加权平均数】

合集下载

加权平均数PPT课件

加权平均数PPT课件

20
20
20
什锦糖的单价不仅与混合前的奶糖、酥心糖以及 话梅糖的单价有关,也与混合后这三种糖的质量在什 锦糖质量中所占的比值有关。
概念二:加权平均数
一般地,在 k个数据 x1, x2 , , xk 中, 如果各个数据出现的次数分别是
w1, w2,
, wk 记 w1 w2
wk n那么比值
w1 , w2 , nn
第4章:数据分析
4.1 加权平均数
课件
学习目标
1、掌握加权平均数的概念,利用公式计算加权平均数; 2、体会算术平均数与加权平均数的联系; 3、了解平均数是反映一组数据的集中趋势的特征值.
复习导入
(1)我们过去已经学过平均数。你能举例 说明如何计算一组数据的平均数吗?
数据2、3、4、1、2的平均数__2_.4___,
x1, x2 , , xk 是这组数据中所有不重复的数据,w1, w2, , wk 分别是它们在这组数 据中重复出现的次数。这里,w1, w2, , wk 的和等于 n.
日加工零件数/个
20
22
24
25
工人数/人
4
8
20
8
4+8+20+8=40
20 4 +22 8 +24 20 +25 8 = 23.4(个)
40
40
40
40
例题精讲
例1.在学校的一次卫生检查中,八年级一班的教室卫生成绩为85分,环境卫生成 绩为90分,个人卫生成绩为95分. 如果三项成绩分别按30%,40%和30%计入总 成绩,求该班这次卫生检查的总成绩.
解: 由加权平均数的意义,得
8530%9040%9530% 90 (分)

初二数学加权平均数

初二数学加权平均数

加权平均数可以用来评估投资组合的风险,通过计算投资组合中各种资产的价格和权重,得到加权平均价格。
评估投资组合风险
市盈率是股票价格与加权平均收益的比率,用于评估股票的估值和投资价值。
计算股票的市盈率
银行在确定贷款利率时,会考虑借款人的信用评级和加权平均利率。
确定贷款利率
在金融学中的应用
在计算一组人的平均工资时,可以使用加权平均数来确定平均工资水平。
加权平均数与权重的关系
加权平均数的几何意义是表示一组数据在数轴上的中心位置。
总结词
设$x_1, x_2, ..., x_n$是一组数据,$w_1, w_2, ..., w_n$是对应的权重,则加权平均数为$frac{x_1 times w_1 + x_2 times w_2 + ... + x_n times w_n}{w_1 + w_2 + ... + w_n}$,在数轴上表示这组数据的中心位置。
详细描述
加权平均数的几何意义
04
CHAPTER
加权平均数在数学中的应用
在统计学中的应用
描述数据的集中趋势
加权平均数可以用来描述一组数据的集中趋势,特别是当数据中有异常值或需要强调某些重要数据时。
数据分析
在统计学中,加权平均数常用于数据分析,以了解数据的分布、离散程度和相关性。
预测和决策
通过分析加权平均数,可以预测未来的趋势和做出决策,例如预测销售量、市场份额等。
详细描述
复杂加权平均数的计算
加权平均数的数学公式是用来计算加权平均数的通用公式。
总结词
加权平均数的数学公式是 (Σx_i * w_i) / Σw_i,其中 x_i 表示每个数值,w_i 表示每个数值的权重,Σ 表示求和符号。这个公式可以用来计算简单加权平均数和复杂加权平均数。

加权平均数

加权平均数

下午对不起了又没给你讲
好像你不能上网额不知道你能不能看到看不到去了学校讲等你
加权平均数从意义上来讲,就是所求平均数的各数据占总数据的比例不同,举个例子:求1,2,3,4,5,1,1,的平均数其中1所占的比例不同。

这就有了“权”(我个人理解权就是对平均数的大小影响,如果这个数据的权越大,它对平均数左右的能力就越大,这个你应该懂。

)上面这个例子算平均数怎么算呢?
(1*3+2*1+3*1+4*1+5*1)/7 是吧这组数据中1的权是3,而2,3,4,5,的权都是1。

呵呵这讲的有些简单,都懂吧。

下来深入些:
学校食堂吃饭,吃三碗的有χ 人,吃两碗的有 y 人,吃一碗的 z 人。

平均每人吃多少?(3×χ + 2×y + 1×z)÷(χ + y + z) 这里x、y、z分别就是权数值,“加权”就是考虑到不同变量在总体中的比例份额。

数据的频数越大,表明它对整组数据的平均数影响越大,实际上,频数起着权衡数据的作用,称之为权数或权重。

事实上,权与比例份额有联系但不同,某数据所占的比例份额就是这项数据的权除以各项数据权的总和。

20.1.1 加权平均数

20.1.1 加权平均数

人数
5
20
15
10
65 5+75 20+85 15+95 10 x= =81 (分) 5+ 20+15+10
8.某班40名学生的身高情况如下图,请计算该班学生 的平均身高(cm).
150 6+160 10+170 20+180 4 x= =165.5(cm) 6+10+ 20+4
思考
1.这里组中值指什么?它是如何确定的? 2.频数是指什么呢?
11 3+31 5+51 20+71 22+91 18+111 15 x= 3+5+20+22+18+15
73 (人)
载客量/人
组中值
频数(班次)
1≤x<21
21≤x<41 41≤x<61 61≤x<81 81≤x<101
综合应用
9.某班进行个人投篮比赛,下表记录了在规定时间投进n个球 的人数分布情况,同时,已知进球3个或3个以上的人平均每人 进3.5个球;进球4个或4个以下的人平均每人投进2.5个球,问投 进3个球和4个球的各有多少人? 进球数n 投进个数的人数 0 1 1 2 2 7 3 4 5 2
解:设投进3个球的人数为a人,投进4个球的人数为b人, 根据已知有
3 a+4 b+5 2 =3.5 a+b+2 0 1+1 2+2 4+3 a+4 b =2.5 1+2+7+a+b
a 9 解得 b 3

加权平均值的公式

加权平均值的公式

加权平均值的公式加权平均值这个概念啊,在咱们的数学学习中还挺重要的。

那什么是加权平均值呢?咱们先来看个公式:加权平均值 = (数值×权重)之和÷权重之和。

比如说,咱们班某次考试,语文、数学、英语的成绩权重分别是4、5、3。

小明语文考了 80 分,数学考了 90 分,英语考了 70 分。

那小明的加权平均成绩就是:(80×4 + 90×5 + 70×3)÷(4 + 5 + 3)。

咱们来算算啊,80×4 = 320,90×5 = 450,70×3 = 210,然后 320 + 450 + 210 = 980。

权重之和 4 + 5 + 3 = 12,所以加权平均值就是980÷12 ≈ 81.67 分。

我记得有一次,我们学校组织了一场综合能力测评。

这个测评包括了学习成绩、社会实践、艺术表现等多个方面。

学习成绩的权重占60%,社会实践占 20%,艺术表现占 20%。

有个叫小李的同学,学习成绩特别好,每次考试都能在年级名列前茅,平均能有 95 分。

但是他在社会实践方面参与得比较少,表现一般,老师给打了 80 分。

艺术表现呢,他会弹钢琴,参加过学校的文艺演出,能有 85 分。

咱们来算算小李的综合测评成绩。

学习成绩 95×60% = 57 分,社会实践 80×20% = 16 分,艺术表现 85×20% = 17 分。

然后 57 + 16 + 17 =90 分。

这就是小李的综合加权平均成绩啦。

通过这个例子咱们能看出来,加权平均值可不是随便算算的,它能更全面、更合理地反映一个人的综合表现或者一个事物的综合情况。

再比如说,在工作中也会用到加权平均值。

就像销售业绩的考核,可能销售额的权重是 70%,客户满意度的权重是 30%。

如果只看销售额,可能会忽略客户的感受;只看客户满意度,又可能忽视了销售的成果。

加权平均数

加权平均数

加权平均数教学目标:1、在具体情境中理解加权平均数的概念,体会“权、权重”的意义。

2、知道平均数(算术平均数)与加权平均数的联系和区别;会实行加权平均数的计算。

3、培养学生自我解答和互相合作交流的水平。

教学重点:加权平均数的意义及与平均数的区别和联系。

教学难点:权和权重的理解。

教学过程:新课导入:上一节,我们学习了平均数(也叫算术平均数)的概念,大家请做这几道题(课件出示),引出本节内容。

(板书课题-加权平均数)。

学习目标:1、理解加权平均数的概念,体会“权、权重”的意义,知道加权平均数和平均数(算术平均数)的区别和联系。

2、会实行加权平均数的计算。

自学指导(1):阅读课本P134-135页内容,思考:1、P134页(1)中的问题,P135页(2)中的问题怎样解答?2、你是怎样理解“权、权重”的意思?3、P135页“试一试”怎么做?合作探究、展示、点拨:一、探究问题1:1、自我解答,写出解答过程。

A组6号展示(1)中的问题B组6号展示(2)中的问题2、评价和质疑:C组5号评价A组6号的解答,D组5号评价B组6号的解答全班同学实行质疑,不解或认为错误的地方能够马上指出。

二、探究问题2:1、小组交流,理解权和权重。

(结合问题1中的(1)(2)两个问题)2、E组5号,F组5号分实行展示本组交流结论。

3、全班同学实行质疑,不解或认为错误的地方能够马上指出。

4、得出结论:权:在一组数据中,一个数据出现的次数称为权。

权重:是一个相对概念,是指该指标在整体评价中的相对水准(一般用百分数表示)。

三、探究问题3:1、个人解答。

2、小组交流合作,得出结论。

3、展示、评价、质疑。

四、总结出加权平均数和平均数(算术平均数)的区别和联系:1、平均数(算术平均数)公式:2、加权平均数公式:在一组数据中,把每个数据出现的次数都看作1时,即权数是1时,这组数据的加权平均数就是算术平均数。

自学指导(2):阅读课本P135-136页内容,思考:1、 P135页-136页问题及思考,做出另外三个应聘者的最后得分是多少?2、 P136页左边云图的问题怎么做?学生展示后,重点理解怎样由比值得到百分比? 学生交流后展示方法。

加权平均数 公式

加权平均数 公式

加权平均数公式
摘要:
一、加权平均数的定义
二、加权平均数的计算公式
三、加权平均数的应用场景
四、加权平均数与算术平均数的关系
正文:
加权平均数是一种衡量一组数据集中趋势的统计量。

它是根据每个数据点的重要性(权重)来计算的,因此被称为加权平均数。

在实际应用中,加权平均数常常用于处理具有不同重要性的数据。

加权平均数的计算公式为:
加权平均数= (权值1 × 数据1) + (权值2 × 数据2) + ...+ (权值n × 数据n)
----------------------------------------------
权值之和
其中,权值表示每个数据点的重要性,数据表示每个数据点的具体数值,n表示数据点的数量。

加权平均数在实际生活中有很多应用场景,比如在股票市场中,加权平均数常常用于计算股票价格的均值,以便更好地反映市场整体走势。

在其他领域,如经济学、社会学等,加权平均数也常用于处理具有不同权重的数据。

需要注意的是,加权平均数与算术平均数之间存在一定的关系。

当所有权
值相同时,加权平均数就变成了算术平均数。

而当加权平均数的权值和为1时,它等于算术平均数。

总之,加权平均数是一种重要的统计量,它可以帮助我们更好地处理具有不同重要性的数据。

加权平均数

加权平均数

3、某公司欲招聘公关人员,对甲、乙候选人进行了面视
和笔试,他们的成绩如下表所示
候选人 测试成绩(百分制)
测试
笔试
甲 乙
86 92
90 83
(1)如果公司认为面试和笔试同等重要,从他们的 成绩看,谁将被录取
倍 速 课 时 学 练
92 1 83 1 x乙 87.5 2 x甲 x乙 甲将被录用
50 45 55
≈80.2
练习巩固:
1.数据2,3,4,1,X的平均数是3,则X=( 5)
2.你能求出中国篮球队员的平均年龄吗? 年龄 26 28 29 30 31
人数
1
3
1
4
2
倍 速 课 时 学 练
( 1 )在这五个数据中,26的权是( 1 ),28的 权是( 3),29的权是( 1),30的权是( 4 ), 31的权是( 2 ) (2)中国篮球运动员的平均年龄是( 29.2)
50 45 55
≈80.2
例1 一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、 说、读、写的英语水平测试,他们各项的成绩(百分制)如下:
应试者 甲 乙 听 85 73 说 78 80 读 85 82 写 73 83
(1)如果这家公司想招一名综合能力比较强的翻译,计算两名应试 者的平均成绩,从他们的成绩看,应该录取谁?
倍 速 课 时 学 练
1 主要知识内容:
若n个数
倍 速 课 时 学 练
加 权 平 均 数
x1, x 2 , ,xn w1, w2 , ,wn 则:
的权分别是
x1w1 x2 w2 xn wn w1 w2 w3 wn
叫做这n个数的加权平均数。 数据的权能够反映的数据的相对“重要程度”。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§20.1.1加权平均数
教材分析:
前面我们学过了算术平均数的计算方法,知道了平均数的有关概念及其求法,本节主要平均数的又一求法,这是学好数据的分析并解决实际问题的关键.教材通过一个实例入手,引出要解决的问题;介绍了权,组中值等概念,是解题的关键,在本教材中起着承前启后的作用,不仅现在有用,今后我们还会有更深的体验.
【课时分配】2课时
§20.1.1加权平均数(第一课时)
【教学目标】
1.认识和理解数据的权及其作用。

2.通过实例了解加权平均数的意义,会根据加权平均数的计算公式进行有关计算。

【教学重点与难点】
重点:加权平均数的概念以及运用加权平均数解决实际问题。

难点:对数据的权及其作用的理解。

【教学方法】
)
n
x
++
叫做这2
n n
x ω
ω
++
∙+
+
n f
x
++∙
510)
请你设计一个评分方案,并根据你的评分方案计算一下哪一个班的卫生情况最好?
(根据权重为15%、10%、35%、40%的比例计算各班的卫生成绩;) (1)一班的成绩=95×15%+90×10%+90×35%+85×40%=88.75;二班的成绩=90×15%+95×10%+85×35%+90×40%=88.75;
三班的成绩=85×15%+90×10%+95×35%+90×40%=91;
∴三班的成绩最高.
2)如果按照四项的权重一样,则三个班的平均成绩分别为:
一班的成绩=(95+90+90+85)÷4=90;
二班的成绩=(90+95+85+90)÷4=90;
三班的成绩=(85+90+95+90)÷4=90;
∴三个班的成绩一样.
(教学说明:权在数据中的重要性,通过以上练习很好的体现出来,包括组中值的确定等,都是加权平均数的一大重要内容)
五、课堂小结:
1、谈谈本节课你的收获什么?
(教学说明:通过对以上问题的思考引导学生回顾整节课的学习历程,巩固所学知识,不断完善自己的认识,形成完整的知识结构.)六、布置课后作业:
课本P115:练习第1,2 题
【评价与反思】
本节课的设计,以自学为前提,引导学生认识了又一种平均数的求法,然后又通过数学问题检测学生自学的内容是否能很好的掌握.在以探究合作性学习为主,教师仅仅起到引导作用,体现了学生的主题地位,能让学生的主体思维得到很好发展,并就遇到的问题及时总结纠正,期望让学生在自主探索中学得自然、学得主动、学得有
效.本节课的重点内容是加权平均数的求解,注重培养了学生的抽象思维能力和总结概括能力.。

相关文档
最新文档