离子键配位键与金属键

合集下载

高中化学 2.3离子键、配位键与金属键课件 鲁科版选修3(共41张PPT)

高中化学 2.3离子键、配位键与金属键课件 鲁科版选修3(共41张PPT)

(4)离子键的特征 特征:离子键没有方向性和饱和性。 (5)离子键的影响因素: 离子键强弱的影响因素有离子半径的大小和离子所带电荷 的多少,即离子半径越小,所带电荷越多,离子键就越强。 特别提醒:含离子键的化合物都是离子化合物。 离子化合物中一定含有离子键,可能含有共价键。如: MgO、NaF只含离子键;NaOH、NH4Cl既含有离子键, 又含有共价键。共价化合物中只有共价键。
【慎思2】形成配位键的几个实验现象的分析? 提示 实验1: (1)操作:向试管中加入2 mL 5%的硫酸铜溶液,或CuCl2 溶液或Cu(NO3)2溶液,再逐渐滴加入浓氨水,振荡,观察 实验现象。 (2)现象:先有蓝色絮状沉淀,然后沉淀逐渐溶解生成深 蓝色溶液。 (3)原理:Cu2++2NH3·H2O===Cu(OH)2↓+2NH4+; Cu(OH)2+4NH3·H2O===[Cu(NH3)4]2++2OH-+4H2O。
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

(1)金属键:金属阳离子与_自__由__电子之间的强烈的相互作 用。 (2)成键微粒:金属阳离子和_自__由__电子(存在只含阳离子不 含阴离子的晶体) (3)成键条件:金属单质或合金。 (4)实质:电性作用。 (5)金属键的特征:无方向性和饱和性。
实验3: (1)操作:向FeCl3溶液中加入1滴KSCN溶液。 (2)现象:溶液呈血红色。 (3)原理:Fe3++SCN-===Fe(SCN)2+或Fe3++3SCN- ===Fe(SCN)3。(实际上,Fe3+与SCN-形成一系列配合物: [Fe(SCN)n]3-n,n=1~6,它们都呈血红色。)

第三节 离子键、配位健与金属键

第三节 离子键、配位健与金属键

第三节离子键、配位健与金属键银光闪闪的精美银器会令居室内熠熤生辉,玲珑晶莹的银制饰物也会让你变的光彩照人。

你当然应清楚:之所以有这么多不同的银制品来装点人类的生活,原因是金属银是可以被改变形状的,可以被压成薄片,也可以被拉成细丝。

构成金属银的微粒能发生相对滑动但又不容易被分开而断使银断裂。

说明微粒之间存在着较强的相互作用力,这就是金属键。

金属键是化学键的一种。

这一节我们主要来学习几种重要的化学键。

一、离子键:1、定义:阴、阳离子间通过静电作用而形成的化学键2、离子键的形成条件:成键原子所属元素的电负性差值越大,原子间越容易发生电子得失。

一般认为,当成键原子所属元素的电负性差值大于1.7时,原子间才有可能形成离子键。

如:电负性较小的金属元素的原子容易失去价电子形成阳离子,电负性较大的非金属元素的原子容易得电子形成阴离子。

当这两种原子相互接近到一定程度时,容易发生电子得失而形成阴、阳离子。

镁与氧气在通电情况下生成氧化镁,同时发出强光。

在这一反应过程中,镁原子失去两个电子成为Mg2+,氧分子中的每个原子得到两个电子成为O2-,带正电的Mg2+和带负电的O2-通过静电作用形成稳定的离子化合物——氧化镁。

以NaCl为例说明离子键的形成过程:例1、现有七种元素的原子,其结构特点见下表:元素的原子可以形成离子键的是( )A.a和bB.a和fC.d和gD.b和g解析:较活泼的金属因素的原子与较活泼的非金属因素的原子可以形成离子键。

答案:BD3、离子键的实质(1)实质:离子键的实质阴阳离子之间的静电作用。

(2)静电引力:根据库仑定律,阴、阳离子间的静电引力(F)与阳离子所带电荷(q +)和阴 离子所 带电 荷(q -)的 乘 积 成 正 比,与阴、阳离子的核间距离(r )的平方成反比。

F= (k 为比例系数)(3)静电斥力:阴、阳离子中都有带负电荷的电子和带正电荷的原子核,除了异性电荷间的吸引力外,还存在电子与电子、原子核与原子核之间同性电荷所产生的排斥力。

G2-选修3-2-3-离子键配位键与金属键

G2-选修3-2-3-离子键配位键与金属键

金属原子释出 的电子在各金属 离子间自由地运 动,这样依靠金 属阳离子与带负 电荷的自由电子 之间强烈的相互 作用使金属离子 紧密地堆积在一 起。
配位键,又称配位共价键,是一种特殊的共价键。当共价键 中共用的电子对是由其中一原子独自供应时,就称配位键。 配位键形成后,就与一般共价键无异。成键的两原子间共享 的两个电子不是由两原子各提供一个,而是来自一个原子。 铵根离子的形成:氨分子(NH3)的氮原子上有一对没有跟 其他原子共用的电子对——孤对电子。氢离子(H+)具有一 个空轨道(1s),当氨分子与氢离子相互接近到一定程度时, 氨分子中的孤对电子所在的轨道将与H+的1s空轨道重叠(氨 分子上的弧对电子进入氢离子的空轨道),即这一对电子为 氮原子、氢原子所共用,从而形成一种新的化学键——配位 键。
离子半径越小,离子间的引力就越大,离子化合 物的熔点、沸点也越高。例如, NaF 和 LiF ,钠和锂 都是+1价,因为r(Na+)>r(Li+),故NaF的熔点(870℃) 比LiF的熔点( 1040℃)低。离子半径的大小对离子 化 合 物 的 其 它 性 质 也 有 影 响 。 如 在 NaI 、 NaBr 、 NaCl 中, I - 、 Br - 、 Cl - 的还原性依次降低,而 AgI 、 AgBr、 AgCl的溶解度依次增大,颜色依次变浅,这 都与离子半径的大小有着密切联系。
离子半径的变化规律如下: (1)同一主族自上而下,电子层数依次增多,具有相同 电荷的离子半径也依次增大,而在同一周期中,正离子 的电荷数越高,半径越小;负离子的电荷数越高,半径 越大。 (2)同一元素的正离子半径小于它的原子半径,简单的 负离子半径大于它的原子半径。
(3)同一元素形成几种不同电荷的离子时,电荷高的正离 子半径小。例如

23离子键、配位键与金属键-安徽省太和第一中学高中化学选修三教学课件(共45张PPT)

23离子键、配位键与金属键-安徽省太和第一中学高中化学选修三教学课件(共45张PPT)

离子键、配位键与金属键
3、离子键的特征 (1)无方向性
Na+Cl-CNl- aN+ CaN+lNa- +Ca+l- Na+ CNla- +CNal-CNC+ NlalC--+alN-+ CaCN+lla--+CNlaC-+l-Na+
氯化钠晶体的结构
离子键、配位键与金属键
(2)无饱和性
氯化钠晶体的结构
2、配合物
配体有 孤电子对
配位键的存在是配合物与其它物质最本质的区别。
离子键、配位键与金属键
(1)概念:由提供孤电子对的配体与接受孤电子对的中心原子 以配位键结合形成的化合物称为配合物。
离子键、配位键与金属键
内界(配离子)
Cu(NH3)4 2 + SO42-
中 配配 心 位位 原 原体 子子
配 位 数
(3)结构表示式 A→B
其中,A表示能够提供孤对电子的原子,B表示具有能够接受孤对电 子的空轨道的原子。
H
例: [H N H]+
H 练习:写出水合氢离子的电子式和结构式。
(4)配位键是一种特殊的共价键。
离子键、配位键与金属键
(5)配位键与共价键的区别与联系 ①配位键一定是共价键,但共价键不一定是配位键。 ②配位键与共价键只是在形成过程上有所不同:但形成后与其他
离子键、配位键与金属键
由于离子键没有方向性和饱和性,因此以离子键相结合的化合物 倾向于形成晶体,使每个离子周围排列尽可能多的带异性电荷的 离子,达到降低体系能量的目的。
注意:阳离子与阴离子半径比值越大,离子周围所能容纳带异性电 荷离子的数目就越多。

2.3离子键、配位键与金属键

2.3离子键、配位键与金属键

6、金属键及金属性质
【讨论1】金属为什么易导电?
在金属晶体中,存在着许多自由电子, 这些自由电子的运动是没有一定方向的, 但在外加电场的条件下自由电子就会发 生定向运动,因而形成电流,所以金属 容易导电。
6、金属键及金属性质
【讨论2】金属为什么易导热?
金属容易导热,是由于自由电 子运动时与金属离子碰撞把能量从 温度高的部分传到温度低的部分, 从而使整块金属达到相同的温度。
位错
+
金属离子
金属原子
提供1molCl-,[Co(NH3)6]Cl3需89.2g, [Co(NH3)5Cl]Cl2需125.3g
【探究实验】
①向盛有AgNO3溶液的试管里逐滴的加入氨水 ②向盛有CuSO4溶液的试管里逐滴的加入氨水
根据实验分析出现现象的原因
实验:向硫酸铜溶液中加入过量氨水,观察现象
实验已知氢氧化铜与足量氨水反应后溶解是因为 生成了[Cu(NH3)4]2+ ,其结构简式为: NH3 H3N Cu NH3 NH3
二、配位键
1、配位键的形成 2、配位键的形成条件: 成键的微粒一方有空轨道,另一方有孤对电子。 3、配合物:由提供孤电子对的配体与接受孤电子对 的中心原子以配位键结合形成的化合物称为配合物。
组成:价电子层的部分d轨道和s、d轨道是空轨道 的过渡金属的原子或离子和含有孤对电子的分子(例 如CO,NH3,H2O)或离子(如Cl-,NO2-,CN-)。
6、金属键及金属性质
【讨论3】金属为什么具有较好的延展性? 金属晶体中由于金属离子与自由电子间 的相互作用没有方向性,各原子层之间发生 相对滑动以后,仍可保持这种相互作用,因 而即使在外力作用下,发生形变也不易断裂。
金属的延展性

第3节 离子键、配位键与金属键

第3节   离子键、配位键与金属键
作用(静电作用:不是单纯的吸引力或排斥力) 以NaCl为例
Na完全失电子,Cl完全得到电子,电子属于Cl-,已不 再属于Na+,与共价键不同,共价键是共用电子,不 能单独占有。
④离子键的成键元素:一般 , 金属
与 V,V 的非金属元素间及 铵盐 易
形成离子键。
[注]成键两个原子的电负性差值越大越 易形成离子键,一般认为成键原子的电
个Cl-,而每个Cl-也从不同方向同时吸引_6__个
Na+,所以氯化钠化学式 NaCl (1:1)
[注意]只要空间条件允许,阳离子将吸引尽可能多的 阴离子排列在其周围,阴离子也将吸引尽可能多的阳 离子排列在其周围。∴离子键无饱和性(相对的)
8 CsCl晶体:每个Cs+同时吸引
8 Cl-,每个Cl-同时吸引
4、CNHC2OHHO342属属属属于于于 于什什什 什么么么 么键键键 键构构构构成成成成的的的的什什什什么么么么性性性性分分分分子子子子CCNHHH2OO432极 极极 极性性性性键键键键构构构构成成成成的的的的非极极非极性性极性分分性分子子分子子
一、离子键
①电负性大的非金属元素的原子易得电子而形成阴离子 ②电负性小的金属元素的原子易失电子而形成 阳离子 ③离子键:阴阳离子之间形成的一种强烈的 _静__电____
子键越强,晶体的熔沸是 A A、KCl B、CaCl2 C、MgO D、Na2O
2、下列关于离子键的特征叙述中,正确的 A、一种离子对带异性电荷离子的吸引力作用与其所处的方
向无关,故离子键无方向性
B、因离子键无方向性,故阴阳离子的排列是无规律,随意 的
的性质是完全___相__同________的。
二:配位键

2024-2025年高中化学第2章第3节离子键、配位键与金属键教案鲁科版选修3

2024-2025年高中化学第2章第3节离子键、配位键与金属键教案鲁科版选修3
- 组织课堂活动:设计小组讨论、角色扮演、实验等活动,让学生在实践中掌握相关技能。
- 解答疑问:针对学生在学习中产生的疑问,进行及时解答和指导。
学生活动:
- 听讲并思考:学生认真听讲,积极思考老师提出的问题。
- 参与课堂活动:积极参与小组讨论、角色扮演、实验等活动,体验知识点的应用。
- 提问与讨论:针对不懂的问题或新的想法,勇敢提问并参与讨论。
2024-2025年高中化学 第2章 第3节 离子键、配位键与金属键教案 鲁科版选修3
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教学内容
本节课的教学内容来源于鲁科版选修3《化学》的第2章第3节,主要包括离子键、配位键与金属键的相关知识。具体内容包括:
1. 离子键的概念、特点及形成条件,通过实例讲解离子键在化合物中的存在和作用。
- 鼓励学生参加科学俱乐部或学术竞赛,如科学奥林匹克或化学竞赛,以提高自己的科学素养和实践能力。
七、反思改进措施
(一)教学特色创新
1. 引入翻转课堂:通过让学生在课前自主学习基础知识,课堂时间更多地用于讨论、实验和问题解决,提高学生的主动参与度。
2. 采用项目式学习:设计相关项目,让学生通过团队合作,运用所学知识解决实际问题,培养学生的创新能力和实践能力。
4. 利用课后练习和拓展活动,巩固学生对重点难点的理解,提高学生的知识运用能力。
四、教学方法与手段
教学方法:
1. 问题驱动法:通过提出问题,激发学生的思考,引导学生主动探究离子键、配位键与金属键的形成、特点及应用。例如,在讲解离子键时,可以提问“为什么离子化合物具有较高的熔点?”引导学生思考离子键的作用。
3. 利用信息技术手段:运用在线教学平台、虚拟实验室等,提供丰富的学习资源和互动工具,提高教学的趣味性和有效性。

《离子键、配位键与金属键》 讲义

《离子键、配位键与金属键》 讲义

《离子键、配位键与金属键》讲义在化学的世界里,化学键是物质构成和性质的重要基石。

其中,离子键、配位键与金属键是三种常见且重要的化学键类型,它们各自具有独特的特点和形成机制,对物质的性质和用途产生着深远的影响。

一、离子键离子键是由阴阳离子之间的静电作用形成的化学键。

当原子得失电子形成带正电荷的阳离子和带负电荷的阴离子时,阴阳离子之间通过静电引力相互吸引,从而形成离子键。

离子键的形成通常发生在活泼金属与活泼非金属之间。

例如,钠原子容易失去一个电子形成钠离子(Na⁺),氯原子容易得到一个电子形成氯离子(Cl⁻),钠离子和氯离子之间就通过离子键结合形成氯化钠(NaCl)晶体。

离子键的特点是没有方向性和饱和性。

这是因为离子键是基于静电作用,只要阴阳离子相互靠近,无论在哪个方向上,都能产生吸引力。

而且,一个离子可以同时吸引多个带相反电荷的离子,不存在数量上的限制。

离子键的强度通常用晶格能来衡量。

晶格能越大,离子键越强,离子化合物的熔点和沸点就越高。

例如,氧化镁(MgO)的晶格能大于氯化钠(NaCl),所以氧化镁的熔点高于氯化钠。

离子化合物在固态时不导电,但在熔融状态或水溶液中能够导电。

这是因为在熔融或溶液状态下,离子可以自由移动,从而能够传递电荷。

二、配位键配位键是一种特殊的共价键,由一方提供孤对电子,另一方提供空轨道而形成。

在形成配位键时,提供孤对电子的原子称为配体,接受孤对电子的原子或离子称为中心原子(或离子)。

常见的配体有氨气(NH₃)、水(H₂O)等,常见的中心原子(或离子)有过渡金属离子,如铜离子(Cu²⁺)、银离子(Ag⁺)等。

例如,在四氨合铜离子(Cu(NH₃)₄²⁺)中,铜离子提供空轨道,氨分子中的氮原子提供孤对电子,形成四个配位键。

配位键的形成条件较为特殊,一方要有孤对电子,另一方要有能够接受孤对电子的空轨道。

配位键与普通共价键的性质相似,但在形成过程和作用方式上有所不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【3】金属为什么具有较好的延展性? 金属晶体中由于金属离子与自由电子间 的相互作用没有方向性,各原子层之间 发生相对滑动以后,仍可保持这种相互 作用,因而即使在外力作用下,发生形 变也不易断裂。
金属的延展性
++ + +++ + + ++ +
+++ ++ + + + ++
位错
+++ + ++ + + ++ ++++ +++ + +++ +
q+q-
F = k r2
在形成离子键时,阴阳离子间存在引力和斥
力,当引力和斥力达到平衡时,体系的能量最低,
形成最稳定的离子化合物。
离子键的强弱:
①一般说来,离子电荷越多,阴、阳离子的核间距越 小(即离子半径越小),则离子键越强。
②从元素电负性的角度来看,成键原子所属元素的电 负性差值越大,原子间越容易发生电子得失,形成离 子键,离子键也越强。 (一般情况:两元素电负性差 值>1.7) 离子键越强,离子化合物的熔、沸点越高。
回顾离子键概念
定义:阴阳离子间通过静电作用形成的化学键。 成键微粒:阴阳离子
相互作用:静电作用(静电引力和斥力) 成键过程:阴阳离子接近到某一定距离时,吸
引和排斥达到平衡,就形成了离子键。
含有离子键的化合物就是离子化合物
2、离子键的实质: 静电作用
在离子化合物中,根据库仑定律,阴、阳离
子之间的静电引力
【探究实验】-----54页
①向盛有AgNO3溶液的试管里逐滴的加入氨水 ②向盛有CuSO4溶液的试管里逐滴的加入氨水
根据实验分析出现现象的原因
实验已知氢氧化铜与足量氨水反应后溶解是因为 生成了[Cu(NH3)4]2+ ,其结构简式为:
NH3
2+
H3N Cu NH3 NH3
Cu 2+ +2NH3 .H2O Cu(OH)2 + 4NH3 . H2O
3、配合物:由提供孤电子对的配体与接受孤电子对 的中心原子以配位键结合形成的化合物称为配合物。
组成:价电子层的部分d轨道和s、d轨道是空轨道 的过渡金属的原子或离子和含有孤对电子的分子(例 如CO,NH3,H2O)或离子(如Cl-,NO2-,CN-)。
4、配合物的组成
内界与外界
内界是配位单元,外界是简单离子。 内外界之间是完全电离的。
蓝色沉淀
Cu(OH)2 +2 NH4 +
[Cu(NH3) 4]2+ +2OH—+4H2O
深蓝色溶液
血红素
叶 绿 素
维生素B12
配位化学的奠基人——维尔纳
维尔纳 (Werner, A, 1866—1919) 瑞士无机化学家,因创 立配位化学而获得1913年诺贝尔化学奖。
戴安邦 (1901-1999)
自由电子
+ 金属离子
金属原子
金属晶体结构具有金属光泽和颜色
由于自由电子可吸收所有频率的光,然后很 快释放出各种频率的光,因此绝大多数金属具有 银白色或钢灰色光泽。而某些金属(如铜、金、 铯、铅等)由于较易吸收某些频率的光而呈现较 为特殊的颜色。
5、金属键及金属性质
【1】金属为什么易导电? 在金属晶体中,存在着许多自由电子,
这些自由电子的运动是没有一定方向的, 但在外加电场的条件下自由电子就会发 生定向运动,因而形成电流,所以金属 容易导电。
【2】金属为什么易导热?
金属容易导热,是由于自由电子运动 时与金属离子碰撞把能量从温度高的部 分传到温度低的部分,从而使整块金属 达到相同的温度。
3、离子键的特征:
阅读:P51
由于离子键没有方向性和 饱和性,因此以离子键相结合 的化合物倾向于形成晶体,使 每个离子周围排列尽可能多的 带异性电荷的离子,达到降低 体系能量的目的。
氯化钠的晶体结构
注意:阳离子与阴离子半径
比值越大,离子周围所能容纳 带异性电荷离子的数目就越 多。
离子的极化:在电场的作用下产生的离 子中的电子分布发生偏移的现象称为离 子的极化。
一、离子键
1、离子键的形成
那些原子间可以形成离子键?
当电负性较小的金属元素的原子与电负性较大的非金属元 素的原子相互接近到一定程度时,容易发生电子得、失而 形成阴、阳离子。
阴、阳离子之间的静电作用——离子键形成稳定的化合物。
(1)活泼金属元素:Na、K、Ca、Mg与活泼非金属元 素O、S、F、Cl之间易形成离子键。即元素周期表中 ⅠA、ⅡA主族元素和ⅥA、ⅦA之间易形成离子键。 (2)NH + 4 、CO 32-、SO 24-等原子团也能与活泼的非金属或 金属元素形成离子键。强碱与大多数盐都存在离子键。
金属原子脱落来的价电 子形成遍所有 的原子维系在一起。
4、金属键及实质:(在金属晶体中,金属阳离 子和自由电子之间的强的相互作用)这是化学 键的又一种类型。
金属键特征:无方向性,无饱和性
自由电子被许多金属离子 所共有,即被整个金属所 共有;无方向性、饱和性。
[Co(NH3)6] Cl3
内界 外界
K3[Cr(CN)6]
外界 内界
内界又由中心离子(或原子)和 配位体及配位数构成:
[Co (NH3)6]3+
中心 配 配 离子 位 位
体数
[Cu(NH3)4] SO4
中心离子 配体 配位数 外界离子
内界
外界
配合物
问题解决
在Fe3+、Cu2+、Zn2+、Ag+、H2O、 NH3、F-、CN-、CO中,哪些可以作 为中心离子?哪些可以作为配体? • 中心原子:Fe3+、Cu2+、Zn2+、Ag+ • 配位体:H2O、NH3、F-、CN-、CO
中国无机化学家和教育家,1981年当选为中国科学院化 学部学部委员。长期从事无机化学和配位化学的研究工作, 是中国最早进行配位化学研究的学者之一。
三、金属键
1、共同的物理性质
容易导电、导热、有延展性、有金属光泽等。
金属为什么具有这些共同性质呢? 2、金属的结构
金属单质中金属原子之间怎样结合的?
3、组成粒子: 金属阳离子和自由电子
离子的极化可能导致阴阳离子的外 层轨道发生重叠,从而使得许多离子键 不同程度地带一些共价性。
二、配位键 NH3 + H+ == NH4+
1、配位键的形成 共用电子由一个原子单方面提供而不是由双方共 同提供
2、形成配位键的条件:①一方是能够提供孤对电 子的原子,②另一方是具有能够接受孤对电子的空 轨道的原子。配位键常用符号A→B。
相关文档
最新文档