曲线运动知识点总结
曲线运动知识点总结

曲线运动知识点总结一、曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。
(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。
即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。
(注意:合外力为零只有两种状态:静止和匀速直线运动。
) 曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。
2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。
(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。
3.匀变速运动: 加速度(大小和方向)不变的运动。
也可以说是:合外力不变的运动。
也可以说是:合外力不变的运动。
4.质点运动性质的判断方法:根据加速度是否变化判断质点是做匀变速运动还是非匀变速运动;由加速度(合外力)的方向与速度的方向是否在同一直线上判断是直线运动还是曲线运动.质点做曲线运动时,加速度的效果是: 在切线方向的分加速度改变速度的大小;在垂直于切线方向的分加速度改变速度的方向.(1)a(或 F)跟 v 在同一直线上→直线运动:a 恒定→匀变速直线运动;a 变化→变加速直线运动.速直线运动.(2)a(或 F)跟 v 不在同一直线上→曲线运动:a 恒定→匀变速曲线运动;a 变化→变加速曲线运动.加速曲线运动.5.曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。
(2)合力的效果:合力沿切线方向的分力F 2改变速度的大小,沿径向的分力F 1改变速度的方向。
①当合力方向与速度方向的夹角为锐角时,物体的时,物体的速率速率将增大。
②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。
高中物理有关曲线运动知识点总结_

高中物理有关曲线运动知识点总结_高中物理曲线运动这一章节主要包括:曲线运动特点、曲线运动中矢量的分解、平抛运动、圆周运动、生活中的应用等,下面是有关这一章节内容的知识点总结。
第一节曲线运动1、曲线运动的速度方向(1)在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线切线的方向.(2)曲线运动的速度方向时刻改变,无论速度的大小变或不变,运动的速度总是变化的,故曲线运动是一种变速运动2.物体做曲线运动的条件(1)当物体所受合力的方向跟它的速度方向不在同一直线上时,这个合力总能产生一个改变速度方向的效果,物体就一定做曲线运动.(2)当物体做曲线运动时,它的合力所产生的加速度的方向与速度方向也不在同一直线上(3)物体的运动状态是由其受力条件及初始运动状态共同确定的.物体运动的性质由加速度决定(加速度为零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。
物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)。
两个互成角度的直线运动的合运动是直线运动还是曲线运动?决定于它们的合速度和合加速度方向是否共线(如图所示)。
常见的类型有:⑴a=0:匀速直线运动或静止。
⑵a恒定:性质为匀变速运动,分为:① v、a同向,匀加速直线运动;②v、a反向,匀减速直线运动;③v、a成角度,匀变速曲线运动(轨迹在v、a之间,和速度v的方向相切,方向逐渐向a的方向接近,但不可能达到。
)⑶a变化:性质为变加速运动。
如简谐运动,加速度大小、方向都随时间变化。
物体运动形式与其受力条件及初始运动状态的关系受力条件力与初速度方向在一直线(或初速度为零)力与初速度方向不在一直线恒力匀变速直线运动匀变速曲线运动匀加速直线运动特例:自由落体运动匀减速直线运动特例:竖直上抛运动平抛运动斜抛运动变力加速度改变的直线运动加速度改变的曲线运动简谐运动匀速圆周运动合力为零静止或匀速直线运动二、运动的合成和分解1、合运动和分运动当物体实际发生的运动较复杂时,我们可将其等效为同时参与几个简单的运动,前者实际发生的运动称作合运动,后者则称作物体实际运动的分运动.2、运动的合成和分解的概念已知分运动求合运动,叫做运动的合成;已知合运动求分运动,叫做运动的分解,这种双向的等效操作过程,是研究复杂运动的重要万法.3.运动的合成和分解的应用(1)进行运动的合成与分解,就是对描述运动的各物理量如位移、速度、加速度等矢量用平行四边形定则求和或求差.运动的合成与分解遵循如下原理:①独立性原理:构成一个合运动的几个分运动是彼此独立、互不相干的,物体的任意一个分运动,都按其自身规律进行,不会因有其他分运动的存在而发生改变.②等时性原理:合运动是同一物体在同一时间内同时完成几个分运动的结果,对同一物体同时参与的几个运动进行合成才有意义.③矢量性原理:描述运动状态的位移、速度、加速度等物理量都是矢量,对运动进行合成与分解时应按矢量法则,即平行四边形定则作上述物理量的运算.(2)合运动的性质可由分运动的性质决定:两个匀速直线运动的合成仍是匀速直线运动;匀速直线运动与匀变速直线运动的合运动为匀变速运动;两个匀变速直线运动的合运动是匀变速运动.(3).过河问题如右图所示,若用v1表示水速,v2表示船速,则:①过河时间仅由v2的垂直于岸的分量v 决定,即,与v1无关,所以当v2 岸时,过河所用时间最短,最短时间为也与v1无关。
高中物理曲线运动知识点总结

高中物理曲线运动知识点总结
曲线运动的基本概念:曲线运动是变速运动,因为速度方向时刻在改变,所以加速度一定不为零。
在曲线运动中,质点在某一时刻(或某一位置)的速度方向是在曲线上这一点的切线方向。
物体做曲线运动的条件:物体做曲线运动的条件是它所受的合外力方向(或加速度方向)跟它的速度方向不在同一直线上。
当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动,如平抛运动。
当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动。
曲线运动中的合力方向:物体做曲线运动时,合外力的方向总是指向轨迹的凹的一边。
平抛运动:平抛运动是曲线运动的一种,是将物体用一定的初速度沿水平方向抛出,不计空气阻力,物体只在重力作用下所做的运动。
在水平方向上,物体由于不受力,将做匀速直线运动;在竖直方向上,物体的初速度为零,且只受到重力作用,物体做自由落体运动。
匀速圆周运动:匀速圆周运动是另一种曲线运动,其特点是质点沿圆周运动,在相等的时间里通过的圆弧长度相同。
这种运动中的合力方向始终指向圆心,是变速运动,因为速度方向时刻在改变。
以上是高中物理曲线运动的主要知识点,需要理解并掌握这些基本概念和原理,才能更好地理解和解决相关的物理问题。
曲线运动知识点总结

点
抛物线切线方向时,物体可能飞离抛物
线轨迹
曲线运动的混沌现象
与预测
• 曲线运动的混沌现象:物体在曲线运动中,由于受到复杂的合外
力作用,物体的运动状态难以预测
• 如三体运动,由于受到太阳、地球、月球之间的复杂引力作
用,三体运动呈现出混沌现象
• 如大气层中的气流运动,由于受到地球引力和大气压强的复杂
作用,气流运动呈现出混沌现象
在变化
曲线运动的最大速度与最小速度
曲线运动的最小速度:物体在曲线运动中,速度达到最小值时的速度
• 如圆周运动,最小速度为v<sub>min</sub> = v,其中v为物体沿圆周切线方向的速度
• 如抛物线运动,最小速度出现在抛物线顶点,速度大小为v<sub>min</sub> = v - gt
曲线运动的最大速度:物体在曲线运动中,速度达到最大值时的速度
曲线运动的向量表示:用向量表示物体的位置、速
度、加速度等物理量
曲线运动的向量表示方法:
• 如位置向量:r = (x, y)
• 可以用向量表示物体的运动状态,如
• 如速度向量:v =
速度、加速度等
(v<sub>x</sub>,
• 可以用向量运算表示物体受到的合外
v<sub>y</sub>)
力、合力矩等
• 曲线运动的研究有助于我们更好地解决工程技术中的实际问题,
提高工程质量和效率
曲线运动在生物学中的应用
• 曲线运动在生物学中的应用广泛,如动物迁徙、植物生长等
• 如鸟类迁徙,研究鸟类的迁徙路线,揭示鸟类迁徙的规律和原
因
曲线运动知识点总结

曲线运动知识点总结曲线运动是物体在运动过程中所呈现的轨迹为曲线的运动形式。
在物理学中,曲线运动是一个重要的研究领域,涵盖了许多基本概念和原理。
下面,我们将对曲线运动的相关知识进行总结,并详细讨论其相关特点和应用。
一、曲线运动的基本概念1. 曲线运动的定义:物体在运动过程中所呈现的轨迹如果为曲线形状,则称为曲线运动。
2. 曲线运动的要素:曲线运动主要包括两个要素,即位移和时间。
位移是指物体从一个位置到另一个位置的变化量,而时间则是指位移发生的持续时间。
3. 曲线运动的描述方法:曲线运动可以通过图像、数学模型和实验数据等多种方式进行描述。
其中,图像是最直观的描述方法,数学模型可以用公式表示,实验数据则通过实际测量得到。
二、曲线运动的常见特点1. 轨迹形状:曲线运动的最显著特点是轨迹为曲线形状。
曲线的形状可以是直线、抛物线、圆周等多种形式,取决于物体运动的特性。
2. 速度变化:与直线运动不同,曲线运动的速度不是恒定的。
由于物体在曲线运动过程中改变了方向,速度会随着时间的推移而发生变化。
3. 加速度存在:曲线运动中常常存在加速度。
加速度是速度的变化率,它描述了物体在单位时间内速度的变化量。
在曲线运动中,加速度不仅考虑了速度的大小,还涉及了速度的方向变化。
4. 矢量描述:由于曲线运动中涉及到方向的改变,所以常常需要用矢量来描述物体的位移、速度和加速度。
矢量具有大小和方向两个特性,能够很好地描述曲线运动的复杂性。
三、曲线运动的常见模型1. 抛物线运动:抛物线运动是一种特殊的曲线运动,其轨迹呈抛物线形状。
抛物线运动常见于自由落体、抛体运动等情况,其数学模型可以通过解析几何和牛顿力学中的运动方程来描述。
2. 圆周运动:圆周运动是物体绕固定轴进行的曲线运动,轨迹为圆形。
圆周运动常见于行星绕太阳运动、卫星绕地球运动等情况,其数学模型可以通过旋转运动和牛顿运动定律来描述。
3. 螺旋线运动:螺旋线运动是物体同时绕轴线转动和沿轴线前进的运动形式,轨迹呈螺旋形状。
总结曲线运动知识点总结

总结曲线运动知识点总结在曲线运动中,物体的速度、加速度的变化是非常重要的。
在曲线运动的问题中,我们常常需要求解物体在运动过程中的速度、加速度、位移、运动轨迹等参数。
因此,掌握曲线运动的知识对于理解和解决这些问题是非常重要的。
一、曲线运动的基本概念1. 曲线运动的概念曲线运动是物体在其运动过程中,其速度、加速度不是保持一个方向和大小的运动形式。
在曲线运动中,物体的速度和加速度的方向和大小都会随着时间的变化而发生变化,它的运动轨迹也不是一条直线,而是一条曲线。
2. 曲线运动过程中的速度、加速度变化规律在曲线运动过程中,物体的速度和加速度都可以随着时间的变化而变化。
速度的变化是由加速度决定的。
当物体在曲线上做曲线运动时,它总是有一个向心加速度,这个向心加速度决定了速度的大小和方向的变化。
因此,在曲线运动中,我们需要分析物体的向心加速度,从而确定速度和加速度的变化规律。
3. 曲线运动的运动轨迹在曲线运动中,物体的运动轨迹通常是一条曲线,这条曲线可能是一个圆、椭圆、抛物线等等。
运动轨迹的形状取决于物体所受的力的大小和方向,例如,当物体处于一个旋转的圆周运动中时,它的运动轨迹就是一个圆。
二、曲线运动的基本理论1. 切线加速度和法向加速度在曲线运动中,物体的加速度可以分解为切线加速度和法向加速度两个分量。
切线加速度是沿着速度方向的加速度分量,它决定了速度的大小的变化。
而法向加速度是垂直于速度方向的加速度分量,它决定了速度方向的变化。
根据这个分解,我们可以更好地理解曲线运动中速度和加速度的变化规律。
2. 向心加速度在曲线运动中,物体总是有一个向心加速度,这个向心加速度决定了速度的大小和方向的变化。
向心加速度是由曲线运动物体所受的向心力决定的,它的大小与速度的平方成正比,与曲线的曲率成反比。
因此,向心加速度是曲线运动中一个重要的参数,它决定了物体速度和加速度的变化。
3. 非惯性系中的曲线运动在非惯性系中,物体的曲线运动问题会更加复杂。
曲线运动知识点总结
曲线运动知识点总结曲线运动是物体在运动过程中沿着曲线轨迹移动的运动形式。
在物理学中,曲线运动是一个重要的研究领域,涉及到许多关键概念和原理。
本文将对曲线运动的各种知识点进行总结和归纳。
1. 曲线运动的概念和特点曲线运动是指物体在运动过程中不沿着直线轨迹移动,而是沿着曲线轨迹移动的运动形式。
曲线运动的特点包括方向变化、速度变化和加速度变化等。
物体在曲线运动中的速度和加速度可以随着时间的推移而改变,因此曲线运动需要使用向量和微积分等数学工具进行描述和分析。
2. 曲线运动的描述和表示方法曲线运动可以使用向量、参数方程和函数方程等多种方法进行描述和表示。
其中,向量法是最常用的方法,通过向量的起点和终点来描述物体在空间中的位置变化。
参数方程则是通过给出变量关于时间的函数来描述物体在曲线上的位置变化。
函数方程是将曲线上的点的坐标表示为关于某个变量(通常是横坐标或纵坐标)的函数。
3. 匀速曲线运动和非匀速曲线运动曲线运动可以进一步分为匀速曲线运动和非匀速曲线运动。
匀速曲线运动是指物体在运动过程中,沿着曲线轨迹保持着恒定的速度。
非匀速曲线运动则是指物体在运动过程中,沿着曲线轨迹速度不断变化。
非匀速曲线运动可以进一步分为加速曲线运动和减速曲线运动,根据速度的变化情况可分别使用加速度和减速度进行描述。
4. 曲线运动的半径和曲率在曲线运动中,半径和曲率是两个重要的概念。
半径是指曲线上某一点到曲线上某一固定点的距离。
在曲线运动中,半径可以用来描述物体在曲线运动中绕着某一中心点旋转的情况。
曲率是指曲线在某一点处的弯曲程度。
曲率的大小取决于曲线在该点的切线的方向和曲线的弯曲程度。
5. 圆周运动和曲线运动的关系。
曲线运动知识点
1.向心力是根据力的效果命名的,在分析做圆周运动物体 的受力情况时,切不可在物体的相互作用力外再添加一个向 心力. 2.向心力的来源 (1)做匀速圆周运动时,物体的合外力充当向心力. (2)变速圆周运动中物体合外力沿垂直线速度方向的分量充当 向心力. 说明:1.无论匀速圆周运动还是非匀速圆周运动,沿半径指 向圆心的合力均为向心力. 2.当采用正交分解法分析向心力的来源时,做圆周运动的 物体在坐标原点,一定有一个坐标轴沿半径指向圆心.
一、描述圆周运动的物理量 线速度 快慢 1.描述圆周运动的物体运动________的物理量(v). 2.是矢量,方向和半径垂直,和圆周相切 l 2r v= ____ =________ t T 单位:m/s
角速度 转动快慢 1.描述物体绕圆心________的物理量(ω) 2.中学阶段不研究其方向 2 ω=_____=________. t T 单位:rad/s
在分析传动装置的各物理量时,要抓住不等量和相 等量的关系,表现为: 1.同一转轴的各点角速度ω相同,而线速度v=ωr 与半径r成正比,向心加速度大小a=rω2与半径r成 正比. 2.当皮带不打滑时,传动皮带、用皮带连接的两 轮边沿上的各点线速度大小相等,而角速度ω=vr 与半径r成反比,向心加速度大小a=v2/r与半径r成 反比. 说明:采用齿轮传动时,两轮边沿的线速度大小相 等,齿数与半径成正比,角速度与齿数成反比.
高中物理必修二曲线运动知识点归纳
必修二知识点第一章曲线运动(一)曲线运动的位移研究物体的运动时,坐标系的选取十分重要.在这里选择平面直角坐标系.以抛出点为坐标原点,以抛出时物体的初速度v0方向为x轴的正方向,以竖直方向向下为y轴的正方向,如下图所示.当物体运动到A点时,它相对于抛出点O的位移是OA,用l表示. 由于这类问题中位移矢量的方向在不断变化,运算起来很不方便,因此要尽量用它在坐标轴方向的分矢量来表示它. 由于两个分矢量的方向是确定的,所以只用A点的坐标(x A、y A)就能表示它,于是使问题简化.(二)曲线运动的速度1、曲线运动速度方向:做曲线运动的物体,在某点的速度方向,沿曲线在这一点的切线方向.2.对曲线运动速度方向的理解如图所示, AB割线的长度跟质点由A运动到B的时间之比,即v=ΔxAB,等于AB过程中平均速度的大小,其平均速度的方向由A指向B.当B Δt非常非常接近A时,AB割线变成了过A点的切线,同时Δt变为极短的时间,故AB间的平均速度近似等于A点的瞬时速度,因此质点在A点的瞬时速度方向与过A点的切线方向一致.(三)曲线运动的特点1、曲线运动是变速运动:做曲线运动的物体速度方向时刻在发生变化,所以曲线运动是变速运动.(曲线运动是变速运动,但变速运动不一定是曲线运动)2、做曲线运动的物体一定具有加速度曲线运动中速度的方向(轨迹上各点的切线方向)时刻在发生变化,即物体的运动状态时刻在发生变化,而力是改变物体运动状态的原因,因此,做曲线运动的物体所受合力一定不为零,也就一定具有加速度.(说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.)(四)物体做曲线运动的条件:物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上.(只要物体的合外力是恒力,它一定做匀变速运动,可能是直线运动,也可能是曲线运动)当物体受到的合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小.(五)曲线运动的轨迹做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向.(六)运动的合成与分解的方法1、合运动与分运动的定义如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,那几个运动就是分运动.物体的实际运动一定是合运动,实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度是它的分位移、分速度、分加速度.2、合运动与分运动的关系3、合运动与分运动的求法运动的合成与分解的方法:运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们都是矢量,遵循平行四边形定则(或进行正交分解).(1)如果两个分运动都在同一条直线上,需选取正方向,与正方向同向的量取“+”,与正方向反向的量取“-”,则矢量运算简化为代数运算.(2)如果两个分运动互成角度,则遵循平行四边形定则(如图所示).(3)两个相互垂直的分运动的合成:如果两个分运动都是直线运动,且互成角度为90°,其分位移为s1、s2,分速度为v1、v2,分加速度为a1、a2,则其合位移s、合速度v和合加速度a,可以运用解直角三角形的方法求得,如图所示.合位移大小和方向为s=s21+s22,tanθ=s 1 s 2 .合速度大小和方向为v=v21+v22,tanφ=v 1 v 2 .合加速度的大小和方向为:a=a21+a22,tanα=a 1 a 2 .(4)运动的分解方法:理论上讲一个合运动可以分解成无数组分运动,但在解决实际问题时不可以随心所欲地随便分解.实际进行运动的分解时,需注意以下几个问题:①确认合运动,就是物体实际表现出来的运动.②明确实际运动是同时参与了哪两个分运动的结果,找到两个参与的分运动.③正交分解法是运动分解最常用的方法,选择哪两个互相垂直的方向进行分解是求解问题的关键.特别提醒a合运动一定是物体的实际运动(一般是相对于地面的).b不是同一时间内发生的运动、不是同一物体参与的运动不能进行合成.c对速度进行分解时,不能随意分解,应该建立在对物体的运动效果进行分析的基础上.d合速度与分速度的关系当两个分速度v1、v2大小一定时,合速度的大小可能为:|v1-v2|≤v≤v1+v2,故合速度可能比分速度大,也可能比分速度小,还有可能跟分速度大小相等.4、运动的合成与分解是研究曲线运动规律最基本的方法,它的指导思想就是化曲为直,化变化为不变,化复杂为简单的等效处理观点.在实际问题中应注意对合运动与分运动的判断.合运动就是物体相对于观察者所做的实际运动,只有深刻挖掘物体运动的实际效果,才能正确分解物体的运动.(七)如图所示,用v1表示船速,v2表示水速.我们讨论几个关于渡河的问题.当v 1垂直河岸时(即船头垂直河岸),渡河时间最短1v d t =,船渡河的位移θsin d s =。
曲线运动相关的知识点总结
曲线运动相关的知识点总结一、曲线运动的概念和特点曲线运动是指物体在空间中不沿直线运动,而是沿着一定的轨迹运动的运动。
曲线运动的特点有以下几个方面:1. 随着时间的推移,物体在空间中的位置不断变化,形成一定的轨迹;2. 曲线运动的速度和加速度可能随着时间和位置的变化而变化;3. 曲线运动通常受到外界力的作用,这些外界力会影响物体的速度和加速度;4. 曲线运动的轨迹可以是圆形、椭圆形、抛物线形等不同形状。
二、曲线运动的基本参数1. 位移(s):物体在曲线运动过程中,由于位置的变化而产生的矢量,表示物体在空间中的移动距离和方向。
位移通常用矢量来表示,其大小等于物体起始位置和终点位置之间的直线距离,方向与曲线轨迹的切线方向一致。
2. 速度(v):物体在曲线运动中的平均速度和瞬时速度分别表示物体在一段时间内的位移与时间的比值和物体在某一瞬时的位置变化率。
曲线运动中的速度通常也是矢量,其大小等于位移与时间的比值,方向与曲线轨迹的切线方向一致。
3. 加速度(a):物体在曲线运动中的平均加速度和瞬时加速度分别表示物体在一段时间内速度的变化率和物体在某一瞬时的速度变化率。
曲线运动中的加速度也是矢量,其大小等于速度与时间的比值,方向与速度变化的方向一致。
三、曲线运动的数学描述1. 位移-时间图:曲线运动的位移-时间图用来描述物体在不同时间段内的位移变化情况,通过位移-时间图可以了解物体的运动方向、速度和运动过程中的各个阶段。
2. 速度-时间图:曲线运动的速度-时间图用来描述物体在不同时间段内的速度变化情况,通过速度-时间图可以了解物体的加速度、减速度和速度达到最大值和最小值的时间点。
3. 加速度-时间图:曲线运动的加速度-时间图用来描述物体在不同时间段内的加速度变化情况,通过加速度-时间图可以了解物体的变速情况和加速度的大小和方向变化情况。
四、曲线运动的相关定理和公式1. 物体的位移与速度关系:曲线运动中,物体的位移与速度之间存在着一定的关系,如在匀变速直线运动中,位移与速度之间的关系可以表示为s=v0t+1/2at^2或v^2=v0^2+2as 等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
曲线运动
一、曲线运动
1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。
2、曲线运动的产生条件:合外力方向与速度方向不共线(≠0°,≠180°)性质:变速运动
3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。
4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。
若合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大; 当0°<θ<180°,速度增大; 当θ=90°,速度大小不变。
5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。
6、关于运动的合成与分解 (1)合运动与分运动
定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。
那几个运动叫做这个实际运动的分运动.
特征:① 等时性;② 独立性;③ 等效性;④ 同一性。
(2)运动的合成与分解的几种情况:
①两个任意角度的匀速直线运动的合运动为匀速直线运动。
②一个匀速直线运动和一个匀变速直线运动的合运动为匀变速运动,当二者共线时轨迹为直线,不共线时轨迹为曲线。
③两个匀变速直线运动合成时,当合速度与合加速度共线时,合运动为匀变速直线运动;当合速度与合加速度不共线时,合运动为曲线运动。
二、小船过河问题
1、渡河时间最少:无论船速与水速谁大谁小,均是船头与河岸垂直,渡河时间min d
t v =船
,合速度方向沿v 合的方向。
2、位移最小:
①若v v >船水,船头偏向上游,使得合速度垂直于河岸,船头偏上上游的角度为cos v v θ=
水船
,
最小位移为
min l d
=。
②若v v <船水,则无论船的航向如何,总是被水冲向下游,则当船速与合速度垂直时渡河位移最小,船头偏向上游的角度为cos v v θ=船水
,过河最小位移为min cos v d
l d v θ=
=水船。
三、抛体运动
1、平抛运动定义:将物体以一定的初速度沿水平方向抛出,且物体只在重力作用下(不计空气阻力)所做的运动,叫做平抛运动。
平抛运动的性质是匀变速曲线运动,加速度为g 。
类平抛:物体受恒力作用,且初速度与恒力垂直,物体做类平抛运动。
2、平抛运动可分解为水平方向的匀速直线运动和竖直方向的初速度为零的匀加速直线运动(自由落体)。
水平方向(x ) 竖直方向(y )
①速度 0x v v = y v gt =
合速度:t v =
②位移 0x v t = 2
12
y g t = 合位移:
x = 0t a n
2y g t x v α== ※3、重要结论:
①时间的三种求法:0y
v x t v g
=
== ,在空中飞行时间由高度决定。
②t v =0v 和h 有关。
③tan 2tan θϕ=,末速度偏角为位移偏角正切值的2倍, t v 的反向延长线平分水平位移。
4、斜抛运动定义:将物体以一定的初速度沿与水平方向成一定角度抛出,且物体只在重力作
用下(不计空气阻力)所做的运动,叫做斜抛运动。
它的受力情况与平抛完全相同,即在水平方向上不受力,加速度为0;在竖直方向上只受重力,加速度为g 。
速度:0cos x v v θ= 位移:0cos x v t θ=
0sin y v v gt θ=- 2
01sin 2y v t gt θ=-
时间: 0sin 2cos x v t v g
θ
θ== 水平射程:2sin 2v x y θ= 当45θ=︒时,x 最大。
四、圆周运动
1、基本物理量的描述
①线速度大小:v=△L/△t 单位m/s 匀速圆周运动:2r
v T π= ②角速度大小:ω=△θ/△t 单位rad/s 匀速圆周运动:2T
π
ω=
③周期T : 物体运动一周需要的时间 。
单位:s 。
④频率f : 物体1秒钟的时间内沿圆周绕圆心绕过的圈数。
单位:Hz 1
f T
=
⑤转速n :物体1分钟的时间内沿圆周绕圆心绕过的圈数。
单位:r/s 或r/min 说明:弧度rad ;角速度/rad s ;转速 /r s ,当转速为/r s 时,f n =
y x 0gt tan θv v v ==
(1)定义:做匀速圆周运动的物体,加速度指向圆心。
(2)物理意义:线速度方向改变的快慢。
(3)方向:沿半径方向,指向圆心。
(4)大小:222
24v a r r r T
πω=== (5)性质:匀速圆周运动是一个加速度大小不变、方向时刻变化的变加速曲线运动。
4、向心力
(1) 定义:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。
(2) 大小:222
24=m v F m r m r r T
πω==向
(3)方向:指向圆心。
特点:是效果力,不是性质力。
向心力是做圆周运动的物体受到的沿着半径指向圆心的力,它可以由某一个力单独承担,也可以是几个力的合力,还可以是物体受到的合外力在沿半径指向圆心方向上的分量。
作用效果只是改变物体速度的方向,而不改变速度的大小。
性质力:重力、弹力、摩擦力(拉力,压力,支持力)、电场力、磁场力(安培力,洛伦兹力) 效果力:动力、阻力、下滑力、向心力 (4) 性质:变加速运动。
(5)匀速圆周运动:周期、频率、角速度大小不变;向心力,向心加速度、速度大小不变,方向时刻改变。
五、生活中实际问题 1、火车弯道转弯问题
(1)受力分析:当外轨比内轨高时,铁轨对火车的支持力不再是竖直向上,和重力的合力可以提供向心力,可以减轻轨和轮缘的挤压。
最佳情况是向心力恰好由支持力和重力的合力提供,铁轨的内、外轨均不受到侧向挤压的力。
如图所示火车受到的支持力和重力的合力的水
平指向圆心,成为使火车拐弯的向心力,(2)向心力为:=tan h
F mg mg L θ=向 火车转
弯时的规定速度为:0v =
(3)讨论:当火车实际速度为v 时,可有三种可能:
0v v <时,外轨向内挤压轮缘,提供侧压力。
0v v =时,内外轨均无侧压力,车轮挤压磨损最小。
0v v >, 内轨向外挤压轮缘,提供侧压力。
2、拱形桥
(1)汽车过拱桥时,牛二定律:2
v mg N m R
-=
结论: A .汽车对桥面的压力小于汽车的重力mg ,属于失重状态。
B .汽车行驶的速度越大,汽车对桥面的压力越小。
当速度不断增大的时候,压力
会不断减小,当达到某一速度v =时,汽车对桥面完全没有压力,汽车“飘离”桥面。
汽车以大于或等于临界的速度驶过拱形桥的最高点时,汽车与桥面的相互作用力为零,汽车只受重力,又具有水平方向的速度的,因此过最高点后汽车将做平抛运动。
(2)汽车过凹桥时,牛二定律: 2
v mg N m R
+=
结论:A.汽车对桥面的压力大于汽车的重力,属于超重状态。
B.汽车行驶的速度越大,汽车对桥面的压力越大。
当速度不断增大的时候,压力会不断增大。
3、航天器中的失重现象
航天器中的人和物随航天器一起做圆周运动,其向心力也是由重力提供的,此时重力完全用来提供向心力,不对其他物体产生压力,即里面的人和物出于完全失重状态。
4、离心运动
(1)定义:做匀速圆周运动的物体,在所受合力突然消失或者不足以提供圆周运动所需的向心力情况下,就做逐渐远离圆心的运动,这种运动叫做离心运动。
(2)本质:离心现象是物体惯性的表现。
(3)应用:洗衣机甩干桶,火车脱轨,棉花糖制作。
(4)F F <提供需要离心;F F >提供需要 向心。
5、临界问题
1.如图所示细绳系着的小球或在圆轨道内侧运动的小球,当它们通过最高点时:
(1)v <
(2) v =2
v mg m R =,物体恰好通过轨道最高点,绳或轨道与物体间无作用力。
(3) v >2
v mg N m R
+=,v N ↑↑,绳或轨道对物体产生向下的作用力。
2.在轻杆或管的约束下的圆周运动:杆和管对物体能产生拉力,也能产生支持力。
当物体通过最高点时:
(1)当0
v=时,N mg
=,杆中表现为支持力。
(物体到达最高点的速度为0。
)
(2)当0v
<<
2
v
mg N m
R
-=,v N
↑↓,杆或轨道产生对物体向上的支持力。
(3)当v=
2
v
mg m
R
=,N=0,杆或轨道对物体无作用力。
(4)当v>
2
v
mg N m
R
+=,v N
↑↑,杆或轨道对物体产生向下的作用力。