最新第10讲体育比赛中的数学问题
小学四年级奥数 体育比赛中的数学问题

体育比赛中的数学问题【例2】⑴(★★)赛制介绍淘汰赛:每两个队用一场比赛定胜负,胜者之间再按前述规则比赛定胜负单循环赛:每两个队之间都要比赛一场,无主客场之分。
有n 个队参加的单循环赛中,每个队要参加的比赛场数为(n-1)场双循环赛:每两个队之间都要比赛两场,有主客场之分。
五个班进行足球比赛,每两个班之间都要赛一场,那么每个班要赛几场?一共要进行多少场比赛?有n 个队参加的双循环赛中,每个队要参加的比赛场数为2(n-1)场一、比赛赛制【例1】⑴(★★) ⑵(★★)几个学校举行篮球比赛,每两个学校都要赛一场,共赛了28 场,那么有几个学校参加了比赛?8 只球队进行淘汰赛,为了决出冠军,需要进行多少场比赛?⑵(★★)20 名羽毛球运动员参加单打比赛,两两配对进行淘汰赛,那么决出冠军一共要比赛多少场?【例3】(★★★) 【例4】参加世界杯足球赛的国家共有32 个(称32 强),每四个国家编入一个小组,⑴(★★★) 在第一轮单循环赛中,每个国家都必须而且只能分别和本小组的其他各国进A、B、C、D、E 五位同学一起比赛象棋,每两人都要比赛一盘。
到行一场比赛,赛出16 强后,进入淘汰赛,每两个国家用一场比赛定胜负,产生8 强、4 强、2 强,最后决出冠军、亚军、第三名,第四名。
至此,本现在为止,A 已经赛4 盘,B 赛3 盘,C 赛2 盘,D 赛1 盘。
问:此时E 同学赛了几盘?届世界杯的所有比赛结束。
根据以上信息,算一算,世界杯的足球赛全程共有几场?1⑵(★★★) 二、比赛得分网校的四位学员进行乒乓球比赛,每两个人只能比赛一次,他们的编【例5】(★★★)号分别为1,2,3,4,到现在为止,编号为1,2,3 的学员已参加比班上四名同学进行跳棋比赛,每两名同学都要赛一局。
每局胜者得2 分,平赛的场数正好分别等于他们的编号。
编号为 4 的运动员已经赛了几者各得1 分,负者得0 分。
已知甲、乙、丙三名同学得分分别为3 分、4 分、场?编号为1,2,3,4,5,6 的六个运动员进行乒乓球单循环赛。
体育比赛中的数学问题

体育比赛中的数学体育比赛中的数学是组合问题的重要组成部分,主要结合逻辑推理考察孩子的分析能力和思维的灵活性,走美杯每年都会考到本知识点,这个内容也是2015年四年级学而思杯很可能考到的内容,家长可以让孩子看这个资料适当预习下,咱们这讲内容会在春季下半册书上学习。
一、对单循环赛、淘汰赛的认识在体育比赛中,每两个人之间都要赛一场并且只赛一场,称这样的比赛为单循环赛。
例如:有n 个队参加比赛,其中每个队都要和其他队各赛一场,即每个队都赛了(n- 1) 场。
每一场比赛都被算在两个(n- 1) 中,也就是说在n 个(n- 1) 每一场比赛都计算了两次。
那么一共进行了n ⨯(n- 1) ÷ 2 场比赛。
练习1 (2008 年第四届“IMC 国际数学邀请赛”(新加坡)初赛)学校进行乒乓球选拔赛,每个选手都要和其它所有选手各赛一场,一共进行了36 场比赛,有()人参加了选拔赛。
A、8B、9C、10分析:36 ⨯ 2 =72 (场)。
如果有n 个选手,那么n ⨯(n- 1) =72。
两个连续的自然数乘积为72,n =9 。
在体育比赛中,规定每一场赛事中败者淘汰胜者晋级,称这类比赛为淘汰赛。
在淘汰赛中,每一轮淘汰掉一半选手,直至产生最后的冠军。
n 个队进行淘汰赛,每进行一场比赛就要淘汰一个队,最后只剩下冠军,也就是说其它选手都被淘汰掉了,决出冠军需要进行(n- 1) 场比赛。
练习 2 16 个人进行淘汰赛,(1)决出冠军需要进行几场比赛?冠军一共参加了几场比赛?(2)要决出前三名需要进行几场比赛?分析:(1)第16 ÷2 =8 (场),8 名胜利者晋级!第二轮:8 ÷2 =4 (场),4 名胜利者晋级!第三轮:4 ÷2 =2 (场),2 名胜利者晋级!第四轮:2 ÷2 = 1 (场),决出冠军!要决出冠军共需要进行8 +4 +2 + 1 = 15 (场)。
在每一轮比赛中,冠军都参加了其中一场比赛,冠军一共参加了1 ⨯ 4 =4 场比赛。
四年级数学思维训练课程-体育比赛中的数学问题PPT

宝典五
四名棋手进行循环赛,胜一局得两分,平一局得一分,负一局得0分.比赛结果,没 有人全胜,并且各人的总分都不同,至多有多少局平局?
四人赛 第一 第一 第三 第四
1+2+3=6场 2×2+1=5分 1×2+2×1=4分 两平一负 两负一平
共6×2=12分 两胜一平 一胜两平 2分
宝典四
A、B、C、D、E五人参加乒乓球比赛,每两个人都要赛一盘,并且只赛 一盘,规定胜者得2分,负者不得分,已知比赛结果如下: ①A与E并列第一名 ②B是第三名 ③C和D并列第四名 求B得多少分?
•一人赛4场最多8分
•A、E并列第一名,最多胜三场,6分。
点拨: •C、D并列第四名,不能全负。
•B 二胜,4分。
全部比赛共有平局5场
宝典六
某学校举行排球比赛,积分榜部分情况如下:
(1)分析积分榜,平一场比负一场多得几分; (2)如果胜一场得3分,七(6)班也比赛了6场,胜场数是平的场数的一半且共积14分, 那么七(6)班胜几场?
闯关六
一次数学竞赛共出了20道题,现抽出了4份试卷进行分析,如下表:
(1)问答对一题得多少分, 不答或答错一题扣多少分? (2)一位同学说他得了65分,请问可能吗?请说明理由。
比赛场次: 4×3÷2=6(场)
得分和: 6×2=12(分)
点拨
闯关二
五个人进行象棋单循环赛,规定胜者得2分,负者得0分,和棋 双方各得1分,比赛结束后统计发现,五个人的得分和加起来一 定是多少?
比赛场次: 得分和:
5×4÷2=10(场) 10×2=20(分)
宝典三 东东、西西、北北三人进行乒乓球单循环赛,结果3人获胜的场 数各不相同。问第一名胜了几场?
体育比赛中的数学

体育比赛中的数学一、基础知识1.淘汰赛:n 个队进行淘汰赛,第一至少要打n-1场比赛,每场比赛淘汰一名选手。
2.单循环赛:n支队伍进行单循环赛,将进行n(n-1)÷2场,其中每支队都进行(n-1)场。
3. 体育比赛中的总分(记为A)问题三分制:胜、平、负按3、1、0积分制度,其中2m≤A≤3m,每多出现一场平局,总分就会减少1分;二分制∶胜、平、负按 2、1、0积分制度,其中A=2m,不管比赛情况如何、最后的总分总是不变的。
4.一个小组内:胜的总场数等于负的总场数;平的总场数一定是偶数。
二、例题精讲【例1】16支羽毛球队伍进行淘汰赛,最终决出冠、亚、季军各1队。
那么这次淘汰赛共进行多少场比赛?【例2】四年级五个班进行足球比赛,每两个班之间都要赛一场,那么每个班要赛几场?一总共要进行多少场比赛?(如果参赛队每两队之间都要赛一场、这种比赛称为单循环赛)【巩固】学校进行乒乓球选拔赛,每个参赛选手都要和其他所有选手各赛一场,一共进行了36场比赛,有多少人参加了选拔赛?【例3】参加世界杯足球赛的国家共有32个(称32强),每四个国家编入一个小组,在第一轮单循环赛中,每个国家都必须而且只能分别和本小组的其他各国进行一场比赛,赛出16强后,进入淘汰赛,每两个国家用一场比赛定胜负,产生8强、4强、2强,最后决出冠军、亚军、第三名,第四名.至此,本届世界杯的所有比赛结束.根据以上信息,算一算,世界杯的足球赛全程共有几场?【例4】A、B、C、D、E、F六人赛棋,采用单循环制,现在知道:A、B、C、D、E五人已经分别赛过5、4、3、2、1盘.问:这时F已赛过了多少盘?【巩固】有8个选手进行乒乓球单循环赛,结果每人获胜局数各不相同,那么冠军胜了几局?【例5】六个人进行象棋单循环赛,规定胜者得2分,负者得0分,和棋双方各得1分,比赛结束后统计发现,六个人的得分和加起来一定是多少?已知冠军得7分,负了一场,问冠军胜了多少场?【巩固】东亚男足邀请赛共有四支足球队进行单循环赛,即每两队之间都要进行一场比赛,每场比赛胜者得3分,负者得0分,平局两队各得1分。
2023年高考数学复习----《与体育比赛规则有关的概率问题》规律方法与典型例题讲解

2023年高考数学复习----《与体育比赛规则有关的概率问题》规律方法与典型例题讲解【规律方法】1、在与体育比赛规则有关的问题中,一般都会涉及分组,处理该类问题时主要借助于排列组合.对于分组问题,要注意平均分组与非平均分组,另外,在算概率时注意“直接法”与“间接法”的灵活运用.2、与体育比赛有关的问题中最常见的就是输赢问题,经常涉及“多人淘汰制问题”“ 三局两胜制问题”“ 五局三胜制问题”“ 七局四胜制问题”,解决这些问题的关键是认识“三局两胜制”“ 五局三胜制”等所进行的场数,赢了几场与第几场赢,用互斥事件分类,分析事件的独立性,用分步乘法计数原理计算概率,在分类时要注意“不重不漏”.3、在体育比赛问题中,比赛何时结束也是经常要考虑的问题,由于比赛赛制已经确定,而比赛的平均场次不确定,需要对比赛的平均场次进行确定,常用的方法就是求以场数为随机变量的数学期望,然后比较大小.4、有些比赛会采取积分制,考查得分的分布列与数学期望是常考题型,解题的关键是辨别它的概率模型,常见的概率分布模型有:两点分布、超几何分布、二项分布、正态分布,要注意分布是相互独立的,超几何分布不是,值得注意的是,在比赛中往往是伪二项分布,有的只是局部二项分布.【典型例题】例1、(2022春·湖北十堰·高三校联考阶段练习)为了丰富孩子们的校园生活,某校团委牵头,发起同一年级两个级部A、B进行体育运动和文化项目比赛,由A部、B部争夺最后的综合冠军.决赛先进行两天,每天实行三局两胜制,即先赢两局的级部获得该天胜利,此时该天比赛结束.若A 部、B 部中的一方能连续两天胜利,则其为最终冠军;若前两天A 部、B 部各赢一天,则第三天只进行一局附加赛,该附加赛的获胜方为最终冠军.设每局比赛A部获胜的概率为()01p p <<,每局比赛的结果没有平局且结果互相独立.(1)记第一天需要进行的比赛局数为X ,求()E X ,并求当()E X 取最大值时p 的值; (2)当12p =时,记一共进行的比赛局数为Y ,求()5P Y ≤.【解析】(1)X 可能取值为2,3.()()22221221P X p p p p ==+−=−+;()()232122P X p p p p ==−=−+.故()()()2222221322222E X p p p p p p =−++−+=−++,即()215222E X p ⎛⎫=−−+ ⎪⎝⎭,则当12p =时,()E X 取得最大值.(2)当12p =时,双方前两天的比分为2∶0或0∶2的概率均为111224⨯=;比分为2∶1或1∶2的概率均为111122224⨯⨯⨯=. ()5P Y ≤,则4Y =或5Y =.4Y =即获胜方两天均为2∶0获胜,不妨设A 部胜,概率为1114416⨯=,同理B 部胜,概率为1114416⨯=,故()1864112P Y ==⨯=; 5Y =即获胜方前两天的比分为2∶0和2∶1或者2∶0和0∶2再加附加赛,不妨设最终A 部获胜,当前两天的比分为2∶0和2∶1时,先从两天中选出一天,比赛比分为2∶1,三场比赛前两场,A 部一胜一负,第三场比赛A获胜,另外一天比赛比分为2:0,故概率为11228C 4C 11112212⎛⎫⨯⨯⨯= ⎪⎝⋅⨯⎭,当前两天比分为2∶0和0∶2,附加赛A 获胜时,两天中选出一天,比赛比分为2:0,概率为121111C 44216⨯⨯⨯=,故最终A 部获胜的概率为11381616+=,同理B 部胜,概率为316, 故()3865132P Y ==⨯=. 所以()()()131545882P Y P Y P Y ≤==+==+=.例2、(2022·江苏盐城·江苏省滨海中学校考模拟预测)甲、乙两人组成“虎队”代表班级参加学校体育节的篮球投篮比赛活动,每轮活动由甲、乙两人各投篮一次,在一轮活动中,如果两人都投中,则“虎队”得3分;如果只有一个人投中,则“虎队”得1分;如果两人都没投中,则“虎队”得0分.已知甲每轮投中的概率是34,乙每轮投中的概率是23;每轮活动中甲、乙投中与否互不影响.各轮结果亦互不影响.(1)假设“虎队”参加两轮活动,求:“虎队”至少投中3个的概率; (2)①设“虎队”两轮得分之和为X ,求X 的分布列;②设“虎队”n 轮得分之和为n X ,求n X 的期望值.(参考公式()E X Y EX EY +=+) 【解析】(1)设甲、乙在第n 轮投中分别记作事件n A ,n B ,“虎队”至少投中3个记作事件C ,则()()()()()()12121212121212121212P C P A A B B P A A B B P A A B B P A A B B P A A B B =++++ 2222112233232232C 1C 144343343⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅−⋅+⋅⋅⋅−+⋅= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11126443++=.(2)①“虎队”两轮得分之和X 的可能取值为:0,1,2,3,4,6, 则()2232101143144P X ⎛⎫⎛⎫==−⋅−= ⎪⎪⎝⎭⎝⎭,()2233232210121111443433144P X ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==⨯⋅−⋅−+−⋅⋅−=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,()3232323232322111111434343434343P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅−⋅⋅−+⋅−⋅−⋅+−⋅⋅⋅− ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭323225114343144⎛⎫⎛⎫+−⋅⋅−⋅= ⎪ ⎪⎝⎭⎝⎭, ()32321232114343144P X ⎡⎤⎛⎫⎛⎫==⨯⋅⋅−⋅−= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,()22332223604211443334144P X ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==⨯⋅−⋅+⋅−⋅=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,()223236643144P X ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭.故X 的分布列如下图所示:②10,1,3X =,()13210114312P X ⎛⎫⎛⎫==−⋅−= ⎪ ⎪⎝⎭⎝⎭,()132325111434312P X ⎛⎫⎛⎫==⋅−+−⋅= ⎪ ⎪⎝⎭⎝⎭,()132634312P X ==⋅=,∴1562313121212EX =⨯+⨯=,12312n EX n EX n =⋅=. 例3、(2022·陕西西安·长安一中校考模拟预测)某校高三男生体育课上做投篮球游戏,两人一组,每轮游戏中,每小组两人每人投篮两次,投篮投进的次数之和不少于3次称为“优秀小组”.小明与小亮同一小组,小明、小亮投篮投进的概率分别为12,p p . (1)若123p =,212p =,则在第一轮游戏他们获“优秀小组”的概率;(2)若1243p p +=则游戏中小明小亮小组要想获得“优秀小组”次数为16次,则理论上至少要进行多少轮游戏才行?并求此时12,p p 的值.【解析】(1)由题可知,所以可能的情况有①小明投中1次,小亮投中2次;②小明投中2次,小亮投中1次;③小明投中2次,小亮投中2次.故所求概率12212222222221112211221143322332233229P C C C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅+⋅⋅+⋅⋅= ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2)他们在一轮游戏中获“优秀小组”的概率为()()()()()()()()()222222122122211222122221221212121123P C p p C p C p C p p C p C p p p p p p p =−+−+=+−因为1243p p +=,所以()()221212833P p p p p =− 因为101p ≤≤,201p ≤≤,1243p p +=,所以1113p ≤≤,2113p ≤≤,又21212429p p p p +⎛⎫≤= ⎪⎝⎭ 所以121499p p <≤,令12t p p =,以1499t <≤,则28()33P h t t t ==−+当49t =时,max 1627P =,他们小组在n 轮游戏中获“优秀小组”次数ξ满足~(,)B n p ξ 由max ()16np =,则27n =,所以理论上至少要进行27轮游戏.此时1243p p +=,1249p p =,2123p p ==。
体育比赛中的数学课后习题

VS
详细描述
在解决运动员排名的优化问题时,需要考 虑的因素包括比赛成绩、胜负关系、加时 赛和点球等特殊情况。数学模型可以用来 描述这些因素,并利用排序算法对运动员 进行排名。
比赛日程安排的优化问题
总结词
比赛日程安排的优化问题主要关注如何合理安排比赛日程,以最小化资源冲突和最大化比赛效益。
详细描述
在解决比赛日程安排的优化问题时,需要考虑的因素包括场地使用、时间安排、运动员体能和赛程长 度等。数学模型可以用来描述这些因素,并利用图论、线性规划和动态规划等算法进行优化。
比赛策略的优化问题
总结词
比赛策略的优化问题主要关注如何根据对手 情况和比赛规则制定最优的比赛策略。
详细描述
在解决比赛策略的优化问题时,需要考虑的 因素包括对手实力、比赛规则、比赛环境和 策略调整等。数学模型可以用来描述这些因 素,并利用博弈论、决策分析和模拟等方法 进行优化。
04
体育比赛中的几何问题
总结词
描述运动员的体能状况
详细描述
通过数学模型,可以描述运动员的体能状况,包括力量 、耐力、速度等指标,以及这些指标之间的相互关系。
总结词
分析运动员的体能变化
详细描述
通过数学模型,可以分析运动员在不同训练阶段或比赛 中的体能变化,从而为教练制定训练计划提供依据。
总结词
预测运动员的体能极限
详细描述
通过数学模型,可以预测运动员在不同条件下的体能极 限,例如在高温、高海拔等特殊环境下的表现,为运动 员制定合理的训练目标提供参考。
建立比赛结果预测模型
总结词
预测比赛结果
详细描述
通过数学模型,可以分析比赛数据,包括双方运动员的实 力、历史成绩、比赛场地等因素,从而预测比赛结果。
数学竞赛中的体育竞赛问题

名, 则 !!" , 如果有两名运动员都被判为第 # 一名, 则其中 !人得到不少于$ 个第一名, 而 其余 %个名次不高于第四名 & 故 !! " $ ’ ! ( % ’ % " ) ! & 如果有* 个运动员都得第一名, 则他们 所得的其余名次不高于第四, 他们的名次之 和不大于 ! , 故! ’# ( *’ #( %’ # "+ ) !! ) % & 如果有% 个运动员都得第一名, 则他们 的名次之和不大于 ! ’ # ( ) ’ # ( * ’ # (% ’ , 所以他们中之一的名次不大于 ) 而 # " # , % & 有 $个或更多个运动员都得第一的情况是不 可能的 & 所以 ! ) % & !! 现在给出一个 ! ) % 的例子: !" 裁判员给*个最优秀选手判的名次都是 , , , , , , , , ; ! ! ! * * * % % % 给后三名运动员判的名次都是 , , , , , , , , ; ) ) ) $ $ $ 而其 余 人 的 名 次 在 两 者 之 间 任 给& 这 样, (! ) ) % & ! 最大 " 例! 在某项竞赛中, 若有 " 个参赛选 手与# 个裁判, 其中 #" 每个裁 * 且为奇数& 判对每个选手的评分只有 “通过” 或 “不及格” 两个等级 & 设 $ 是满足以下 条件的整数: 任 何两个裁判 至多可对 $ 个选手有完全 相同 $ #. ! 的评分 & 证明: " & " ) # (第 * ) #届 / 01 证明: 首先, 如果两个裁判对某个参赛者 有相同的评判, 我们就称之为一个 “同意” 由 & 已知, 任意两个裁判至多产生 $ 个 “同意” & 这样, ! 另一方面, 对任意 ! 个选手, 设有% 个 裁判判他通过, 其中 & 个裁 判判他不 及格, 则对这个选手, 有关他的 “同意” %(& " #& 的个 是
最新六年级奥数-体育比赛中的数学问题

体育比赛中的数学问题一.知识点总结1.单循环赛:每两个队之间都要比赛一场,无主客场之分。
(通俗的说就是除了不和自己比赛,其他人都要比)2.双循环赛:每两个队都要比赛一场,有主客场之分。
(每个队和同一个对手交换场地赛两次)一共比赛场数=(人数-1)×人数3.淘汰赛:每两个队用一场比赛定胜负,经过若干轮之后,最后决出冠军。
(每场比赛输者打包回家)二.做题方法1.点线图2.列表法3.极端性分析------根据个人比赛场数,猜个人最高分根据得分,猜“战况”三.例题分析例题1:三年级四个班进行足球比赛,每两个班之间都要赛一场,每个班赛几场?一共要进行多少场比赛?解析:除了不和自己赛,和其他班都要赛,所以每个班赛4-1=3场一共进行的场数:3×4÷2=6场学案1:每个学校都要赛一场,共赛了28场,那么有几个学校参加比赛?解析:方法一:“老土方法”:1+2+3+4+……7=287+1=8个方法二:(人数-1)×人数=28×2=567×8=56,所以为8人例题2:20名羽毛球运动员参加单打比赛,淘汰赛,那么冠军一共要比赛多少场?解析:第一轮:20÷2=10(场),10名胜利者进入下一轮比赛第二轮:10÷2=5(场),5名胜利者进入下一轮比赛第三轮:5÷2=2(场)....1人,3名胜利者进入下一轮比赛第四轮:2÷2=1(场)胜利者和第三轮中剩下的一人进入下一轮比赛第五轮:2÷2=1(场)冠军一共参加了5场比赛。
决出冠军一共要比赛的场数:一场比赛淘汰一人,除了冠军不被淘汰20-1=19场例题3:规定投中一球得5分,投不进得2分,涛涛共投进6个球,得了16分,涛涛投中几个球?解析:方法一:(鸡兔同笼)6个球全投进得5×6=30分少得了30-16=14分有1个不进的球就少得5+2=7分,不但没得5分,反而倒扣2分所以没进的个数14÷7=2个进的个数6-2=4个方法二:5×() -2 ×() = 16根据个位数字特点猜数,5×( 4 ) -2 ×( 2 ) = 16 进了4个学案2:规定投进一球得3分,投不进倒扣1分,如果大明得30分,且知他有6个球没进,他共进几个球?解析:方法一:(鸡兔同笼)假设6个没进的球也进,30+6×(3+1)=54分共投54÷3=18个方法二:3×() -1 ×( 6 ) = 30(30+6)÷3=12个12+6=18个例题4:A,B,C,D,E,五位同学一起比赛象棋,单循环比赛,A已经赛了4盘,B已经赛了3盘,C赛了2盘,D赛了1盘,此时E赛了几盘?解析:利用点线图所以E赛2盘例题5:A,B,C,D,E,五位同学一起比赛乒乓球,单循环比赛,胜者得2分,负者不得分,比赛结果如下:(1)A与E并列第一(2)B是第三名(3)C和D并列第四名求B得分?解析:根据个人比赛场数猜最高分每人比赛4场,全胜得8分,有并列第一,就没有全胜,所以不可能得8分;有并列倒数第一,所以没有全败,没有0分;而每个人得分是个偶数,在0和8之间的偶数只有2,4,6,三个分数,三个名次,所以B得4分学案3:四名同学单循环比赛,胜者得2分,负者得0分,平者各得1分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体育比赛中的数学问题
一.知识点总结
1.单循环赛:每两个队之间都要比赛一场,无主客场之分。
(通俗的说就是除了不和自己比赛,其他人都要比)
2.双循环赛:每两个队都要比赛一场,有主客场之分。
(每个队和同一个对手交换场地赛两次)
一共比赛场数=(人数-1)×人数
3.淘汰赛:每两个队用一场比赛定胜负,经过若干轮之后,最后决出冠军。
(每场比赛输者打包回家)
二.做题方法
1.点线图
2.列表法
3.极端性分析------根据个人比赛场数,猜个人最高分
根据得分,猜“战况”
三.例题分析
例题1:三年级四个班进行足球比赛,每两个班之间都要赛一场,每个班赛几场?一共要进行多少场比赛?
解析:除了不和自己赛,和其他班都要赛,所以每个班赛4-1=3场
一共进行的场数:3×4÷2=6场
学案1:每个学校都要赛一场,共赛了28场,那么有几个学校参加比赛?
解析:方法一:“老土方法”:1+2+3+4+……7=28
7+1=8个
方法二:(人数-1)×人数=28×2=56
7×8=56,所以为8人
例题2:20名羽毛球运动员参加单打比赛,淘汰赛,那么冠军一共要比赛多少场?
解析:第一轮:20÷2=10(场),10名胜利者进入下一轮比赛
第二轮:10÷2=5(场),5名胜利者进入下一轮比赛
第三轮:5÷2=2(场)....1人,3名胜利者进入下一轮比赛
第四轮:2÷2=1(场)胜利者和第三轮中剩下的一人进入下一轮比赛
第五轮:2÷2=1(场)
冠军一共参加了5场比赛。
决出冠军一共要比赛的场数:一场比赛淘汰一人,除了冠军不被淘汰
20-1=19场
例题3:规定投中一球得5分,投不进得2分,涛涛共投进6个球,得了16分,涛涛投中几个球?
解析:方法一:(鸡兔同笼)
6个球全投进得5×6=30分
少得了30-16=14分
有1个不进的球就少得5+2=7分,不但没得5分,反而倒扣2分
所以没进的个数14÷7=2个
进的个数6-2=4个
方法二:5×() -2 ×() = 16
根据个位数字特点猜数,5×( 4 ) -2 ×( 2 ) = 16 进了4个
学案2:规定投进一球得3分,投不进倒扣1分,如果大明得30分,且知他有6个球没进,他共进几个球?
解析:方法一:(鸡兔同笼)
假设6个没进的球也进,30+6×(3+1)=54分
共投54÷3=18个
方法二:3×() -1 ×( 6 ) = 30
(30+6)÷3=12个
12+6=18个
例题4:A,B,C,D,E,五位同学一起比赛象棋,单循环比赛,A已经赛了4盘,B已经赛了3盘,C赛了2盘,D赛了1盘,此时E赛了几盘?
解析:利用点线图
所以E赛2盘
例题5:A,B,C,D,E,五位同学一起比赛乒乓球,单循环比赛,胜者得2分,负者不得分,比赛结果如下:
(1)A与E并列第一
(2)B是第三名
(3)C和D并列第四名
求B得分?
解析:根据个人比赛场数猜最高分
每人比赛4场,全胜得8分,有并列第一,就没有全胜,所以不可能得8分;有并列倒数第一,所以没有全败,没有0分;而每个人得分是个偶数,在0和8之间的偶数只有2,4,6,三个分数,三个名次,所以B得4分
学案3:四名同学单循环比赛,胜者得2分,负者得0分,平者各得1分。
已知甲乙丙三人得分分别为3分,4分,4分,且丙无平局,甲有胜局,乙有平局,那么丁同学得分?
解析:共比赛场数3×4÷2=6场
每场比赛两人共得2分,6场比赛共得6×2=12分
所以丁得分12-2-4-4=1分
例题6:A,B,C,D,E,进行单循环比赛,每场比赛胜者得3分,负者得0分,平局各得1分,若A,B,C,D分别得分为1,4,7,8,问E最到得几分?最少得几分?
解析:根据得分猜“战况”
要想E得分最高,希望总分最高,在3,0,1赛制中,出现一场平局,总分少1分,所以希望平局的场数少,也就是B的战况为1胜,1平,2负;根据平的总场数是偶数,ABCD四人平的场数之和为5场,希望平的场数少,所以E为1平;胜的总场数等于负的总场数,所以E是2胜1负1平,得分为7分
要想E得分最低,希望总分最低,平局出现的越多越好,即B的战况是4平,ABCD平的场数之和为8平,此四人胜的场数之和恰好等于负的场数之和,所以E的战况为4平,得分为4分。
学案4:四个球队单循环比赛,有一个队没有输球但是倒数第一,有可能吗?
解析:有可能。
虚线表示平局,箭头表示有胜负,箭头指向胜者
A得3分,B,C,D都得4分,所以A没输球但倒数第一。