos2α + cos2β + cos2γ = 2 sin2α + sin2β + sin2γ = 1 棱柱的侧面展开图:正n棱柱的侧面展开图是由n个全等矩形组成的以底面周长和侧棱为邻边的矩形。 棱柱的面积和体积公式 S直棱柱侧面 = c·h (c为底面周长,h为棱柱的高) S直棱柱全 = c·h+ 2S底 V棱柱 = S底·h 2 圆柱的结构特征 2-1 圆柱的定义:以矩形的一边所在的直线 为旋转轴,其余各边旋转而形成的曲面所围成 的几何体叫圆柱。 图1-3 圆柱 2-2 圆柱的性质 ⑴上、下底及平行于底面的截面都是等圆; ⑵过轴的截面(轴截面)是全等的矩形。 2-3 圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 2-4 圆柱的面积和体积公式 S圆柱侧面= 2π·r·h (r为底面半径,h为圆柱的高) S圆柱全= 2π r h + 2π r2 V圆柱 = S底h = πr2h 3 棱锥的结构特征 3-1 棱锥的定义 ⑴棱锥:有一个面是多边形,其余各面是 有一个公共顶点的三角形,由这些面所围成 的几何体叫做棱锥。

求数列通项专题高三数学复习教学设计

假如单以金钱来算,我在香港第六、七名还排不上,我这样说是有事实根据的.但我认为,富有的人要看他是怎么做.照我现在的做法我为自己内心感到富足,这是肯定的. 求数列通项专题高三数学复习教学设计 海南华侨中学邓建书 课题名称 求数列通项(高三数学第二阶段复习总第1课时) 科目 高三数学 年级 高三(5)班 教学时间 2009年4月10日 学习者分析 数列通项是高考的重点内容 必须调动学生的积极让他们掌握! 教学目标 一、情感态度与价值观 1. 培养化归思想、应用意识. 2.通过对数列通项公式的研究 体会从特殊到一般 又到特殊的认识事物规律 培养学生主动探索 勇于发现的求知精神 二、过程与方法 1. 问题教学法------用递推关系法求数列通项公式 2. 讲练结合-----从函数、方程的观点看通项公式 三、知识与技能 1. 培养学生观察分析、猜想归纳、应用公式的能力; 2. 在领会函数与数列关系的前提下 渗透函数、方程的思想 教学重点、难点 1.重点:用递推关系法求数列通项公式 2.难点:(1)递推关系法求数列通项公式(2)由前n项和求数列通项公式时注意检验第一项(首项)是否满足 若不满足必须写成分段函数形式;若满足

则应统一成一个式子. 教学资源 多媒体幻灯 教学过程 教学活动1 复习导入 第一组问题: 数列满足下列条件 求数列的通项公式 (1);(2) 由递推关系知道已知数列是等差或等比数列即可用公式求出通项 第二组问题:[学生讨论变式] 数列满足下列条件 求数列的通项公式 (1);(2); 解题方法:观察递推关系的结构特征 可以利用"累加法"或"累乘法"求出通项 (3) 解题方法:观察递推关系的结构特征 联想到"?=?)" 可以构造一个新的等比数列 从而间接求出通项 教学活动2 变式探究 变式1:数列中 求 思路:设 由待定系数法解出常数

2016高考数学二轮复习微专题强化练习题:13立体几何综合练习(文)

第一部分 一 13(文) 一、选择题 1.(2015·东北三校二模)设l ,m 是两条不同的直线,α是一个平面,则下列说法正确的是( ) A .若l ⊥m ,m ?α,则l ⊥α B .若l ⊥α,l ∥m ,则m ⊥α C .若l ∥α,m ?α,则l ∥m D .若l ∥α,m ∥α,则l ∥m [答案] B [解析] 当l 、m 是平面α内的两条互相垂直的直线时,满足A 的条件,故A 错误;对于C ,过l 作平面与平面α相交于直线l 1,则l ∥l 1,在α内作直线m 与l 1相交,满足C 的条件,但l 与m 不平行,故C 错误;对于D ,设平面α∥β,在β内取两条相交的直线l 、m ,满足D 的条件,故D 错误;对于B ,由线面垂直的性质定理知B 正确. 2.已知α、β、γ是三个不同的平面,命题“α∥β,且α⊥γ?β⊥γ”是真命题,如果把α、β、γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有( ) A .0个 B .1个 C .2个 D .3个 [答案] C [解析] 若α、β换成直线a 、b ,则命题化为“a ∥b ,且a ⊥γ?b ⊥γ”,此命题为真命题;若α、γ换为直线a 、b ,则命题化为“a ∥β,且a ⊥b ?b ⊥β”,此命题为假命题;若β、γ换为直线a 、b ,则命题化为“a ∥α,且b ⊥α?a ⊥b ”,此命题为真命题,故选C. 3.(2015·重庆文,5)某几何体的三视图如图所示,则该几何体的体积为( ) A.1 3+2π B.13π 6 C.7π3 D.5π2 [答案] B [解析] 由三视图可知该几何体是由一个圆柱和一个半圆锥组成,圆柱的底面半径为1,

高三文科数学立体几何平行垂直问题专题复习(含答案)

高三文科数学专题复习:立体几何平行、垂直问题 【基础知识点】 一、平行问题 1.直线与平面平行的判定与性质 定义判定定理性质性质定理 图形 条件a∥α 结论a∥αb∥αa∩α=a∥b 2. 面面平行的判定与性质 判定 性质 定义定理 图形 条件α∥β,a?β 结论α∥βα∥βa∥b a∥α 平行问题的转化关系: 二、垂直问题 一、直线与平面垂直 1.直线和平面垂直的定义:直线l与平面α内的都垂直,就说直线l与平面α互相垂直.2.直线与平面垂直的判定定理及推论 文字语言图形语言符号语言 判定定理 一条直线与一个平面内的两条相交直线都垂直,则该直线与此平 面垂直 推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直这个平面

文字语言 图形语言 符号语言 性质定理 垂直于同一个平面的 两条直线平行 4.直线和平面垂直的常用性质 ①直线垂直于平面,则垂直于平面内任意直线. ②垂直于同一个平面的两条直线平行. ③垂直于同一条直线的两平面平行. 二、平面与平面垂直 1.平面与平面垂直的判定定理 文字语言 图形语言 符号语言 判定定理 一个平面过另一个平 面的垂线,则这两个平 面垂直 2.平面与平面垂直的性质定理 文字语言 图形语言 符号语言 性质定理 两个平面垂直,则一个 平面内垂直于交线的直线垂直于另一个平 面 类型一、平行与垂直 例1、如图,已知三棱锥A BPC -中,,,AP PC AC BC ⊥⊥M 为AB 中点,D 为PB 中点, 且△PMB 为正三角形。(Ⅰ)求证:DM ∥平面APC ; (Ⅱ)求证:平面ABC ⊥平面APC ; (Ⅲ)若BC 4=,20AB =,求三棱锥D BCM -的体积。 M D A P B C

立体几何-2009-2017全国高中数学联赛分类汇编

2009-2017全国高中数学联赛分类汇编第09讲:立体几何 1、(2010一试7)正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin 【答案】4 【解析】 O E P 1B 1 A 1 C B A 设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x m =、),,(222z y x n =,则 ???? ?=++-=?=+-=?,03, 022111111z y x z x BA ???? ?=-+-=?=-=?, 03, 022221211z y x B x A B n 由此可设)3,1,0(),1,0,1(==,所以cos m n m n α?=? ,即 2cos cos αα=?= .所以4 10sin =α. 解法二:如图,PB PA PC PC ==11, . 设B A 1与1AB 交于点,O 则1111,,OA OB OA OB A B AB ==⊥ . 11,,PA PB PO AB =⊥因为 所以 从而⊥1AB 平面B PA 1 . 过O 在平面B PA 1上作P A OE 1⊥,垂足为E .

连结E B 1,则EO B 1∠为二面角11B P A B --的平面角.设21=AA ,则易求得 3,2,5111== ===PO O B O A PA PB . 在直角O PA 1?中,OE P A PO O A ?=?11,即5 6,532= ∴?= ?OE OE . 11B O B E =∴===又.4 10 5 542sin sin 111= ==∠=E B O B EO B α. 2、(2011一试6)在四面体ABCD 中,已知?=∠=∠=∠60CDA BDC ADB ,3==BD AD ,2=CD ,则四面体ABCD 的外接球的半径为 【解析】 因为?=∠=∠=∠60ADB CDB CDA ,设CD 与平面ABD 所成角为θ,可求得3 2sin ,3 1cos = = θθ. 在△DMN 中,332 33232,121=??=?=== DP DN CD DM .学科*网 由余弦定理得231312)3(1222=? ??-+=MN , 故2=MN .四边形DMON 的外接圆的直径 33 22sin === θ MN OD .故球O 的半径3=R . 3、(2012一试5)设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.若正三棱锥P ABC -的

高三数学第二轮复习教案《数列》

数列(第二轮复习) 1.等差(比)数列的定义 如果一个数列从第二项起,每一项与它的前一项的差(比)等于同一个常数,这个数列叫做等差(比)数列. 2.通项公式 等差 a n =a 1+(n-1)d ,等比a n =a 1q n -1 3.等差(比)中项 如果在a 、b 中间插入一个数A ,使a 、A 、b 成等差(比)数列,则A 叫a 、b 的等差(比)中项.A =(a+b)/2或A =±ab 4.重要性质: m+n=p+q ? a m ·a n =a p ·a q (等比数列)a m +a n =a p +a q (等差数列) (m 、n 、p 、q ∈N*) 特别地 m+n=2p ? a m +a n =2a p (等差数列) a m ·a n =a p 2 (等比数列) 5.等差数列前n 项和 等比数列前n 项和 6.如果某个数列前n 项和为Sn ,则 7.差数列前n 项和的最值 (1)若a1>0,d <0,则S n 有最大值,n 可由 ???≥≥+0a 0a 1 n n (2)若a1<0,d >0,则S n 有最小值,n 可由 ???≤≤+0a 0a 1 n n 8.求数列的前n 项和S n ,重点应掌握以下几种方法: (1).倒序相加法:如果一个数列{a n },与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法. (2).错位相减法:如果一个数列的各项是由一个等差数列与一个等比数列对应项乘积组成,此时求和可采用错位相减法. (3).分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两部分,使其转化为等差或等比数列,这一求和方法称为分组转化法. (4).裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差, ()()???≥-==-2111n S S n S a n n n ()()d n n na n a a S n n 2 1211-+=+=()() ()?????≠--==111111q q q a q na S n n

高三二轮复习立体几何试卷及答案

2020年高考数学专题复习(立体几何) 1.如图,一个圆柱的底面半径为3,高为2,若它的两个底面圆周均在球O 的球面上,则球O 的表面积为( ) A .323 π B .16π C .8π D .4π 2.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”. 已知某“堑堵”的三视图如图所示,正视图中的虚线平分矩形的面积, 则该“堑堵”的体积为( ) A . 2 3 B .1 C .2 D .4 3.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中, 点P 是平面1111D C B A 内一点,则三棱锥P BCD -的正视图与侧视图 的面积之和为( ) A .2 B .3 C .4 D .5 4.阿基米德(公元前287年—公元前212年)是古希腊伟大的哲学家、数学家和物理学家,他和高斯、牛顿并列被称为世界三大数学家.据说,他自己觉得最为满意的一个数学发现就是“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”.他特别喜欢这个结论,要求后人在他的墓碑上刻着一个圆柱容器里放了一个球,如图,该球顶天立地,四周碰边,表面积为54π的圆柱的底面直径与高都等于球的直径,则该球的体积为 ( ) A .4π B .16π C .36π D . 643 π

3.如图所示,在边长为4的正方形纸片ABCD 中, AC 与BD 相交于O .剪去AOB ?,将剩余部分沿 OC ,OD 折叠,使OA 、OB 重合,则以()A B 、 C 、D 、O 为顶点的四面体的外接球的体积为________. 6.一副直角三角板(如图1)拼接,将BCD ?折起,得到三棱锥A BCD -(如图2). (1)若,E F 分别为,AB BC 的中点,求证://EF 平面ACD ; (2)若平面ABC ⊥平面BCD ,求证:平面ABD ⊥平面ACD . 7.在棱长为2的正方体1111ABCD A B C D -中,设E 是棱1CC 的中点. (1)求证:; (2)求证:平面 ; (3)求三棱锥的体积.

2019年高考试题汇编文科数学--立体几何

(2019全国1文)16.已知90ACB ∠=?,P 为平面ABC 外一点,2PC =,点P 到ACB ∠两边,AC BC 的距 P 到平面ABC 的距离为 . 答案: 解答: 如图,过P 点做平面ABC 的垂线段,垂足为O ,则PO 的长度即为所求,再做,PE CB PF CA ⊥⊥,由线面的 垂直判定及性质定理可得出,OE CB OF CA ⊥⊥,在Rt PCF ?中,由2,PC PF == ,可得出1CF =,同 理在Rt PCE ?中可得出1CE =,结合90ACB ∠=?,,OE CB OF CA ⊥⊥可得出1OE OF ==,OC = , PO == (2019全国1文)19.如图直四棱柱1111ABCD A B C D -的底面是菱形,14,2AA AB ==,60BAD ∠=, ,,E M N 分别是11,,BC BB A D 的中点. (1)证明://MN 平面1C DE (2)求点C 到平面1C DE 的距离. 答案: 见解析 解答: (1)连结1111,AC B D 相交于点G ,再过点M 作1//MH C E 交11B C 于点H ,再连结GH ,NG . ,,E M N 分别是 11,,BC BB A D 的中点. 于是可得到1//NG C D ,//GH DE , 于是得到平面//NGHM 平面1C DE , 由 MN ?平面NGHM ,于是得到//MN 平面1C DE

(2) E 为BC 中点,ABCD 为菱形且60BAD ∠= DE BC ∴⊥,又 1111ABCD A B C D -为直四棱柱,1DE CC ∴⊥ 1DE C E ∴⊥,又 12,4AB AA ==, 1DE C E ∴=,设点C 到平面1C DE 的距离为h 由11C C DE C DCE V V --=得 1111 143232 h ?=?? 解得h = 所以点C 到平面1C DE (2019全国2文)7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面 答案:B 解析: 根据面面平行的判定定理易得答案. (2019全国2文)16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

[精品]新高三数学第二轮专题复习概率与统计优质课教案

高三数学第二轮专题复习:概率与统计 高考要求 概率是高考的重点内容之一,尤其是新增的随机变量这部分内容要充分注意一些重要概念的实际意义,理解概率处理问题的基本思想方法 重难点归纳 本章内容分为概率初步和随机变量两部分第一部分包括等可能事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率和独立重复实验第二部分包括随机变量、离散型随机变量的期望与方差 涉及的思维方法观察与试验、分析与综合、一般化与特殊化主要思维形式有逻辑思维、聚合思维、形象思维和创造性思维 典型题例示范讲解 例1有一容量为50的样本,数据的分组及各组的频率数如下 [10,15]4 [30,35)9 [15,20)5 [35,40)8 [20,25)10 [40,45)3 [25,30)11 (1)列出样本的频率分布表(含累积频率); (2)画出频率分布直方图和累积频率的分布图 命题意图本题主要考查频率分布表,频率分布直方图和累积频率的分布图的画法

知识依托频率、累积频率的概念以及频率分布表、直方图和累积频率分布图的画法 错解分析解答本题时,计算容易出现失误,且要注意频率分布与累积频率分布的区别 技巧与方法本题关键在于掌握三种表格的区别与联系 解 (1)由所给数据,计算得如下频率分布表 数据段频数频率累积频率 [10,15) 4 0.08 0.08 [15,20) 5 0.10 0.18 [20,25)10 0.20 0.38 [25,30)11 0.22 0.60 [30,35)9 0.18 0.78 [35,40)8 0.16 0.94 [40,45) 3 0.06 1 总计50 1 (2)频率分布直方图与累积频率分布图如下

高三文科数学立体几何专题练习加详细答案

高三文科数学专题立体几何 1. (2013汕头二模)设I、m是不同的两条直线, 题中为真命题的是() A ?若I ,,则I// C .若I m, // ,m ,则1 【答案】D 【解析】T I ,// ,?- I ,- .■ m D .若I , // ,m ,则I m 2. (2013东城二模)给出下列命题: ①如果不同直线m、n都平行于平面,则m、n—定不相交; ②如果不同直线m、n都垂直于平面,则m、n—定平行; ③如果平面、互相平行,若直线m ,直线n ,则m//n ; ④如果平面、互相垂直,且直线m、n也互相垂直,若m 则n 则真命题的个数是() A . 3 B . 2 C. 1 D. 0 【答案】C 【解析】只有②为真命题. 3. 设I为直线,,是两个不同的平面,下列命题中正确的是 A .若I // ,I// ,贝U // B.若1 ,I ,则// C .若1 ,I// ,贝U // D .若,I// ,则I 【解析】B 4. (2013 东莞 -模)如图,平行四边形ABCD 中,CD 1, BCD 60,且BD CD ,正方形ADEF和平面ABCD垂直,G, H是DF ,BE的中点. (1)求证:BD 平面CDE ; (2)求证:GH //平面CDE ; (3)求三棱锥D CEF的体积. C 是不重合的两个平面,则下列命 B.若I// , ,则I//

【解析】(1)证明:平面 ADEF 平面ABCD ,交线为AD , ?/ ED AD , ? ED 平面 ABCD , ?- ED BD ? 又 BD CD , ?- BD 平面 CDE . (2) 证明:连接 EA ,则G 是AE 的中点, ??? EAB 中,GH//AB , 又 AB//CD , ? GH // CD , ? GH // 平面 CDE ? (3) 设Rt BCD 中BC 边上的高为h , 是棱PA 上的动点. (1) 若Q 是PA 的中点,求证: PC // 平面BDQ CQ ; (2) PC , PB PD ,求证:BD 解析:证明:(1)连结AC ,交BD 于O ,如图: 若 PB 3, ABC 60°,求四棱锥P ABCD 即:点C 到平面 DEF 的距离为 … V D CEF V C DEF _3 2 _3 3 5.(2013丰台二模)如图所示,四棱锥P ABCD 中, 底面ABCD 是边长为2的菱形,Q

高三数学立体几何专题复习课程

高三数学立体几何专 题

专题三 立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空 间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三 视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等. 【例题解析】 题型1 空间几何体的三视图以及面积和体积计算 例1(2008高考海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 A . 22 B . 32 C . 4 D . 52 分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的 高宽高分别为,,m n k = =1n ?=, a = b =,所以22(1)(1)6a b -+-= 228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4 a b ?+≤当且仅当2a b ==时取等号.

2019-2020年高三数学二轮复习 专题五 第1讲 直线与圆教案

2019-2020年高三数学二轮复习 专题五 第1讲 直线与圆教案 自主学习导引 真题感悟 1.(xx ·浙江)设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 解析 先求出两条直线平行的充要条件,再判断. 若直线l 1与l 2平行,则a (a +1)-2×1=0,即a =-2或a =1,所以a =1是直线l 1与直线l 2平行的充分不必要条件. 答案 A 2.(xx·福建)直线x +3y -2=0与圆x 2 +y 2 =4相交于A 、B 两点,则弦AB 的长度等于 A .2 5 B .2 3 C. 3 D .1 解析 利用平面几何中圆心距、半径、半弦长的关系求解.∵圆心到直线x +3y -2=0的距离d =|0+3×0-2| 12+3 2 =1,半径r =2, ∴弦长|AB |=2r 2 -d 2 =222 -12 =2 3. 答案 B 考题分析 圆在高考命题中多以直线与圆的位置关系为主,考查直线与圆位置关系的判定、弦长的求法等,题目多以小题为主,难度中等,掌握解此类题目的通性通法是重点. 网络构建

高频考点突破 考点一:直线方程及位置关系问题 【例1】(xx·江西八所重点高中联考)“a=0”是“直线l1:(a+1)x+a2y-3=0与直线l2: 2x+ay-2a-1=0平行”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 [审题导引] 求出l1∥l2的充要条件,利用定义判定. [规范解答] 当a=0时,l1:x-3=0,l2:2x-1=0,此时l1∥l2, 所以“a=0”是“直线l1与l2平行”的充分条件; 当l1∥l2时,a(a+1)-2a2=0,解得a=0或a=1. 当a=1时,l1:2x+y-3=0,l2:2x+y-3=0,此时l1与l2重合, 所以a=1不满足题意,即a=0. 所以“a=0”是“直线l1∥l2”的充要条件. [答案] C 【规律总结】 直线与直线位置关系的判断方法 (1)平行:当两条直线l1和l2的斜率存在时,l1∥l2?k1=k2;如果直线l1和l2的斜率都不存在,那么它们都与x轴垂直,则l1∥l2. (2)垂直:垂直是两直线相交的特殊情形,当两条直线l1和l2的斜率存在时,l1⊥l2?k1·k2=-1;若两条直线l1,l2中的一条斜率不存在,另一条斜率为0时,则它们垂直.

2015届高三二轮复习立体几何专题训练

D C B A F E A B C A 1 O B 1 C 1 1 2015届高三二轮复习立体几何专题训练 1.如图所示的多面体中, ABCD 是菱形,BDEF 是矩形,ED ⊥面ABCD ,3 BAD π ∠= . (1)求证:平面//BCF 面AED ; (2)若BF BD a ==,求四棱锥A BDEF -的体积. 2.如图1,在Rt △ABC 中,∠ABC =90°,D 为AC 中点,AE BD ⊥于E (不同于点D ),延长AE 交BC 于F , 将△ABD 沿BD 折起,得到三棱锥1A BCD -,如图2所示. (1)若M 是FC 的中点,求证:直线DM //平面1A EF ; (2)求证:BD ⊥1A F ; (3)若平面1A BD ⊥平面BCD ,试判断直线1A B 与直线CD 能否垂直?并说明理由. 3.如图,在四棱锥ABCD P -中,底面ABCD 是正方形,△PAD 是正三角形,平面PAD ⊥平面M ABCD ,和N 分别是AD 和BC 的中点。 (1)求证:MN PM ⊥; (2)求证:平面PMN ⊥平面PBC ; (3)在PA 上是否存在点Q ,使得平面//QMN 平面PCD ?若在求出Q 点位置,并证明;若不存在,请说明理由。 4.如图,四边形ABCD 是菱形,四边形MADN \是矩形,平面⊥MADN 平面ABCD ,F E ,分别为DC MA ,的中点,求证: (1)//EF 平面MNCB ; (2)平面MAC ⊥平面BND . 5.如图1,在直角梯形ABCD 中,90ADC ∠=?,//CD AB ,1 22 AD CD AB == =, 点E 为AC 中点.将ADC ?沿AC 折起, 使平面ADC ⊥平面ABC ,得到几何体D ABC -,如图2所示. (1)在CD 上找一点F ,使//AD 平面EFB ; (2)求点C 到平面ABD 的距离. 6.如图,在斜三棱柱111C B A ABC -中,O 是AC 的中点,O A 1⊥平面0 90,=∠BCA ABC ,BC AC AA ==1. (1)求证:1AC ⊥平面BC A 1; (2)若21=AA ,求三棱锥AB A C 1-的高的大小. 7.已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1)//1O C 面11AB D ; (2)1A C ⊥面11AB D . (3)平面//11D AB 平面BD C 1 A B C D 图2 E B A C D 图1 E 1 图

高考文科数学专题5 立体几何 高考文科数学 (含答案)

专题五 立体几何 第一讲 空间几何体 1.棱柱、棱锥 (1)棱柱的性质 侧棱都相等,侧面是平行四边形;两个底面与平行于底面的截面是全等的多边形;过不相邻的两条侧棱的截面是平行四边形;直棱柱的侧棱长与高相等且侧面与对角面是矩形. (2)正棱锥的性质 侧棱相等,侧面是全等的等腰三角形,斜高相等;棱锥的高、斜高和斜高在底面内的射影构成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也构成一个直角三角形;某侧面的斜高、侧棱及底面边长的一半也构成一个直角三角形;侧棱在底面内的射影、斜高在底面内的射影及底面边长的一半也构成一个直角三角形. 2.三视图 (1)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高; (2)三视图排列规则:俯视图放在正视图的下面,长度与正视图一样;侧视图放在正视图的右面,高度和正视图一样,宽度与俯视图一样. 3.几何体的切接问题 (1)解决球的内接长方体、正方体、正四棱柱等问题的关键是把握球的直径即棱柱的体对角线长. (2)柱、锥的内切球找准切点位置,化归为平面几何 问题. 4.柱体、锥体、台体和球的表面积与体积(不要求记忆) (1)表面积公式 ①圆柱的表面积 S =2πr (r +l ); ②圆锥的表面积S =πr (r +l ); ③圆台的表面积S =π(r ′2 +r 2 +r ′l +rl ); ④球的表面积S =4πR 2 . (2)体积公式 ①柱体的体积V =Sh ; ②锥体的体积V =1 3 Sh ;

③台体的体积V =1 3(S ′+SS ′+S )h ; ④球的体积V =43 πR 3 . 1. (2013·广东)某四棱台的三视图如图所示,则该四棱台的体积是 ( ) A .4 B.143 C.16 3 D .6 答案 B 解析 由三视图知四棱台的直观图为 由棱台的体积公式得:V =13(2×2+1×1+2×2×1×1)×2=14 3. 2. (2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是 ( )

相关文档
最新文档