动量定理及其应用
力学中的动量定理应用

力学中的动量定理应用动量是物体运动的重要物理量之一,在力学中,动量定理是运动定律之一,研究物体受力后的运动情况。
本文将探讨动量定理在不同场景下的应用及其重要性。
一、汽车碰撞实例考虑两辆汽车A和B发生碰撞的情况。
假设汽车A的质量为m1,速度为v1,汽车B的质量为m2,速度为v2。
根据动量定理,动量守恒的原理,碰撞前后的总动量保持不变。
碰撞前的总动量为m1v1 + m2v2,碰撞后的总动量为(m1+m2)V。
根据动量守恒定理,可以得到下面的方程:m1v1 + m2v2 = (m1+m2)V通过这个方程我们可以计算出碰撞后的速度V。
这个实例展示了动量定理在汽车碰撞中的应用,使我们能够更好地理解碰撞后车辆的速度变化。
二、火箭推进原理火箭的推进原理是基于动量定理而实现的。
火箭在发射时喷射出燃料和气体,根据动量守恒定理,火箭向反方向获得一个相反的动量,使得整个系统的总动量保持不变。
根据动量定理,燃料和气体的动量之和等于火箭的动量。
当燃料喷射出去时,动量向反方向增加,火箭就会获得一个反向的推力。
火箭推进过程中,动量定理的应用使我们能够理解火箭是如何在无外部力的情况下向前运动的。
三、子弹射击子弹射击是另一个动量定理的应用实例。
假设一个质量为m的子弹以速度v射击一个静止的物体,物体的质量为M。
根据动量定理,子弹的动量等于物体的动量。
因此,可以得到下面的方程:mv = MV根据这个方程,可以计算出物体受到的冲量。
此应用示例展示了动量定理在射击过程中的重要性,使我们能够计算出子弹对物体的冲量大小。
四、运动中的人体保护力学中的动量定理还与人体保护密切相关。
当人体受到外力作用时,身体内的器官和组织会受到动量的传递影响。
根据动量定理,人体的动量会随着外力的作用而改变。
因此,为了保护人体免受伤害,可以通过增加物体的密度或采用防护装备等方法减少动量的变化。
这一应用实例突显了动量定理在人体保护中的重要性,使我们能够更加全面地了解身体受到外力时的影响。
高二物理动量定理的应用的知识点

高二物理动量定理的应用的知识点动量定理是物理学中非常重要的一条定律,它描述了物体运动中动量的变化情况。
在高二物理学习阶段,学生需要了解并掌握动量定理的应用以及相关的知识点。
本文将介绍高二物理中动量定理的应用知识点,帮助学生更好地理解和掌握这一内容。
一、动量定理的基本概念动量定理是指在外力作用下,物体的动量的变化率等于物体所受外力的作用力的大小和方向。
动量的变化率可以用动量的前后差值除以时间间隔来表示,即Δp/Δt = F。
其中,Δp表示物体动量的变化量,Δt表示时间间隔,F表示物体所受外力。
二、动量定理的应用1. 动量定理在碰撞中的应用碰撞是动量定理应用的一个重要场景。
根据动量定理,碰撞前后物体的总动量守恒。
可以通过动量定理计算碰撞物体的速度、方向和质量等信息。
2. 动量定理在推动和牵引中的应用物体在受到外力推动或牵引时,动量定理可以用来计算物体的加速度、速度和位移等。
通过观察物体的受力情况和相应的加速度,可以利用动量定理求解这些物理量的数值。
3. 动量定理在爆炸中的应用爆炸是动量定理应用的另一个案例。
在爆炸过程中,物体的动量会突然增加或减小,通过动量定理可以计算爆炸物体的速度和质量等。
4. 动量定理在流体力学中的应用在流体力学中,动量定理可以用来研究液体或气体流动的性质。
通过应用动量定理,可以计算液体或气体流体的压强、速度以及容器中液体或气体的流速等相关物理量。
三、动量守恒定律与动量定理的关系动量守恒定律是指在任何自由系统或任何系统与环境之间的相互作用中,系统的总动量守恒不变。
与动量定理的关系在于,动量守恒定律是动量定理在不受外力作用时的特例,即 F=0,此时动量的变化率为零。
因此,动量守恒定律是动量定理的一个特殊情况。
通过学习和应用动量定理,可以更好地理解物体运动中动量的变化规律,解释和分析各种力学现象。
同时,理解动量定理的应用知识点,可以帮助学生在实际问题中运用物理学知识进行解决和推导。
理论力学-9-动量定理及其应用

y
解法1:建立Oxy坐标系,在角度q为任意值的情形下
vA
yA 2lsin q
A
xB 2lcosq
vA yA 2lqcosq 2lcosq
vB xB 2lqsinq 2lsin q
Oθ
vB
B
p mivi
i
p mAvA mBvB
p mAvA mBvB
x
2lmcosq j 2lmsinq i
l
cost
例题 3
2.求作用在O轴处的最大水平约束力
y
由质心运动定理
A
O
C
B
l/2
x
&x&C
m1 2(m1
2m2 2m3 m2 m3 )
lω2
cos
ωt
D
Fox
MaCx
(m1
2m2
2m3 )
lω2 2
cos ωt
当 cosωt 1 时,水平约束力最大,其值为
Fox,max
Macx
(m1
2m2
隔板
水池
?抽去隔板后将会
发生什么现象
水
光滑台面
第9章 动量定理及其应用
? 二人在太空中拔河,
初始静止,同时用尽 全力相互对拉。若A 的力气大于B的力气, 则拔河的胜负将如何?
第9章 动量定理及其应用
9.1 动量定理与动量守恒 9.2 质心运动定理 9.3 综合应用举例 9.4 结论与讨论
第9章 动量定理及其应用
2lm(-sinq i cosq j)
9.1.1 质点和质点系的动量
例题 1
解法2: 质点系的质心在C处,其速度大小为
A vC
动量定理在生活、生产中的应用

动量定理在生活、生产中的应用
1、火车行驶
质量大的火轮机越容易推进越快行驶,它的动量定理说的就是这个道理,火轮机发动机产生的动力要能有效地推动火车前进,它所产生的
动量就必须要大,这样才能把减速度降到最小。
2、机器人越野
机器人越野运动需要考虑动量,一个大而重的机器人对于移动、改变
方向、停止都会有一定的动量,在机器人越野过程中,会有不少能源
消耗,而大动量会使机器人行为更加稳定、有决断力,减少能耗,实
现机器人越野更好的效果。
3、潜艇航行
潜艇航行的过程中也会考虑到动量的问题,动量大的潜艇不仅容易推进,且提高航速,同时动量小的潜艇在改变方向时也会增加能源消耗,所以在潜艇的设计和制造过程中要考虑到动量的问题,以达到最大的
推进效率。
什么是动量定理及其在高中物理中的应用

什么是动量定理及其在高中物理中的应用在高中物理的学习中,动量定理是一个极其重要的概念,它不仅帮助我们更深入地理解物体的运动规律,还在解决实际问题中有着广泛的应用。
首先,让我们来了解一下什么是动量定理。
动量,用符号 p 表示,其定义为物体的质量 m 与速度 v 的乘积,即 p = mv。
而动量定理则表述为:合外力的冲量等于物体动量的增量。
冲量,用符号 I 表示,定义为力 F 与作用时间 t 的乘积,即 I = Ft。
简单来说,动量定理告诉我们,当一个物体受到外力作用时,外力在一段时间内的累积效果(即冲量)会导致物体动量的改变。
如果外力的作用时间很短,但是力很大,也能产生较大的冲量,从而改变物体的动量;反之,如果外力作用时间很长,但力较小,同样能产生相同的冲量,改变物体的动量。
为了更直观地理解动量定理,我们来看一个简单的例子。
假设一个质量为m 的小球,以速度v 水平向右运动,撞到一堵墙上后反弹回来,速度大小不变,但方向相反。
在与墙碰撞的过程中,小球受到墙对它的作用力 F,作用时间为 t。
根据动量定理,墙对小球的冲量 I = Ft,等于小球动量的变化量。
因为小球碰撞前后的动量方向相反,所以动量的变化量为 2mv(碰撞前动量为 mv,碰撞后动量为 mv)。
在高中物理中,动量定理有着广泛的应用。
下面我们来探讨几个常见的应用场景。
一、碰撞问题碰撞是高中物理中常见的问题类型,包括完全弹性碰撞、非完全弹性碰撞和完全非弹性碰撞。
在解决这些问题时,动量定理往往能发挥重要作用。
例如,在完全弹性碰撞中,两个物体碰撞前后的总动量守恒,总动能也守恒。
通过动量定理,我们可以列出碰撞前后物体动量的表达式,从而求解出碰撞后物体的速度等物理量。
在非完全弹性碰撞和完全非弹性碰撞中,虽然总动能不守恒,但总动量仍然守恒。
利用动量定理,结合能量守恒定律或其他相关条件,我们能够分析碰撞过程中物体的运动状态变化。
二、打击问题当一个物体受到瞬间的打击力时,动量定理可以帮助我们分析物体的运动情况。
动量定理及其应用

动量定理的应用 1. 解释现象 2. 动手操作
动量定理的理解
1)定理反映了合外力冲量是物体动量变化的原因 (2)动量定理不仅适用于恒定的力,也适用于变力。 (对于变力的情况,动量定理中的 F 应理解为 变力在作用时间内的平均值。) (3) 为矢量表达式 ,动
Ft mv mv
量变化的方向与合外力冲量的方向相同。 用此式计算时应先规定正方向,在运用动量 定理时,应该遵循矢量运算的平行四边形定则, 也可采用正交分解法,将矢量运算转为代数运算 (4)动量定理不仅适用于宏观低速物体,对微观 现象和高速运动仍然适用。
这就是动量定理
mv
F
mv′
F 作用了时间 t
F
பைடு நூலகம்
动量定理: 物体受到的合力的冲量 等于物体动量的变化 表达式: 或
Ft mv mv I p
一个质量为0.1kg的垒球,以10m/s的水平速 度飞向球棒,被球棒打击后,反向水平飞回,速 度的大小为10m/s. 垒球动量改变了多少?
动量定理的应用 1. 解释现象
F mv mv 0.08 0.1 N 18N t 0.01
“﹣”表示力的方向与正方向相反。
利用动量定理解题步骤
1. 确定研究对象 2. 对研究对象进行受力分析,确定全部外力及作用时间; 3. 找出物体的初末状态并确定相应的动量; 4. 如果初、末动量在同一直线上,则选定正方向,并给 每个力的冲量和初末动量带上正负号,以表示和正方向 同向或反向;如果初、末动量不在同一直线上,则用平 行四边形定则求解; 5. 根据动量定理列方程求解。
V0=10m/s:1)沿水平方向抛出。求该物体在 抛出两秒内动量的变化 (g值取10m/s2)
利用动量定理解题
动量定理及应用

是隔离出一定形状的一部分流体作为研究对象,然后列式求解.
3.基本思路 (1)在极短时间Δt内,取一小柱体作为研究对象. (2)求小柱体的体积ΔV=vSΔt (3)求小柱体质量Δm=ρΔV=ρvSΔt
(4)求小柱体的动量变化Δp=vΔm=ρv2SΔt
(5)应用动量定理FΔt=Δp
考点四:应用动量定理处理“流体模型”的冲击力问题
落,落到厚软垫上,若从小球接触软垫到小球陷至最低点经历了 t = 0.2 s,则在这段时间内,软垫对小球的冲量是多少?(g=10 m/s2) 答案 0.6 N· s,方向竖直向上
模型 构建
考点四:应用动量定理处理“流体模型”的冲击力问题 1.研究对象 常常需要选取流体为研究对象,如水、空气等. 2.研究方法
(1)喷泉单位时间内喷出的水的质量;
答案 ρv0S
考点四:应用动量定理处理“流体模型”的冲击力问题
(2)玩具在空中悬停时,其底面相对于喷口的高度.
v02 M2g 答案 2g -2ρ2v 2S2 0
考点四:应用动量定理处理“流体模型”的冲击力问题
变式6
为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨
Байду номын сангаас例4
一高空作业的工人重为600 N,系一条长为L=5 m的安全带,
若工人不慎跌落时安全带的缓冲时间 t=1 s(工人最终悬挂在空中), 则缓冲过程中安全带受的平均冲力是多少?(g取10 m/s2,忽略空气
阻力的影响) 答案 1 200 N,方向竖直向下
考点三:动量定理在多过程问题中的应用
变式5
一个质量为m=100 g的小球从离厚软垫h=0.8 m高处自由下
(3)抓住过程的初、末状态,选好正方向,确定各动量和冲量的正负号.
动量定理及其应用

动量定理及其应用动量定理是物理学中的重要概念之一,它描述了物体运动的性质和变化。
本文将介绍动量定理的基本原理、公式推导以及其在实际应用中的意义和重要性。
一、动量定理的基本原理动量定理是由牛顿提出的,它描述了质点的运动状态和所受外力之间的关系。
根据动量定理的表述,一个质点的动量的变化量等于作用于质点的力的时间积分。
换句话说,当一个物体受到外力作用时,它的动量会发生改变。
动量定理可以表述为以下公式:F = Δp/Δt其中,F代表物体所受的力,Δp为物体的动量变化量,Δt为时间的变化量。
该公式表示力等于物体动量的变化率。
二、动量定理的公式推导动量是物体的运动状态的衡量,它的大小与物体的质量和速度有关。
根据定义,动量p等于物体质量m与速度v的乘积:p = m * v。
当一个物体受到外力F作用时,根据牛顿第二定律F = ma(a为物体的加速度),可得:F = m * a根据运动学公式v = u + at(u为初速度,t为时间),可以将加速度a表示为:a = (v - u) / t将上述两个公式代入牛顿第二定律中得:F = m * (v - u) / t进一步整理可以得到:F * t = m * (v - u)F * t = m * Δv根据动量的定义p = m * v,将上述公式代入可得:F * t = Δp经过推导,我们得到了动量定理的基本公式F = Δp/Δt。
三、动量定理的应用动量定理在物理学和工程学中有着广泛的应用,以下是一些常见的应用场景:1. 交通事故分析:动量定理可以帮助我们分析交通事故中车辆的碰撞情况,准确计算撞击力的大小以及车辆运动状态的变化。
2. 火箭推进原理:在航天工程中,动量定理被用来解释火箭如何通过燃料的喷射产生反作用力,从而达到推进的效果。
3. 球类运动:动量定理可以解释球类运动中击球和接球的力学过程。
例如,乒乓球运动中击球员可以通过控制球的反冲力使得球的速度和方向发生改变。
4. 器械运动分析:动量定理可以用来解析各种器械运动的特点和规律,例如击球运动、举重等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.动量:①定义:物体质量与速度的乘积,②动量的性质:是状态量、具有相对性、矢量性2.动量守恒定律①动量的变化量:②内力与外力:系统内物体间的相互作用力叫做内力;系统外物体施加给系统内物体的力叫做内力。
③动量守恒定律:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。
④动量守恒定律的成立条件a.系统不受外力或所受外力和为零,则系统的动量守恒。
b.系统所受外力比内力小很多,则系统的动量近似守恒。
c.系统某一方向不受外力或所受外力的和为零,或所受外力比内力小很多,该方向动量守恒。
⑤动量守恒定律的普适性a.牛顿定律解决问题涉及全过程,用动量解决只涉及始末状态,与过程无关。
b.动量守恒不仅适用宏观低速,而且适用微观高速,牛顿定律不适用微观高速。
二.碰撞1.碰撞的分类:2.一维弹性碰撞当时①若,交换速度②若,,同向,速度前大后小③若,反弹④若,⑤若,三.反冲1.反冲:如果一个静止的物体在内力的作用下分裂为两部分,一部分向某个方向运动,另一部分必然向相反的方向运动,这个现象叫做反冲。
2.反冲遵循的规律:,即:,,即:3.反冲运动的应用:喷气式飞机,射击时枪筒的后退,火箭发射等。
四.用动量概念表示牛顿第二定律1.用动量概念表示牛顿第二定律假设物体受到恒力的作用做匀变速直线运动,在时刻物体的初速度为,在时刻物体的速度为,由牛顿第二定律得,物体的加速度合力F=ma由于,所以2.动量定理应用动量定理需要注意的几点:①方程左边是物体动量的变化量,计算时顺序不能颠倒②方程右边是物体受到的合外力的总冲量,其中F可以是恒力也可以是变力,如果合外力是变力,则F是合外力在时间t内的平均值③整个式子反映了一个过程,即力对时间的积累效果是引起物体动量的变化。
④动量定理中的冲量和动量都是矢量,冲量的方向与动量变化量的方向相同。
⑤动量与参考系的选取有关,所以用动量定理时必须注意参考系的选取。
⑥动量定理不仅适用于宏观物体的低速运动,对微观现象,高速运动仍然适用。
⑦不能认为合外力的冲量就是动量的变化。
合外力的冲量是引起动量变化的原因,而动量变化是冲量作用的必然结果⑧动量定理的研究对象是单个质点或由质点所构成的系统,当研究对象为质点系统时,动量定理中的动量应是该系统内所有质点在同一时刻动量的矢量和,而冲量是该系统内各个质点在同一个物理过程中所受一切外力冲量的矢量和,不包括系统内各质点之间相互作用的(内力)的冲量,这是因为内力总是成对出现的,且大小相等、方向相反,故其内力的总冲量必定为零。
五.动量典型模型1.人船模型:如图所示长为,质量为m1的小船在静水中,一个质量为m2的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人相对地面的位移各是多少?分析与解答:选船和人组成的系统为研究对象,由于水平方向不受外力,因而人从船头走向船尾的过程中任一时刻水平方向的动量都守恒,既平均动量守恒,而系统在人起步前的总动量为0。
设人和船在全过程中的平均速度分别为和,根据动量守恒定律:设相互作用的时间为,则,故由题意知:联立两式解得:,练习:某人在一只静止于水面的小船上练习射击。
船、人连枪(不包括子弹)及靶的总质量为M,枪内装有n颗子弹,每颗子弹质量为m。
枪口到靶的距离为,子弹射出枪口时相对于地面的速度为v。
在发射后一颗子弹时,前一颗子弹已陷入靶中,则发射完n颗子弹后小船后退多远?参考答案:2.板块模型:已知木板质量为,静止在光滑水平地面上,一个质量为的小滑块,以初速度滑上木板,滑块与木板之间的接触面粗糙(1)木块与木板相对静止的速度由动量守恒定律:(2)从滑块滑上小车到它们处于相对静止所经历的时间由动量定理:(3)m在M上滑行的位移s相对(若滑块不掉下木板,木板至少多长)由功能关系:(4)到达相对静止时,相对地面的位移木块位移:木板位移:练习:如图所示,质量为0.4kg的木块以2m/s的速度水平地滑上静止的平板小车,车的质量为 1.6kg,木块与小车之间的摩擦因数为0.2(g取10m/s2)。
设小车足够长,求:(1)木块和小车相对静止时小车的速度(2)从木块滑上小车到它们处于相对静止所经历的时间(3)欲使木块不离开平板小车,小车的至少为多长?(4)达到相对静止时,木块相对地面的位移?参考答案:(1)0.4m/s(2)0.8N(3)0.8m(4)0.96m3.弹簧振子模型:质量为的木块A和B用质量不计的轻质弹簧连接在一起,一个质量为的子弹以速度射向木块A并最终留在木块之中。
(1)在这一过程中产生的热量是多少?以子弹和A木块组成的系统为研究对象由动量守恒:(2)当子弹、A木块与B木块速度相同时,速度大小为多少?由动量守恒:(3)弹簧的最大弹性势能由机械能守恒:练习:如图所示,一轻质弹簧两端连着物体A、B,放在光滑的水平面上,若物体A被水平速度为v0的子弹射中,且后者嵌在物体A的中心,已知物体A的质量是物体B质量的3/4,子弹质量是物体B的1/4,设子弹的质量为m(1)弹簧被压缩到最短时,求物体A、B的速度。
(2)最大弹性势能。
参考答案:(1)(2)4.子弹冲击沙摆模型质量为m的子弹以速度击中用为L细绳悬挂的质量为的沙摆(1)木块被击中后摆动的最大偏角由动量守恒:由机械能守恒定律:(2)运动到最低点绳子的拉力(3)若使沙摆在竖直平面内做圆周运动,最小为多大?由机械能守恒:练习:如图,质量为M的木块用长为L的细线悬挂于某固定点,开始时木块静止在最低点,质量为m的子弹以水平速度V0击中木块后未穿出,设子弹击中木块的时间极短,则:(1)若木块被击中后向右摆动的最大偏角θ小于90°,求θ。
(2)当木块摆动返回最低点时,求悬线的拉力。
(3)欲使小球在竖直面上做完整的圆周运动,子弹水平速度V0必须满足什么条件?参考答案:(1)(2)(3)1.动量守恒定律的判断1、把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射出子弹时,关于枪、子弹、车的下列说法正确的是()A.枪和子弹组成的系统动量守恒B.枪和车组成的系统动量守恒C.只有忽略不计子弹和枪筒之间的摩擦,枪、车和子弹组成的系统的动量才近似守恒D.枪、子弹、车组成的系统动量守恒解:本题C选项中所提到的子弹和枪筒之间的摩擦是系统的内力,在考虑枪、子弹、车组成的系统时,这个因素是不用考虑的根据受力分析,可知该系统所受合外力为0,符合动量守恒的条件,故选D规律总结:判断系统是否动量守恒时,一定要抓住守恒条件,即系统不受外力或者所受合外力为0。
变式:如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中:()A、动量守恒、机械能守恒B、动量不守恒、机械能不守恒C、动量守恒、机械能不守恒D、动量不守恒、机械能守恒解析:若以子弹、木块和弹簧合在一起作为研究对象(系统),从子弹开始射入木块到弹簧压缩至最短时,弹簧固定端墙壁对弹簧有外力作用,因此动量不守恒.而在子弹射入木块时,存在剧烈摩擦作用,有一部分能量将转化为内能,机械能也不守恒.答案:B规律总结:实际上,在子弹射入木块这一瞬间过程,取子弹与木块为系统则可认为动量守恒(此瞬间弹簧尚未形变).子弹射入木块后木块压缩弹簧过程中,机械能守恒,但动量不守恒.物理规律总是在一定条件得出的,因此在分析问题时,不但要弄清取谁作研究对象,还要弄清过程的阶段的选取,判断各阶段满足物理规律的条件.2.碰撞中过程的分析2、如图所示,位于光滑水平桌面上的小滑块A和B都可视作质点,质量相等。
B与轻质弹簧相连。
设B静止,A以某一初速度向B运动并与弹簧发生碰撞。
在整个碰撞过程中,弹簧具有的最大弹性势能等于()A. A的初动能B. A的初动能的1/2C. A的初动能的1/3D. A的初动能的1/4解析:解决这样的问题,最好的方法就是能够将两个物体作用的过程细化。
具体分析如图:开始A物体向B运动,如右图;接着,A与弹簧接触,稍有作用,弹簧即有形变,分别对A、B物体产生如中图的作用力,对A的作用力的效果就是产生一个使A减速的加速度,对B的作用力的效果则是产生一个使B加速的加速度。
如此,A在减速,B在加速,一起向右运动,但是在开始的时候,A的速度依然比B 的大,所以相同时间内,A走的位移依然比B大,故两者之间的距离依然在减小,弹簧不断压缩,弹簧产生的作用力越来越大,对A的加速作用和对B的加速作用而逐渐变大,于是,A的速度不断减小,B的速度不断增大,直到某个瞬间两个物体的速度一样,如下图。
过了这个瞬间,由于弹簧的压缩状态没有发生任何变化,所以对两个物体的作用力以及力的效果也没有变,所以A要继续减速,B要继续加速,这就会使得B的速度变的比A 大,于是A、B物体之间的距离开始变大。
因此,两个物体之间的距离最小的时候,也就是弹簧压缩量最大的时候,也就是弹性势能最大的时候,也就是系统机械能损失最大的时候,就是两个物体速度相同的时候。
根据动量守恒有,根据能量守恒有,以上两式联列求解得,可见弹簧具有的最大弹性势能等于滑块A原来动能的一半,B正确规律总结:处理带有弹簧的碰撞问题,认真分析运动的变化过程是关键,面对弹簧问题,一定要注重细节的分析,采取“慢镜头”的手段。
3.动量守恒定律的适用情景3、小型迫击炮在总质量为1000kg的船上发射,炮弹的质量为2kg.若炮弹飞离炮口时相对于地面的速度为600m/s,且速度跟水平面成45°角,求发射炮弹后小船后退的速度。
解析:发射炮弹前,总质量为1000kg的船静止,则总动量Mv=0.发射炮弹后,炮弹在水平方向的动量为mv1'cos45°,船后退的动量为(M-m)v2'据动量守恒定律有0=mv1'cos45°+(M-m)v2'取炮弹的水平速度方向为正方向,代入已知数据解得规律总结:取炮弹和小船组成的系统为研究对象,在发射炮弹的过程中,炮弹和炮身(炮和船视为固定在一起)的作用力为内力。
系统受到的外力有炮弹和船的重力、水对船的浮力.在船静止的情况下,重力和浮力相等,但在发射炮弹时,浮力要大于重力.因此,在垂直方向上,系统所受到的合外力不为零,但在水平方向上系统不受外力(不计水的阻力),故在该方向上动量守恒。
变式:物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B 一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大?解析:以A和B组成的系统作为研究对象.绳子烧断前,A、B一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力只有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A+f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解.解:取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有(m A+m B)v=m A v′A+m B v′B4.分方向动量守恒4、如图所示.质量为m的铅球以大小为v0仰角为θ的初速度抛入一个装着砂子的总质量为M的静止的砂车中,砂车与地面的摩擦不计,球与砂车的共同速度是多少?解析:小球及小车看成一个系统,该系统水平方向不受外力,故系统水平方向上动量守恒,由动量守恒定律得m v0cosθ=(M+m)v,所以v=mv0cosθ/(M+m)规律总结:此类问题属系统所受外力不为0,竖直方向上受到有外力,动量不守恒,但水平方向上不受外力作用,动量守恒.又如大炮在以倾角发射炮弹时,炮身要后退,受到地面的阻力,但因其炸药产生的作用力很大,远大于受到的阻力,故仍认为水平方向动量守恒.变式如图所示,一辆质量为M的小车以速度v1光滑水平面上运动,一质量为m、速度为v2物体以俯角为θ的方向落到车上并埋在车里的砂中,此时小车的速度为______解析:小球进入砂中的过程,小球受到的砂的阻力大于小球的重力,因此,车与球组成的系统在竖直方向上受到的合外力不为零。