实际问题与方程例2

合集下载

有关实际问题与二元一次方程解的题

有关实际问题与二元一次方程解的题

有关实际问题与二元一次方程解的题二元一次方程,顾名思义,就是一个含有两个未知数的一次方程,它是中学数学课程中最基础的内容之一。

我们生活中许多实际问题都可以通过构造二元一次方程解决,而二元一次方程也是解决我们日常生活中实际问题的工具之一。

下面,我将介绍一些有关实际问题与二元一次方程解的例子。

1. 买文具小明去文具店买笔和橡皮,他买了6支笔和4个橡皮花了18元,而他买了3支笔和2个橡皮花了7元。

求一支笔和一个橡皮的价格各是多少?这是一个典型的二元一次方程题目。

设一支笔的价格为x元,一个橡皮的价格为y元。

由题意可得:6x + 4y = 183x + 2y = 7将二元一次方程按照一般的格式写出,即ax + by = c的形式,再用解方程的方法,消元求解即可得出一支笔和一个橡皮的价格分别为2元和1元。

2. 求矩形的面积现在我们用一个更加具体的问题来帮助我们理解二元一次方程。

如下图所示,一个矩形的长和宽分别是3和x-1。

同时,矩形的周长为14。

我们该如何求出这个矩形的面积?![矩形图示]根据矩形的周长公式可知,2(3 + x-1) = 14,也就是6 + 2x = 14,进一步化简得到2x = 8,即x = 4。

因此,这个矩形的长为3,宽为3,面积为9。

3. 银行存款小明目前在银行有两个存款,一个是5000元的一年定期,年利率为3.5%,另一个是8000元的活期,年利率为1.5%,每年可以得到200元的利息。

若小明希望每年可以得到至少650元的利息,则他需要将多少钱存入定期存款?设小明需要向定期存款中存入的金额为x元,则根据年利率计算公式可以得到:x × 3.5% + 8000 × 1.5% = 650化简可得:0.035x + 120 = 650x = 17000因此,小明应该在定期存款中存入至少17000元。

4. 空间中的点现在我们来看另一个例子,设在平面直角坐标系中点A坐标为(2,4),点B坐标为(6,y)。

五年级上册数学教案-13实际问题与方程例2(二)-人教新课标

五年级上册数学教案-13实际问题与方程例2(二)-人教新课标

标题:五年级上册数学教案-13实际问题与方程例2(二)-人教新课标一、教学目标1. 让学生理解方程的概念,能够识别方程中的未知数和已知数。

2. 培养学生运用方程解决实际问题的能力,提高学生的数学思维能力。

3. 培养学生合作学习、积极思考的良好学习习惯。

二、教学内容1. 方程的概念2. 方程的解法3. 方程在实际问题中的应用三、教学重点与难点1. 教学重点:方程的概念和方程的解法。

2. 教学难点:运用方程解决实际问题。

四、教学过程1. 导入:通过一个实际问题,引导学生思考如何用方程来表示这个问题。

2. 新课:讲解方程的概念,让学生理解方程中的未知数和已知数。

然后,通过一个例子,讲解方程的解法,让学生掌握解方程的方法。

3. 练习:让学生独立完成一些方程的练习题,巩固对方程的理解和解法。

4. 应用:通过一些实际问题,让学生运用方程来解决,提高学生运用方程解决实际问题的能力。

5. 总结:总结本节课的内容,让学生对方程的概念和解法有更深入的理解。

五、作业布置1. 完成练习册上的方程练习题。

2. 通过一些实际问题,运用方程来解决,并写出解题过程。

六、教学反思本节课通过实际问题引入方程的概念,让学生能够理解方程中的未知数和已知数。

通过例子讲解方程的解法,让学生掌握解方程的方法。

通过练习和应用,提高学生运用方程解决实际问题的能力。

在教学过程中,要注意引导学生积极思考,培养学生的数学思维能力。

同时,要关注学生的学习情况,及时给予指导和帮助。

重点关注的细节:运用方程解决实际问题补充和说明:在实际教学中,运用方程解决实际问题是非常重要的一部分。

这不仅能够帮助学生巩固对方程概念的理解,提高解方程的能力,还能够培养学生运用数学知识解决实际问题的能力。

以下是对这个重点细节的详细补充和说明。

首先,要让学生理解方程的意义。

方程是表示两个数量相等的一种数学表达式,其中包含未知数和已知数。

通过解方程,我们可以找到未知数的值,从而解决实际问题。

第五单元《实际问题与方程 例2》(教案)五年级上册数学人教版

第五单元《实际问题与方程 例2》(教案)五年级上册数学人教版

教案:《第五单元实际问题与方程例2》年级:五年级学科:数学教材版本:人教版教学目标:1. 让学生能够运用方程解决实际问题,理解方程在生活中的应用。

2. 培养学生分析问题、解决问题的能力,提高学生的逻辑思维能力。

3. 使学生掌握方程的解法和应用,提高学生的数学素养。

教学重点:1. 方程的解法。

2. 方程在实际问题中的应用。

教学难点:1. 方程的解法的理解。

2. 实际问题与方程的对应关系。

教学准备:1. 教师准备:PPT、教案、教材。

2. 学生准备:教材、练习本、铅笔。

教学过程:一、导入(5分钟)1. 复习方程的基本概念。

2. 引导学生思考方程在实际生活中的应用。

二、新课导入(10分钟)1. 出示例题,引导学生观察并分析问题。

2. 引导学生运用方程解决实际问题。

3. 讲解方程的解法,并进行示范。

三、课堂练习(10分钟)1. 学生独立完成练习题。

2. 教师巡回指导,解答学生疑问。

四、课堂小结(5分钟)1. 回顾本节课所学内容。

2. 总结方程的解法及在实际问题中的应用。

五、课后作业(5分钟)1. 完成课后练习题。

2. 预习下一节课内容。

教学反思:本节课通过实际问题的引入,让学生深刻理解方程在实际生活中的应用,培养学生分析问题、解决问题的能力。

在教学过程中,教师应注重引导学生观察、分析问题,培养学生的逻辑思维能力。

同时,教师还应关注学生的课堂练习情况,及时解答学生疑问,提高学生的数学素养。

重点关注的细节:实际问题的引入与方程解法的讲解详细补充和说明:在实际问题的引入方面,教师需要选择与生活紧密相关的问题,让学生能够感受到数学与生活的密切联系。

例如,可以选择与购物、交通、运动等方面的问题,让学生通过解决问题,体会数学的实用价值。

在引入问题时,教师应引导学生观察问题,分析问题,从而培养他们的观察能力和分析问题的能力。

在方程解法的讲解方面,教师需要详细讲解方程的解法,让学生掌握解方程的方法。

例如,对于一元一次方程,教师可以从等式的性质出发,讲解移项、合并同类项等基本操作,然后通过具体的例子,展示解方程的过程。

实际问题与一元一次方程(二)

实际问题与一元一次方程(二)

实际问题与一元一次方程(二)一、利润问题(1)=100% 利润利润率进价;(2)标价=成本(或进价)×(1+利润率);(3)实际售价=标价×打折率;(4)利润=售价-成本(或进价)=成本×利润率 注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损。

打几折就是按标价的十分之几或百分之几十销售。

例1、某商店以每支4元的价格进100支钢笔,卖出时每支的标价6元,当卖出一部分钢笔后,剩余的打9折出售,卖完时商店赢利188元,其中打9折的钢笔有几支?变式1-1、某商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,求这种商品的定价为多少元?变式1-2、某商店将彩电按原价提高40%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍可获利270元,那么每台彩电原价是多少?变式1-3、某种商品的标价为900元,为了适应市场竞争,店主打出广告:该商品九折出售,并返100元现金。

这样他仍可获得10%的利润率(相对于进货价),问此商品的进货价是多少(用四舍五入法精确到个位)?变式1-4、某厂生产一种产品,成本是每件5元,零售价为每件7元,年销售量为100万件。

为了获得更多的利润,厂里准备拿出一定的资金做广告。

根据调研,每投入1万元广告费,每年可多销售2.5万件产品。

那么投入多少万元广告费,可使年利润达到300万元?二、存贷款问题(1)利息=本金×利率×期数;(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数);(3)实得利息=利息-利息税;(4)1利息税=利息×利息税率;(5)年利率=月利率×12;(6)月利率=年利率×12例2、某公司从银行贷款20万元,用来生产某种产品,已知该贷款的年利率为15%(不计复利),每个产品成本是3.2元,售价是5元,应纳税款为销售款的10%。

实际问题与二元一次方程组(2)

实际问题与二元一次方程组(2)
D C
A
甲种作物的总产量 = 甲的单位面积产量×甲的种植面积
B x Ey
乙种作物的总产量 = 乙的单位面积产量 ×乙的种植面积
D
F
解:甲乙两种作物的种植区域分别为长方形 ADFE和BCFE,设AE为 x 米,BE为 y 米,甲 乙两种作物的单位面积产量分别为a和2a,由 题意得:
C
x + y=200 100a x : (2a×100 y )=3:4
Байду номын сангаасx= 60
解方程组得:
y =40
答: 过长方形土地的短边上离一端约 米处, 把这块地分为两个长方形.较大一块地种甲 种作物,较小一块地种乙种作物.
例2: 小龙在拼图时,发现8个一样大的小长 方形,恰好可以拼成一个大长方形,如图甲所示, 陈晔看见了说“我来试一试”,结果陈晔七拼八凑, 拼成一个如图乙的正方形,中间留下一个洞,恰 好是边长2mm的小正方形,你能算出小长方形 的长和宽吗?
数学问题
[方程(组)]
解 方 程 ( 组 )
实际问题 的答案
双检验
数学问题的解
第八章二元一次方程组
课前预习
甲种作物单位面积产量为2a,乙种 作物单位面积产量为3a
单位面积产量 甲乙两种作物的单位面积产量的比 是2:3,现有一块面积17公顷的土地, 要在这块土地上种植这两种作物,且 总产量 使甲乙两作物的总产量的比是3:4, 甲乙两种作物的种植面积分别是多少?
等量关系:甲作物的种植面积+乙作物的种植面积=17 甲的单位面积产量×甲的种植面积 :乙的单 甲作物的总产量:乙作物的总产量=3:4 位面积产量×乙的种植面积=3:4


例3: 一个长方形,它的长减少4cm,宽增加 2cm,所得的是一个正方形,它的面积与长方形 的面积相等,求原长方形的长与宽。 解:设长方形的长为xcm,宽为ycm, 由题意得: x 4 y 2,

22.3 实际问题与一元二次方程(2)

22.3 实际问题与一元二次方程(2)
30×20–(30–2x)(20–2x)=400 × 整理得 x2– 25x+100=0 得 x1=20, x2=5 舍去);当 当x=20时,20-2x= -20(舍去 当x=5时,20-2x=10 时 舍去 时 这个长方形框的框边宽为5cm 答:这个长方形框的框边宽为 这个长方形框的框边宽为
设长方形框的边宽为xcm,依题意 得 依题意,得 解:设长方形框的边宽为 设长方形框的边宽为 依题意 X
上一节,我们学习了解决“平均增 上一节,我们学习了解决“平均增 下降)率问题 长(下降 率问题”,现在,我们要 下降 率问题” 现在, 学习解决“面积、体积问题。 学习解决“面积、体积问题。
探究3 探究
在长方形钢片上冲去一个长方形, 在长方形钢片上冲去一个长方形,制成一个四 周宽相等的长方形框。已知长方形钢片的长为30cm,宽 周宽相等的长方形框。 2 为20cm,要使制成的长方形框的面积为400cm ,求这个 长方形框的框边宽。 长方形框的框边宽。 分析: 分析 本题关键是如何用x的代数式表示这个长方形框的面积 本题关键是如何用 的代数式表示这个长方形框的面积 X X X X
1 解: (1) 方案 :长为9 米,宽为 米; 方案1: 宽为7米 7
∴ b2 − 4ac = (−16)2 − 4 × 1 × 65 = −4 < 0
方案2:长为 米 宽为4米 方案3: 方案 :长为16米,宽为 米; 方案 :长=宽=8米; 宽 米 注:本题方案有无数种 (2)在长方形花圃周长不变的情况下,长方形花 )在长方形花圃周长不变的情况下, 圃面积不能增加2平方米 平方米. 圃面积不能增加 平方米 由题意得长方形长与宽的和为16米 设长方形花圃 由题意得长方形长与宽的和为 米.设长方形花圃 的长为x米 则宽为(16-x) 的长为x米,则宽为(16-x)米. x(16-x)=63+2, , x2-16x+65=0, , ∴此方程无解. 此方程无解 在周长不变的情况下, ∴在周长不变的情况下,长方形花圃的面积不能 增加2平方米 增加 平方米

最新人教版五年级数学上册解方程实际问题与方程73页74页_例1例2教学提纲

最新人教版五年级数学上册解方程实际问题与方程73页74页_例1例2教学提纲

三、巩固新知 拓展应用
2.
绿色圃中小学教育网 绿色圃中小学教育网
问题:你能用方程解决这个问题吗?自己试着做一做。
三、巩固新知 拓展应用
预设1:
半小时=30分
解:设一个滴水的水龙头每分钟浪费x千克水。
30x=1.8 x=1.8÷30 x=0.06
活动三、拓展应用
共有1428个网球,每5个装一筒,装完后还剩3个。一共装了多少筒? 1.
活动任务:从题目中找等量关系,并列方程解决 这个问题
每筒网球的个数×筒数+3=网球总数 解:设一共装了x筒 5x+3=1428
5x+3-3=1428-3 5x=1425
5x÷5=1425÷5 x=285
答:一共装了285筒。 你能读懂这位同学的想法吗?这里为什么要加3?
活动二、列方程
列方程:
方法1:
方法2:
方法3:
解:设共有x块黑色皮。 2x-4=20
解:设共有x块黑色皮。 2x-20=4
解:设共有x块黑色皮。 2x=20+4
黑色皮块数×2-白色皮块数=4 黑色皮块数×2-4=白色皮块数
黑色皮块数×2=白色皮块数+4
x块
黑色皮
2x块
白色皮
20块
4块
活动二、解方程
方法3:
解:设共有x块黑色皮。 2x=20+4 2x=24
2x÷2=24÷2 x=12
同一个问题,列出三个不同的方程。如果让你选择一个方程,你会选哪个?
(顺着题意找出等量关系,再列出方程更简洁)
问题: 列方程解决实际问题有哪些步骤?
1.找出未知数,用字母x表示; 2.分析实际问题中的数量关系,找出等量关系,列方程; 3.解方程并检验作答。

数学五年级上册实际问题与方程例2

数学五年级上册实际问题与方程例2

数学五年级上册实际问题与方程例2问题:小明和小红一起去超市买水果,小明买了苹果10个,橙子8个,小红买了苹果5个,橙子12个。

苹果每个5元,橙子每个3元。

请计算他们买水果的总金额。

解答:要计算小明和小红买水果的总金额,首先需要知道小明买了多少钱的苹果和橙子,小红买了多少钱的苹果和橙子,然后将两者的金额相加即可。

根据题目给出的信息,我们可以计算小明买水果的金额:苹果的数量是10个,每个苹果的价格是5元,所以小明买苹果的金额是10 * 5 = 50元。

橙子的数量是8个,每个橙子的价格是3元,所以小明买橙子的金额是8 * 3 = 24元。

同样地,我们可以计算小红买水果的金额:苹果的数量是5个,每个苹果的价格是5元,所以小红买苹果的金额是5 * 5 = 25元。

橙子的数量是12个,每个橙子的价格是3元,所以小红买橙子的金额是12 * 3 = 36元。

将小明和小红买水果的金额相加,即可得到总金额:小明买水果的总金额是50 + 24 = 74元。

小红买水果的总金额是25 + 36 = 61元。

因此,小明和小红一起买水果的总金额是74 + 61 = 135元。

以上就是解决这道实际问题的方法。

我们通过先计算小明和小红分别买水果的金额,然后将两者的金额相加得到了他们一起买水果的总金额。

这个问题涉及到了实际生活中的购物情景,通过运用数学的知识和计算能力,我们可以准确地计算出购买水果的总金额,提高了数学解决实际问题的能力。

在数学五年级上册中,学生们会继续学习和应用各种数学知识和技能来解决实际问题,例如加法、减法、乘法、除法等运算,以及图表分析、二步运算、问题解答等。

通过在实际问题中运用这些数学知识,学生们不仅可以提高数学能力,还可以培养逻辑思维能力、解决问题的能力和创新思维。

除了简单的数学运算,实际问题与方程的例子还可以涉及到比例关系、面积与周长、单位换算等更复杂的数学概念和技巧。

通过解决这些问题,学生们可以掌握更多的数学知识,拓宽数学思维的广度和深度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

100
X
X
X X
300
100 4 x 300
根据图意列方程并解方程。
40
40 180
40
X
4X
3X 17.5
1.张林和李涛收集邮票,张林收集了 126张,比李涛的3倍少6张,他们共收集 了邮票多少张?
2.爸爸和明明的体重和为116千克,爸爸 的体重比明明的3倍还多8千克,爸爸和 明明的体重分别是多少千克?
人教版五年级数学上册第五单元
1、口答: (1)23的3倍是多少? 23 ×3 (2)比23的3倍多15的数是多少? 23 ×3+15 (3)比23的3倍少15的数是多少? 23 ×3-15 (4)比x的3倍多15的数是多少? 3x+15
2、用线段表示下题的数量关系:
合唱队的人数比舞蹈队的人数 的4倍多15人。
去年每月生产台数×2倍 =今年每月生产台数
解:去年平均每月生产x台, 2x=100 x=100 ÷2 X=50 答:去年平均每月生产50台。
共有1428个网球,每5个装一筒, 装完后还剩3个。一共装了多少筒?
解:设一共装了x筒。 每筒个数×筒数+3=总数
5x+3=1428
白色皮共有20块,比黑色皮的2倍少4块, 共有多少块黑皮?
舞蹈队: 合唱队:
多15人
说出下列各题的的等量关系式。
1、红花的3倍多4朵是百花。
红花×3倍+4=百花
2、松树是柏树的5倍少12棵。
柏树×5倍-12=松树棵树
3、女生人数的4倍多7人恰好是男生人数
女生人数×4倍+7=男生人数
机床厂今年每月生产机床100台, 是去年的2倍,去年平均每月生产多少台?
黑色皮的块数×2- 4=白色皮的块数
X
黑色皮: 白色皮:
2X
20 4
学校图书馆科技书的本数比文艺书的2倍多 47本。科技书有495本,文艺书有多少本?
文艺书的本数×2+ 47=科技书的本数
解:文艺书有x本, 2x+47=495 2x+47-47=495 -47 2x=448 2x÷2=448÷2 x=224Байду номын сангаас答:文艺书有224本。
1、只列方程不解答。 (1)图书室有文艺书180本,比科技 书的2倍多20本,科技书x本。 2x+20=180
(2)养鸡厂养母鸡400只,比公鸡 的2倍少40只,公鸡x只。 2x-40=400
(3)一个等腰三角形的周长是86厘米, 底是38厘米.它的腰是x厘米。
2x+38=86
根据图意列方程并解方程。
相关文档
最新文档