平面机构运动方案创新设计实验

实验四平面机构运动方案创新设计实验

、实验目的

1. 加深学生对机构组成原理的认识,进一步了解机构组成及其运动特性;

2. 培养学生的工程实践动手能力;

3. 培养学生创新意识及综合设计能力。

设备和工具

1. 机构运动方案创新设计实验台;

2?工具箱一套;

3.自备三角板、圆规和草稿纸等文具。

实验前的准备工作

1. 预习实验,掌握实验原理,初步了解机构创新模型;

2. 选择设计题目,初步拟定机构系统运动方案。

四、实验原理

任何平面机构均可以用零自由度的杆组依次连接到原动件和机架上的方 法来组

成,这是机构的组成原理,也是本实验的基本原理。

1.杆组的概念

由于平面机构具有确定运动的条件是机构的原动件数目与机构的自由度 相等,因

此机构均由机架、原动件和自由度为零的从动件通过运动副联结而成。 将从动件系统拆

成若干个不可再分的自由度为零的运动链,称为基本杆组(简 称杆组)。 根据杆组的定

义,组成平面机构杆组的条件是:

F = 3n - 2P L - P H =0 (4- 1)

式中:n 为杆组中的构件数;P L 为杆组中的低副数;P H 为杆组中的高副数。 由于

构件数和运动副数目均应为整数,故当 n 、P L 、P H 取不同数值时,可得各 类基本杆

组。

当P H =0时,杆组中的运动副全部为低副,称为低副杆组。由于有F = 3n - 2P L -

2P L n - 3,则n 应当是2的倍数,而P L 应当是3的倍数,即n :2、4、6……,

9……。当n=2 , P L =3时,基本杆组称为II 级组。II 级组是应用最多的

绝大多数的机构均由II 级杆组组成,II 级杆组可以有下图所示的五

P H =0,故

P L =3、6、 基本杆组,

种不同类型:

n=4, P L =6的

杆组形式很

多,如图 2、正确拆分杆组

从机构中拆出杆组具有三个步骤:

1) 先去掉机构中的局部自由度和虚约束;

2) 计算机构的自由度,确定原动件;

3) 从远离原动件的一端开始拆分杆组,每次拆分时,要求先试着拆 分n 级

组,没有n 组时,再拆分m 级组等高一级杆组,最后剩下原动件和机架。 拆分杆组是

否正确的判定方法是:拆去一个杆组或一系列杆组后,剩余的必须

为一个完整的机构或若干个与机架相联的原动件,而不能有不成组的零散构件 或运动副

存在,全部杆组拆完后,应当只剩下与机架相联的原动件。

如图4-3所示机构,可先除去K 处的局部自由度,然后,按步骤2)计 算机

构的自由度(F=1),并确定凸轮为原动件;最后根据步骤3),先拆分出 构件4和5组

成的n 级组,再拆分出构件6和7及构件3和2组成的两个n 级组以及 由构件8组成

q

平面低副n 级杆组 图4 — 1 6 — 2所示为常见的m 级杆组。

图4 — 2平面低副m 级杆

的单构件高副杆组,最后剩下原动件1和机架9。

4 —3杆组拆分

3、杆组的正确拼装

根据事先拟定的机构运动简图,利用机构运动创新设计方案实验台提供的 零件

按机构运动的传递顺序进行拼装。拼装时,通常先从原动件开始,按运动 传递规律

进行拼装。拼装时,应保证各构件均在相互平行的平面内运动,这样 可避免各运动

构件之间的干涉,同时保证各构件运动平面与轴的轴线垂直。拼 装应以机架铅垂面

为参考平面,由里向外拼装。

注意:为避免连杆之间运动平面相互紧贴而摩擦力过大或发生运动干涉, 在装

配时应相应装入层面限位套。

机构运动创新设计实验台提供的运动副拼接方法参见以下各图所示。 1)实验台机架:

G

h

.1

1

实验台机架中有5根铅垂立柱,均可沿X方向移动。移动前应旋松在电机侧安装在上、下横梁上的立柱紧固螺钉,并用双手移动立柱到需要的位置后,应将立柱与上(或下)横梁靠紧再旋紧立柱紧固螺钉(立柱与横梁不靠紧旋紧螺钉时会使立柱在X 方向发生偏移)。

注:立柱紧固螺钉只需旋松既可,不允许将其旋下。

立柱上的滑块可在立柱上沿丫方向移动,要移动立柱上的滑块,只需将滑块上的内六角平头紧定螺钉旋松即可(该紧定螺钉在靠近电机侧)。

按上述方法移动立柱和滑块,就可在机架的X、丫平面内确定固定铰链的位置。

2)主、从动轴与机架的连接(下图各零件编号与“机构运动创新设计方案实验台组件”序号相同,后述各图均相同)

竺旦^助/

iwir

36机舉

ft

图4-5 主、从动轴与机架的连接

按上图方法将轴联接好后,主(或从)动轴相对机架不能转动,与机架成为刚性联接;

14

9 //

忆 20

若件22不装配,则主(或从)动轴可以相对机架作旋转运动。 3)转动副的连接

19 或 30

才te 却或阴

图4—6转动副连接图

按图示联接好后,采用件19联接端连杆与件9无相对运动,采用件20联接 端连

杆与件9可相对转动,从而形成两连杆的相对旋转运动。

4)移动副的连接

)—+1

1^^—■CL—D ~ 图4— 7移动副连接图

5)活动铰链座I 的安装 ◎

如图联接,可在连杆任意位置形成铰链,且件

9如图装配,就可在铰链座I 上形

成回转副或形成回转一移动副。

6)活动铰链座II 的安装

图4— 9活动铰链座II 的连接图

如图连接,可在连杆任意位置形成铰链,从而形成回转副。

7)复合铰链I 的安装:(或转一移动副)

将复合铰链I 铣平端插入连杆长槽中时构成移动副,而联接螺栓均应用带垫片 螺栓。 //

V/A

机构运动创新设计..

课程设计报告 学生姓名:________________ 学号:_________________ 学院: ______________________________________________ 班级: ______________________________________________ 题目: _______________ 机构运动创新设计______________

2015年1月5日 目录 、概述................................. 1 .....................................................

一、概述: 机构运动方案创新设计是各类复杂机械设计中决定性的一步,机构的设计选型一般先通过作图和计算来进行,一般比较复杂的机构都有多个方案,需要制作模型来试验和验证,多次改进后才能得到最佳的方案和参数。本实验所用搭接试验台能够任意选择平面机构类型,组装调整机构尺寸等功能,能够比较直观、方便的搭接、验证、调试、改进、确定设计方案,较好地改善了在校学生对平面机构的学习和设计一般只停留在理论设计“纸上谈兵”的状况二、课程设计目的: 1、培养学生对连杆机构的理解掌握与创新设计能力,加强学生的工程实践背景的训练,拓宽学生的知识面,培养学生的创新意识、综合设计及工程实践动手能力。 2 、通过机构的拼接,在培养工程实践动手能力的同时,要求学生在拼装一个已有模型之外,自己通过对现实生产和生活中的连杆机构机械产品的观察和理解,通过试验台设备进行拼装和仿真。通过解决实际问题,促进学生理论联系实际,学以致用;锻炼学生独立思考能力和动手能力。 3 、加深学生对连杆机构组成原理的认识,进一步掌握连杆机构的创新设计方法。 4、学习机构运动简图的测绘与自由度的计算。 三、课程设计要求和内容: 实验设备和工具 CQJP-D 机构运动创新设计方案拼装及仿真实验台,包括组成机构的各种运动副、构件、动力源及一套实验工具(扳手、螺丝刀)。其中构件包括机架、连杆、圆柱齿轮、齿条、凸轮及从动件、槽轮及拨盘和皮带轮等;运动副包括转动副、移动副、齿轮副、槽轮副等。 实验原理 平面机构是由各个杆组依次联结到机架和原动件上形成的。机构具有确定运动的条件是机构的自由度大于零,且原动件数和机构的自由度相等。所拼接的机构必须满足以上两个条件。将主要由连杆构成的连杆机构(可加入一个其他类型构件如齿轮、凸轮、槽轮等)进行拼装,计算分析其自由度后,输入动力源进行 机构运行。实验内容与步骤

机构创新设计与实践大纲

机构创新设计与实践大纲 一、实验目的 1.通过实际机构的应用设计和搭接加深对不同机构运动特性的理解; 2.通过对典型机构的组装,掌握活动连接、固定连接的结构和特点;了解实际机构与 机构简图的不同处,避免设计时出现运动的干涉。 3.通过现场操作,培养实际动手和现场应变能力。 4.通过实验的多方案设计培养发散思维和创新设计能力。 二、实验设备 ZSB-C机构创新设计方案试验台。 三、实验原理 根据理论课所学有关机构组成方面的知识,利用实验台提供的各类零部件实现较简单机构的搭接。 1.杆组的概念 由于平面机构具有确定运动的条件是“机构的原动件数目与机构的自由度数目相等”,因此机构均由机架、原动件和自由度为零的从动件系统通过运动副联接而成,将从动件系统拆成若干个不可再分的自由度为零的运动链,称为基本杆组,简称杆组。 根据杆组的定义组成平面机构杆组的条件是; F=3N-2P5-P4=0 其中构件数N、高副数P5、、低副数P4都必须是整数。由此可以获得各种类型的杆组。 N=1,P5=1,P4=1时即可获得单件高副杆组,常见的有如下几种: 当P4=0时,称之为低副杆,即 F=3N-2P5=0 因此满足上式的构件数和运功副数的组合为:N=2,4,6……,P5=3,6,9…. 最简单的杆组为N=2,P=3,称为II级组,由于杆组中转动副和移动副的配置不同,II 级组共有如下五种形式。

N=4,P5=6的杆组形式很多,机构创新模型已有下图所示的几种常见的III级杆组: 2.机构的组成原理: 根据如上所述,可将机构的组成原理概述为:任何平面机构均可以用零自由度的杆组依次连接到原动件和机架上去的方法来组成。这是本实验的基本原理。 四、实验内容 在了解实验设备提供的机械构件后,本实验台由不同种类的机械构件(连杆类、轴类、齿轮、棘轮、不完全齿轮、凸轮、皮带轮、链轮、齿条等)组成,学生可以根据选择或设计的实验类型、方案和内容,根据个人对理论课上所学的各种机构的认识自己动手进行机构搭接、安装调试和测试,进行设计性实验、综合性实验或创新性实验。以下为实验题目(具体内容要求根据选题发放,这里省略) 1.高位自卸汽车 2.增力头 3载重汽车的起重后板 4钢筋切断机 5起道机 6自动钻床送进机构 7装载机 8铁路散货自翻车 9.听课折椅 10.双人沙发床 11.粉料压片机的分析和改进 12.“没有链轮、链条的自行车?” 13.自行车制动机构分析与创新 14.三速齿轮机构的搭接 15.液压驱动式杠杆-棘轮机构 16.锻压机机构 17.间歇运动机构 18.圆轨迹复制机构

平面机构运动方案创新设计实验.

实验四 平面机构运动方案创新设计实验 一、实验目的 1.加深学生对机构组成原理的认识,进一步了解机构组成及其运动特性; 2. 培养学生的工程实践动手能力; 3. 培养学生创新意识及综合设计能力。 二、 设备和工具 1.机构运动方案创新设计实验台; 2.工具箱一套; 3.自备三角板、圆规和草稿纸等文具。 三、 实验前的准备工作 1.预习实验,掌握实验原理,初步了解机构创新模型; 2.选择设计题目,初步拟定机构系统运动方案。 四、 实验原理 任何平面机构均可以用零自由度的杆组依次连接到原动件和机架上的方法来组成,这是机构的组成原理,也是本实验的基本原理。 1.杆组的概念 由于平面机构具有确定运动的条件是机构的原动件数目与机构的自由度相等,因此机构均由机架、原动件和自由度为零的从动件通过运动副联结而成。将从动件系统拆成若干个不可再分的自由度为零的运动链,称为基本杆组(简称杆组)。 根据杆组的定义,组成平面机构杆组的条件是: F = 3n - 2P L - P H =0 (4-1) 式中: n 为杆组中的构件数;P L 为杆组中的低副数;P H 为杆组中的高副数。由于构件 数和运动副数目均应为整数,故当n 、P L 、P H 取不同数值时,可得各类基本杆组。 当P H =0时,杆组中的运动副全部为低副,称为低副杆组。由于有F = 3n - 2P L - P H =0,故32L P n ,则n 应当是2的倍数,而P L 应当是3的倍数,即n :2、4、6……,P L =3、6、9……。 当n=2,P L =3时,基本杆组称为II 级组。II 级组是应用最多的基本杆组,绝大多数的机构 均由II 级杆组组成,II 级杆组可以有下图所示的五种不同类型: 图4-1 平面低副Ⅱ级杆组

机械设计 第1章 平面机构及其运动简图

第一章 平面机构及其运动简图 案例导入:通过硬纸片是否钉在桌面上及常见的推拉门、活页等例子,引入自由度、铰链、铰接、约束条件和运动副、运动链、机构等概念,介绍运动副的分类;以牛头刨床为例子导入运动简图,介绍用简单的符号和图形表示机器的组成和传动原理。 第一节 平面运动副 一、平面运动构件的自由度 平面机构是指组成机构的各个构件均平行于同一固定平面运动。组成平面机构的构 件称为平面运动构件。 两个构件用不同的方式联接起来,显然会得到不同形式的相对运动,如转动或移动。为便于进一步分析两构件之间的相对运动关系,引入自由度和约束的概念。如图1-1所示,假设有一个构件2,当它尚未与其它构件联接 之前,我们称之为自由构件,它可以产生3个独立 运动,即沿x 方向的移动、沿y 方向的移动以及绕 任意点A 的转动,构件的这种独立运动称为自由度。 可见,作平面运动的构件有3个自由度。如果我们 将硬纸片(构件2)用钉子钉在桌面(构件1)上, 硬纸片就无法作独立的沿x 或y 方向的运动,只能 绕钉子转动。这种两构件只能作相对转动的联接称 为铰接。对构件某一个独立运动的限制称为约束条件,每加一个约束条件构件就失去一个自由度。 二、运动副的概念 机构是具有确定相对运动的若干构件组成的,组成机构的构件必然相互约束,相邻 两构件之间必定以一定的方式联接起来并实现确定的相对运动。这种两个构件之间的可动联接称为运动副。例如两个构件铰接成运动副后,两构件就只能绕轴在同一平面内作相对转动,称为转动副,见图1-2a)、b)所示。又如图1-2d)所示,一根四棱柱体1穿入另一构件2大小合适的方孔内,两构件就只能沿轴线X 作相对移动,称之为移动副;图1-2c)所示为车床刀架与导轨构成的移动副。我们日常所见的门窗活叶、折叠椅等均为转动副,推拉门、导轨式抽屉等为移动副。 图1-1 自由构件 图1-2 平面低副

平面机构运动方案设计与拼装实验报告

平面机构运动方案设计与拼装实验报告

平面机构运动方案设计与拼装实验报告 一、实验目的 1.加深学生对机构组成原理的认识,进一步理解平面机构的组成及其运动特性。 2.通过平面机构的拼装,训练学生的工程实践动手能力,了解机构在实际安装中可能出现的运动干涉现象及解决办法。 3.通过机构运动方案的设计,培养学生的创新意识和综合设计能力。 二、实验原理 机构具有确定运动的条件是其原动件数应等于其所具有的自由度数。如将机构的机架及与机架相连的原动件从机构中拆分开来,则其余构件构成的杆件组必然是一个自由度为零的构件组。而这个自由度为零的构件组,有时还可以拆分成为更简单的自由度为零的构件组,最后将不能再拆的最简单的自由度为零的构件组称为基本杆组,简称杆组。 由杆组定义,组成平面机构的基本杆组应满足条件: F=3n-2P l -P h =0 任何平面机构均可用零自由度的杆组依次连接到原动件和机架上的方法来组成,这是机构的组成原理,也是本实验的基本原理。 三、机构设计及实验组装说明书 本组选择的是筛料机构:

图1 筛料机构简图 机构组成:该机构由曲柄摇杆机构和摇杆滑块机构构成。 工作特点:曲柄1匀速转动,通过摇杆3和连杆4带动滑块5作往复直线运动,由于曲柄摇杆机构的急回性质,使得滑块5速度、加速度变化较大,从而更好地完成筛料工作。 使用到的零部件:

工具:六角扳手三把、活动扳手、钢板尺、自备三角板、圆规、纸和笔等文具。 1)实验台机架 图2 实验台机架图 实验台机架中有5根铅垂立柱,它们可沿X 方向移动。移动时请用双手扶稳立柱、并尽可能使立柱在移动过程中保持铅垂状态,这样便可以轻松推动立柱。立柱移动到预定的位置后,将立柱上、下两端的螺栓锁紧(安全注意事项:不允许将立柱上、下两端的螺栓卸下,在移动立柱前只需将螺栓拧松即可)。立柱上的滑块可沿Y 方向移动。将滑块移动到预定的位置后,用螺栓将滑块紧定在立柱上。按上述方法即可在X 、Y 平面确定活动构件相对机架的连接位置。面对操作者的机

机原实验--机械运动方案创新设计实验3实验报告

本次实验的要求,全班共分为八组。每组设计一至二个方案。 实验地点:实验中心北楼202 陈老师 2013.12.23 机械运动方案创新设计实验 一、实验目的 1.通过实际机构的应用和搭接加深对不同机构运动特性的理解。 2. 通过对典型机构的组装,掌握活动连接,固定连接的结构和特点,了解实际机构与机构简图的不同之处,避免设计时出现运动的干涉。 3. 通过现场操作,培养实际动手能力,现场应变能力,团队合作精神。 4. 通过实验的多方案设计,培养发散性思维和创新设计能力。 二、实验原理 通常机构由三个部分组成,原动件—传动件—从动件。原动件输出运动和动力,经传动件的变化,由从动件对外输出。 平面连杆机构由原动件—连架杆、传动件—连杆和从动件-连架杆组成。 三、实验设备及工具 1.ZBS-C机构运动创新设计实验台 2. 工具:外六角扳手(2把),内六角扳手(2个),钢尺(1个),十字起(1把) 一字起(1把) 四、实验内容(任选一至二项) 1.多功能移动式残病人浴缸翻转机构 ⑴上身部缸体翻转机构 要求上身部缸体从水平位置向上翻转至70度,即翻转角为0-70度. 可采用的机构:摆动导杆机构,导杆与上身部缸体固装在-起,带动缸体翻转。

2. 牛头创床机构 要求刨刀(安装在滑枕上)作直线往复运动。 可采用的机构:摆动导杆机构和滑块机构组合。 方案 (一) 方案(二) 3.飞机起落架 要求起落架上轮子从水平位置向下翻转至垂直位置,利用死点使起落架轮子保持在垂直位置。可采用的机构:双摇杆机构

起落架的要求如下: a. 起落架放下后,只要油缸的锁紧长度不变,整个机架构成自由度为零的刚性结构,且处在稳定的死点位置。 b. 起落架收起时,活塞杆内移,轮子移至水平位置。 c. 机构的最小传动角大于30°。 4.冲压成型机 压头作垂直上下直线运动,以较小功率带动主动件运动时,滑块能产生巨大的冲压力。 可采用的机构:多杆增力机构 5.精压机机构

平面机构运动方案创新设计实验

实验四平面机构运动方案创新设计实验 、实验目的 1. 加深学生对机构组成原理的认识,进一步了解机构组成及其运动特性; 2. 培养学生的工程实践动手能力; 3. 培养学生创新意识及综合设计能力。 设备和工具 1. 机构运动方案创新设计实验台; 2?工具箱一套; 3.自备三角板、圆规和草稿纸等文具。 实验前的准备工作 1. 预习实验,掌握实验原理,初步了解机构创新模型; 2. 选择设计题目,初步拟定机构系统运动方案。 四、实验原理 任何平面机构均可以用零自由度的杆组依次连接到原动件和机架上的方 法来组 成,这是机构的组成原理,也是本实验的基本原理。 1.杆组的概念 由于平面机构具有确定运动的条件是机构的原动件数目与机构的自由度 相等,因 此机构均由机架、原动件和自由度为零的从动件通过运动副联结而成。 将从动件系统拆 成若干个不可再分的自由度为零的运动链,称为基本杆组(简 称杆组)。 根据杆组的定 义,组成平面机构杆组的条件是: F = 3n - 2P L - P H =0 (4- 1) 式中:n 为杆组中的构件数;P L 为杆组中的低副数;P H 为杆组中的高副数。 由于 构件数和运动副数目均应为整数,故当 n 、P L 、P H 取不同数值时,可得各 类基本杆 组。 当P H =0时,杆组中的运动副全部为低副,称为低副杆组。由于有F = 3n - 2P L - 2P L n - 3,则n 应当是2的倍数,而P L 应当是3的倍数,即n :2、4、6……, 9……。当n=2 , P L =3时,基本杆组称为II 级组。II 级组是应用最多的 绝大多数的机构均由II 级杆组组成,II 级杆组可以有下图所示的五 P H =0,故 P L =3、6、 基本杆组,

2020年平面机构运动方案设计与拼装实验报告

平面机构运动方案设计与拼装实验报告平面机构运动设计与拼装实验报告 平面机构运动方案设计与拼装实验报告 一、实验目的 1.加深学生对机构组成原理的认识,进一步理解平面机构的组成及其运动特性。 2.通过平面机构的拼装,训练学生的工程实践动手能力,了解机构在实际安装中可能出现的运动干涉现象及解决办法。 3.通过机构运动方案的设计,培养学生的创新意识和综合设计能力。二、实验原理 机构具有确定运动的条件是其原动件数应等于其所具有的自由度数。如将机构的机架及与机架相连的原动件从机构中拆分开来,则其余构件构成的杆件组必然是一个自由度为零的构件组。而这个自由度为零的构件组,有时还可以拆分成为更简单的自由度为零的构件组,最后将不能再拆的最简单的自由度为零的构件组称为基本杆组,简称杆组。

由杆组定义,组成平面机构的基本杆组应满足条件: F=3n-2Pl-Ph=0 任何平面机构均可用零自由度的杆组依次连接到原动件和机架上的方法来组成,这是机构的组成原理,也是本实验的基本原理。三、机构设计及实验组装说明书 本组选择的是筛料机构: 图1 筛料机构简图 机构组成:该机构由曲柄摇杆机构和摇杆滑块机构构成。 工作特点:曲柄1匀速转动,通过摇杆3和连杆4带动滑块5作往复直线运动,由于曲柄摇杆机构的急回性质,使得滑块5速度、加速度变化较大,从而更好地完成筛料工作。 使用到的零部件:

工具:内六角扳手三把、活动扳手、钢板尺、自备三角板、圆规、纸和笔等文具。 1)实验台机架 图2 实验台机架图 实验台机架中有5根铅垂立柱,它们可沿X方向移动。移动时请用双手扶稳立柱、并尽可能使立柱在移动过程中保持铅垂状态,这样便可以轻松推动立柱。立柱移动到预定的位置后,将立柱上、下两端的螺栓锁紧(安全注意事项:不允许将立柱上、下两端的螺栓卸下,在移动立柱前只需将螺栓拧松即可)。立柱上的滑块可沿Y方向移动。将滑块移动到预定的位置后,用螺栓将滑块紧定在立柱上。按上述方法即可在X、Y 平面内确定活动构件相对机架的连接位置。面对操作者的 机架铅垂面称为拼接起始参考面或操作面。 2)轴相对机架的拼接(图示中的编号与“机构运动方案创新设计实验台零部件清单”序号相同)

机构运动方案创新设计实验.

机构运动方案创新设计实验 一、概述 机构运动方案创新设计是各类复杂机械设计中决定性的一步,机构的设计选型一般先通过作图和计算来进行,一般比较复杂的机构都有多个方案,需要制作模型来试验和验证,多次改进后才能得到最佳的方案和参数。本实验所用搭接试验台能够任意选择平面机构类型,组装调整机构尺寸等功能,能够比较直观、方便的搭接、验证、调试、改进、确定设计方案,较好地改善了在校学生对平面机构的学习和设计一般只停留在理论设计“纸上谈兵”的状况。 二、实验目的 掌握机构创新模型的使用方法及实验原理。 (1)训练学生的工程实践动手能力,培养学生创新意识及综合设计的能力。 (2)加深对平面机构的组成原理及其运动特性的理解和感性认识。 三、实验原理 任何平面机构均可以用零自由度的杆组依次连接到原动件和机架上去的方法来组成,这是机构的组成原理,也是本实验的基本原理。 杆组的概念、正确拆分杆组及拼装杆组。 1.杆组的概念 由于平面机构具有确定运动的条件是机构的原动件数目与机构的自由度数目相等,因此机构均由机架、原动件和自由度为零的从动件系统通过运动副联接而成。将从动件系统拆成若干个不可再分的自由度为零的运动链,称为基本杆组,简称杆组。 根据杆组的定义,组成平面机构杆级的条件是:F=3n—2P L-P H=0。其中构件数n,高副 数P L和低副数P H都必须是整数。由此可以获得各种类型的杆组。

最简单的杆组为n=2 ,P L=3 ,称为II 级组,由于杆组中转动副和移动副的配置不同, II 级杆组共有五种形式如图2-22 所示。 III级杆组形式较多,其中n=4,P L=6,图2-23所示为机构创新模型已有的几种常见的 III 级杆组。 2.正确拆分杆组 正确拆分杆组的三个步骤: (1)先去掉机构中的局部自由度和虚约束,有时还要将高副加以低代。 (2)计算机构的自由度,确定原动件。 (3)从远离原动件的一端(即执行构件)先试拆分II 级杆组,若拆不出II 级组 时,再试拆III 极杆组,即由最低级别杆组向高一级杆组依次拆分,最后剩下原动件和机架。正确拆组的判定标准是:拆去一个杆组或一系列杆组后,剩余的必须仍为一个完整的机构或若干个与机架相联的原动件,不许有不成组的零散构件或运动副存在,否则这个杆组拆得不对。每当拆出一个杆组后,再对剩余机构拆杆组,并按第(3)步骤进行,直到全部杆 组拆完,只应剩下与机架相联的原动件为止。 如图2-24所示机构,先除去K 处的局部自由度,高副低带,然后,按步骤(2)计算机构的自由度:F=1,并确定凸轮为原动件:最后根据步骤(3)的要领,先拆分出由构件4和5组成的II 级杆组,再拆分出由构件6和7及构件3和2,构件8和10组成的三个II 级杆组,最后剩下原动件1 和机架9。 3.正确拼装杆组 根据拟定的机构运动学尺寸,利用机构运动创新方案实验台提供的零件按机构运动传递顺序进行拼接。拼接时,首先要分清机构中各构件所占据的运动平面,并且使各构件的运动在相互平行的平面内进行,其目的是避免各运动构件发生干涉。然后,以实验台机架铅垂面为拼接的起始参考面,所拼接的构件以原动构件起始,依运动传递顺序将各杆组由

第一章平面机构运动简图及其自由度 (1)

第一章平面机构运动简图及其自由度 基本要求:了解平面运动副及平面机构简图绘制;掌握平面运动链的自由度及其具有确定运动的条件。 重点:平面机构运动简图的绘制及自由度的计算。 难点:平面机构的自由度计算、虚约束的判断。 学时:课堂教学:4学时。 教学方法:多媒体结合板书。 第一节运动副及其分类 机构的分类:平面机构:所有的构件都在同一平面或相互平行的平面内运动的机构。 空间机构:所有的构件不全在相互平行的平面内运动的机构。 构件的自由度:构件可能出现的独立运动,如图1-1所示。 空间自由构件:6个 平面自由构件:3个 约束:附加在构件上对构件自由度的限制。 图1-1 构件的自由度 1.1.1 运动副 由两构件组成的可动联接。 三要素:两构件组成、直接接触、有相对运动。 运动副元素:构件上直接参与接触而构成运动副的表面。 1.1.2 运动副的分类 1、根据引入约束的数目分:Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ级副。 2、根据构成运动副的两构件的接触情况分: 低副:面接触。 高副:点或线接触,如图1-2 所示。 3、根据构成运动副的两构件的运动范围分: 平面副:组成运动副的两构件都在同一或平行平面内运动。 平面副:组成运动副的两构件不在同一或平行平面内运动。 4、根据构成运动副的两构件的相对运动分:

移动副:组成运动副的两构件作相对移动,如图1-3所示。 转动副:组成运动副的两构件作相对转动,如图1-4所示。 螺旋副:组成运动副的两构件作螺旋运动,如图1-5所示。 球面副:组成运动副的两构件作球面运动,如图1-6所示。 常用及我们这本书主要介绍的是: 图1-2 高副图1-3 移动副图1-4 转动副 图1-5 螺旋副图1-6 球副 特点:低副:1)面接触——接触比压低,承载能力大。 2)接触面为平面或柱面。便于加工,成本低;便于润滑。 3)引入二个约束,Ⅱ级副。 高副:1)点、线接触。接触比压高,承载能力小。 2)接触面曲面。不便于加工和润滑。 3)引入一个约束。Ⅰ级副。 第二节平面机构运动简图 1.2.1 机构运动简图 根据机构的运动尺寸,按一定的比例尺定出各运动副的位置,用国标规定的运动副及常用机构运动简图的符号和简单的线条将机构的运动情况表示出来,与原机构运动特性完全相同的,表示机构运动情况的简化图形。 机构示意图:表示机构的运动情况,不严格地按比例来绘制的简图。 1.2.2 机构运动简图的绘制 1、运动副的表示方法 表1-1 运动副的表示方法 2、常用机构的简图表示方法 表1-2 常用机构简图表示方法 3、一般构件的的表示方法 表1-3 一般构件表示方法 绘制步骤: 1、分析机构运动。 目的:确定构件及运动副的类型及数目。

(附录)机构的创新设计

(附录)机构的创新设计 1 机构形式设计的原则 机构形式设计具有多样性和复杂性,满足同一原理方案的要求,可采用不同的机构类型。在进行机构形式设计时,除满足基本的运动形式、运动规律或运动轨迹要求外,还应遵循以下几项原则。 1.1 机构尽可能简单 1.机构运动链尽量简短 完成同样的运动要求,应优先选用构件数和运动副数最少的机构,这样可以简化机器的构造,从而减轻重量、降低成本:此外也可减少由于零件的制造误差而形成的运动链的累积误差,从而提高零件加入工艺性和增强机构工作可靠性。运动链简短也毛利于提高机构的刚度,减少产生振动的环节。考虑以上因素,在机构选型时,有时宁可采用有较小设计误差的简单近似机构,而不采用理论上无误差但结构复杂的机构。图1—1所尔为两个直线轨迹机构,其中国a为f点有近似直线轨迹的四仟机构,图b为理论广仓点有精确直线轨迹的八杆机构c实际分析表明,在保证同一制造精度条件F,后者的实际传动误差约为前者的2~3倍,其主要原因在于运动副数目增多而造成运动累积误差增大。 2适当选挥运动副 在基本机构中,高副机构只有3个构件和3个运动副,低副机构则至少有4个构件和4个运动副。因此,从减少构件数和运动副数,以及设计简便等方圆考虑,应优先采用高副机构。但从低副机构的运动副元素加工方便、容易保证配合精度以及有较高的承载能力等方面考虑,应优先采用低副机构。究竞选择何种机构,应根据具体设计要求全而衡量得失,尽可能做到“扬长避短”。在一般情况下,应先考虑低副机构,而且尽量少采用移动副(制造巾不易保证高精度,运动中易出现自锁)。在执行构件的运动规律要求复杂,采用连杆机构很难完成精确设计时,应考虑采用高副机构,如凸轮机构或这杆—凸轮组合机构。 图1—1实现直线轨迹的机构 3适当选择原动机 执行机构的形式与原动机的形式密切相关,不要仅局限于选择传统的电动机驱动形式。在只要求执行构件实现简单的工作位置变换的机构中,采用图1—2所示的气压或液压缸作为原动机比较方便,它同采用电动机驱动相比,可省去一些减速传动机构和运功变换机构,从刚可缩短运动链,简化结构,且具有传动平稳、操作方便、易音:调速等优点。再如,对图1—3所示钢板叠放机构的动作要求是将轨道正的钢板顺滑到叠放槽中(图中右侧末示出)。图a为六杆机构,采用电动机作为原动机,带动机构中的曲柄转动(末画出减速装置);图b 为连杆—凸轮(为固定件)机构,采用液压缸作为原动件直接带动执行构件运动。可以看出后吝比前者要简单。以上两例说明,改变原动件的驱动力式毛可能使机构结构简化。 此外,改变原动机的传输方式,也可能使然构简化。在多个执行构件运动的复杂机器巾,若由竿悦(原动)统一驱动改成多机分别驱动,虽然增加了原动机的数目和电控部分的要求,侗传功部分的运功链却可大为简化,功率损耗也可减少。因此,在台机器中只采用一个原动机驱功不—定就是最佳方案。 4.选用广义机构 不要仅限于刚性机构,还可选用柔性机构,以及利用光、电、磁和利用摩擦、重力、惯性等原理工作曲广义机构,许多场合可使机构更加简单、实用。 图1—2 实现位置受换的液压机构 图1—3钢板叠放机构

平面机构运动简图和自由度习题答案

习 题 1-1至1-4 绘制图示机构的机构运动简图。 题1-1图 颚式破碎机 题1-2图 柱塞泵 题1-3图 旋转式水泵 O 1 O 2 A B 1 2 3 4 A B C D 1 2 3 4 A B C D 1 2 34 A B C D 1 2 3 4 C D

题1-4图 冲压机构 1-5至1-10 指出机构运动简图中的复合铰链、局部自由度和虚约束,并计算各机构的自由度。 解:构件3、4、5在D 处形成一个复合铰链,没有局部自由度和虚约束。 32352701L H F n P P =--=?-?-= 解:没有复合铰链、局部自由度和虚约束。 323921301L H F n P P =--=?-?-= 题1-5图 题1-5图 5 6 A B C D E F O 1 O 2 C D F 1 2 3 4 5 6 E F E G

题1-6图 题1-7图题1-8图题1-9图题1-10图解:A处为复合铰链,没有局部自由度和虚 约束。 323721001 L H F n P P =--=?-?-= 解:A处为复合铰链,没有局部自由度和虚约束。 323721001 L H F n P P =--=?-?-= 解:B处为局部自由度,没有复合铰链和虚约束。 32352710 L H F n P P =--=?-?-= 解:C处为复合铰链,E处为局部自由度,没有虚约束。 32372912 L H F n P P =--=?-?-= A B C D E I F G H A D B E C A E B C D G F

1-11图示为一手动冲床机构,试绘制其机构运动简图,并计算自由度。试分析该方案是否可行;如果不可行,给出修改方案。 题1-11图手动冲床 答:此方案自由度为0,不可行。改进方案如图所示: 手动冲床运动简图手动冲床改进方案

浅析机构运动方案创新设计的实验报告

浅析机构运动方案创新设计的实验报告 一、概述 机构运动方案创新设计是各类复杂机械设计中决定性的一步,机构的设计选型一般先通过作图和计算来进行,一般比较复杂的机构都有多个方案,需要制作模型来试验和验证,多次改进后才能得到最佳的方案和参数。本实验所用搭接试验台能够任意选择平面机构类型,组装调整机构尺寸等功能,能够比较直观、方便的搭接、验证、调试、改进、确定设计方案,较好地改善了在校学生对平面机构的学习和设计一般只停留在理论设计“纸上谈兵”的状况。 二、实验目的 掌握机构创新模型的使用方法及实验原理。 (1)训练学生的工程实践动手能力,培养学生创新意识及综合设计的能力。 (2)加深对平面机构的组成原理及其运动特性的理解和感性认识。 三、实验原理 任何平面机构均可以用零自由度的杆组依次连接到原动件和机架上去的方法来组成,这是机构的组成原理,也是本实验的基本原理。 杆组的概念、正确拆分杆组及拼装杆组。 1.杆组的概念 由于平面机构具有确定运动的条件是机构的原动件数目与机构的自由度数目相等,因此机构均由机架、原动件和自由度为零的从动件系统通过运动副联接而成。将从动件系统拆成若干个不可再分的自由度为零的运动链,称为基本杆组,简称杆组。

根据杆组的定义,组成平面机构杆级的条件是:F=3n—2PL-PH=0。其中构件数n,高副数PL和低副数PH都必须是整数。由此可以获得各种类型的杆组。 最简单的杆组为n=2,PL=3,称为II级组,由于杆组中转动副和移动副的配置不同,II级杆组共有五种形式如图2-22所示。 III级杆组形式较多,其中n=4,PL=6,图2-23所示为机构创新模型已有的几种常见的III级杆组。 2.正确拆分杆组 正确拆分杆组的三个步骤: (1)先去掉机构中的局部自由度和虚约束,有时还要将高副加以低代。 (2)计算机构的自由度,确定原动件。 (3)从远离原动件的一端(即执行构件)先试拆分II级杆组,若拆不出II 级组 时,再试拆III极杆组,即由最低级别杆组向高一级杆组依次拆分,最后剩下原动件和机架。正确拆组的判定标准是:拆去一个杆组或一系列杆组后,剩余的必须仍为一个完整的机构或若干个与机架相联的原动件,不许有不成组的零散构件或运动副存在,否则这个杆组拆得不对。每当拆出一个杆组后,再对剩余机构拆杆组,并按第(3)步骤进行,直到全部杆组拆完,只应剩下与机架相联的原动件为止。 如图2-24所示机构,先除去K处的局部自由度,高副低带,然后,按步骤(2)计算机构的自由度:F=1,并确定凸轮为原动件:最后根据步骤(3)的要

机构运动方案创新设计的实验报告

机构运动方案创新设计的实验报告 一、概述 机构运动方案创新设计是各类复杂机械设计中决定性的一步,机构的设计选型一般先通过作图和计算来进行,一般比较复杂的机构都有多个方案,需要制作模型来试验和验证,多次改进后才能得到最佳的方案和参数。本实验所用搭接试验台能够任意选择平面机构类型,组装调整机构尺寸等功能,能够比较直观、方便的搭接、验证、调试、改进、确定设计方案,较好地改善了在校学生对平面机构的学习和设计一般只停留在理论设计“纸上谈兵”的状况。 二、实验目的 掌握机构创新模型的使用方法及实验原理。 (1)训练学生的工程实践动手能力,培养学生创新意识及综合设计的能力。 (2)加深对平面机构的组成原理及其运动特性的理解和感性认识。 三、实验原理 任何平面机构均可以用零自由度的杆组依次连接到原动件和机架上去的方法来组成,这是机构的组成原理,也是本实验的基本原理。 杆组的概念、正确拆分杆组及拼装杆组。 1.杆组的概念 由于平面机构具有确定运动的条件是机构的原动件数目与机构的自由度数目相等,因此机构均由机架、原动件和自由度为零的从动件系统通过运动副联接而成。将从动件系统拆成若干个不可再分的自由度为零的运动链,称为基本杆组,简称杆组。 根据杆组的定义,组成平面机构杆级的条件是:F=3n—2P L-P H=0。其中构件数n,高副数P L和低副数P H都必须是整数。由此可以获得各种类型的杆组。 最简单的杆组为n=2,P L=3,称为II级组,由于杆组中转动副和移动副的配置不同,II 级杆组共有五种形式如图2-22所示。 III级杆组形式较多,其中n=4,P L=6,图2-23所示为机构创新模型已有的几种常见的III级杆组。 2.正确拆分杆组 正确拆分杆组的三个步骤: (1)先去掉机构中的局部自由度和虚约束,有时还要将高副加以低代。 (2)计算机构的自由度,确定原动件。 (3)从远离原动件的一端(即执行构件)先试拆分II级杆组,若拆不出II级组 时,再试拆III极杆组,即由最低级别杆组向高一级杆组依次拆分,最后剩下原动件和机架。正确拆组的判定标准是:拆去一个杆组或一系列杆组后,剩余的必须仍为一个完整的机构或若干个与机架相联的原动件,不许有不成组的零散构件或运动副存在,否则这个杆组拆得不对。每当拆出一个杆组后,再对剩余机构拆杆组,并按第(3)步骤进行,直到全部杆组拆完,只应剩下与机架相联的原动件为止。 如图2-24所示机构,先除去K处的局部自由度,高副低带,然后,按步骤(2)计算机构的自由度:F=1,并确定凸轮为原动件:最后根据步骤(3)的要领,先拆分出由构件4和5组成的II级杆组,再拆分出由构件6和7及构件3和2,构件8和10组成的三个II级

平面机构运动方案创新设计实验

平面机构运动方案创新设 计实验 The pony was revised in January 2021

实验四平面机构运动方案创新设计实验 一、实验目的 1.加深学生对机构组成原理的认识,进一步了解机构组成及其运动特性; 2.培养学生的工程实践动手能力; 3.培养学生创新意识及综合设计能力。 二、设备和工具 1.机构运动方案创新设计实验台; 2.工具箱一套; 3.自备三角板、圆规和草稿纸等文具。 三、实验前的准备工作 1.预习实验,掌握实验原理,初步了解机构创新模型; 2.选择设计题目,初步拟定机构系统运动方案。 四、实验原理 任何平面机构均可以用零自由度的杆组依次连接到原动件和机架上的方法来组成,这是机构的组成原理,也是本实验的基本原理。 1.杆组的概念 由于平面机构具有确定运动的条件是机构的原动件数目与机构的自由度相等,因此机构均由机架、原动件和自由度为零的从动件通过运动副联结而成。将从动件系统拆成若干个不可再分的自由度为零的运动链,称为基本杆组(简称杆组)。根据杆组的定义,组成平面机构杆组的条件是: F = 3n - 2P L - P H =0 (4-1)

式中: n 为杆组中的构件数;P L 为杆组中的低副数;P H 为杆组中的高副数。由于构件 数和运动副数目均应为整数,故当n 、P L 、P H 取不同数值时,可得各类基本杆组。 当P H =0时,杆组中的运动副全部为低副,称为低副杆组。由于有F = 3n - 2P L - P H =0,故 32L P n ,则n 应当是2的倍数,而P L 应当是3的倍数,即n :2、4、6……,P L =3、6、9……。当n=2,P L =3时,基本杆组称为II 级组。II 级组是应用最多的基本杆组,绝大多数 的机构均由II 级杆组组成,II 级杆组可以有下图所示的五种不同类型: 图4-1 平面低副Ⅱ级杆组 n=4,P L =6的杆组形式很多,如图6-2所示为常见的Ⅲ级杆组。 图4-2 平面低副Ⅲ级杆组 2、正确拆分杆组 从机构中拆出杆组具有三个步骤: 1) 先去掉机构中的局部自由度和虚约束; 2) 计算机构的自由度,确定原动件; 3) 从远离原动件的一端开始拆分杆组,每次拆分时,要求先试着拆分Ⅱ级组,没有Ⅱ组时,再拆分Ⅲ级组等高一级杆组,最后剩下原动件和机架。 拆分杆组是否正确的判定方法是:拆去一个杆组或一系列杆组后,剩余的必须为一个完整的机构或若干个与机架相联的原动件,而不能有不成组的零散构件或运动副存在,全部杆组拆完后,应当只剩下与机架相联的原动件。 如图4-3所示机构,可先除去K 处的局部自由度,然后,按步骤2)计算机构的自由度(F=1),并确定凸轮为原动件;最后根据步骤3),先拆分出构件4和5组成的Ⅱ级组,再拆分出构件6和7及构件3和2组成的两个Ⅱ级组以及由构件8组成的单构件高副杆组,最后剩下原动件1和机架9。 图4-3 杆组拆分

机构运动方案创新设计实验

机构运动方案创新设计 实验 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

机构运动方案创新设计实验 一、概述 机构运动方案创新设计是各类复杂机械设计中决定性的一步,机构的设计选型一般先通过作图和计算来进行,一般比较复杂的机构都有多个方案,需要制作模型来试验和验证,多次改进后才能得到最佳的方案和参数。本实验所用搭接试验台能够任意选择平面机构类型,组装调整机构尺寸等功能,能够比较直观、方便的搭接、验证、调试、改进、确定设计方案,较好地改善了在校学生对平面机构的学习和设计一般只停留在理论设计“纸上谈兵”的状况。 二、实验目的 掌握机构创新模型的使用方法及实验原理。 (1)训练学生的工程实践动手能力,培养学生创新意识及综合设计的能力。 (2)加深对平面机构的组成原理及其运动特性的理解和感性认识。 三、实验原理 任何平面机构均可以用零自由度的杆组依次连接到原动件和机架上去的方法来组成,这是机构的组成原理,也是本实验的基本原理。 杆组的概念、正确拆分杆组及拼装杆组。 1.杆组的概念 由于平面机构具有确定运动的条件是机构的原动件数目与机构的自由度数目相等,因此机构均由机架、原动件和自由度为零的从动件系统通过运动副联接而成。将从动件系统拆成若干个不可再分的自由度为零的运动链,称为基本杆组,简称杆组。 根据杆组的定义,组成平面机构杆级的条件是:F=3n—2P L-P H=0。其中构件数n,高副数P L和低副数P H都必须是整数。由此可以获得各种类型的杆组。 最简单的杆组为n=2,P L=3,称为II级组,由于杆组中转动副和移动副的配置不同,II级杆组共有五种形式如图2-22所示。 III级杆组形式较多,其中n=4,P L=6,图2-23所示为机构创新模型已有的几种常见的III级杆组。 2.正确拆分杆组 正确拆分杆组的三个步骤: (1)先去掉机构中的局部自由度和虚约束,有时还要将高副加以低代。 (2)计算机构的自由度,确定原动件。 (3)从远离原动件的一端(即执行构件)先试拆分II级杆组,若拆不出II级组 时,再试拆III极杆组,即由最低级别杆组向高一级杆组依次拆分,最后剩下原动件和机架。正确拆组的判定标准是:拆去一个杆组或一系列杆组后,剩余的必须仍为一个完整的机构或若干个与机架相联的原动件,不许有不成组的零散构件或运动副存在,否则这个杆组拆得不对。每当拆出一个杆

机械自锁机构创新设计完整

福州大学 至诚学院 科研实践报告 题目:机械自锁机构的设计 姓名: 学号: 年级: 学院: 专业: 指导教师: 成绩: 2011 年 12 月 14 日 摘要 自锁现象是力学中的特殊现象,在生活和工业生产当中应用广泛。了解自锁现象产生的机理和生活中常见自锁现象的实质,对与我们学习进步有很大的帮助。自锁现象是可以利用自锁原理可以设计一些机巧的机械,但是有利有弊:破坏了自锁条件即可解除不需要的自锁,而且可以利用自锁原理设计的机械能够解决很多实际问题。通过对力学自锁现象的研究和应用分析,我们可以深入的了解力学中的自锁现象,为自锁现象更为广泛的应用于实际打下理论基础。 关键词:自锁现象;自锁条件;自锁应用 引言

自锁力学是物理学的一个分支。自锁是如果作用于物体的主动力的合力Q的作用线在摩擦角之内,则无论这个力怎样大,总有一个全反力R与之平衡,物体保持静止;反之,如果主动力的合力Q的作用线在磨擦角之外,则无论这个力多么小,物体也不可能保持平衡。这种与力大小无关而与摩擦角有关的平衡条件称为自锁条件。物体在这种条件下的平衡现象称之自锁现象。 在如今的生活中,已有很多领域用到自锁机构,并且加以改进做出更适合的。像可以再零度以下使用的自行车自锁脚踏板、自锁螺母等。甚至在电气领域里也用到自锁现象的应用。 经过一个学期的学习实践,我对Pro/E的建模、装配以及运动仿真等模块有了一定程度的了解,同时对自锁现象原理有一定的了解,所以设计了一个自锁机构可用于电钻等各种有进给系统回路中,防止不小心碰触开关而存在的隐患。但还是存在很多不足,在外观上,造型过于粗糙和不完美,机构过于简单,功能还有些欠缺。这都是需要进一步的改进。 一、自锁机构科技立项与研究的目的、意义 机械自锁的意义自锁现象在机械工程中具有十分重要的意义,主要有如下两方面: 1)当设计机械时,为能实现预期的运动,必须避免该机械在所需的运动方向发生自锁; 2)有些机械的工作原理就是利用了自锁的特性。 自锁机构在生活中的运用: 1.螺母自锁: 螺母上部有两个狭槽,当螺母在螺栓上拧紧时,螺栓的螺纹将旋入螺母横断面的狭槽中,螺纹被螺母侧壁渐渐锁紧就达到了制锁的功能。 见图一

第一章 平面机构的运动简图及自由度习题

第一章平面机构的运动简图及自由度 一、判断题(认为正确的,在括号内画√,反之画×) 1.机构是由两个以上构件组成的。() 2.运动副的主要特征是两个构件以点、线、面的形式相接触。() 3.机构具有确定相对运动的条件是机构的自由度大于零。() 4.转动副限制了构件的转动自由度。() 5.固定构件(机架)是机构不可缺少的组成部分。() 6.4个构件在一处铰接,则构成4个转动副。() 7.机构的运动不确定,就是指机构不能具有相对运动。() 8.虚约束对机构的运动不起作用。() 二、选择题 1.为使机构运动简图能够完全反映机构的运动特性,则运动简图相对于与实际机构的()应相同。 A.构件数、运动副的类型及数目 B.构件的运动尺寸 C.机架和原动件 D. A 和 B 和 C 2.下面对机构虚约束的描述中,不正确的是()。 A.机构中对运动不起独立限制作用的重复约束称为虚约束,在计算机构自由度时应除去虚约束。 B.虚约束可提高构件的强度、刚度、平稳性和机构工作的可靠性等。 C.虚约束应满足某些特殊的凡何条件,否则虚约束会变成实约束而影响机构的正常运动。为此应规定相应的制造精度要求。虚约束还使机器的结构复杂,成本增加。 D.设计机器时,在满足使用要求的情况卜,含有的虚约束越多越好。 三、综合题 1.图2-1中构件1相对于构件2能沿切向At 移动,沿法向An向上移动和绕接触点A转动,所以构件1与2组成的运动副保留三个相对运动。 图b中构件1与2在A两处接触,所以构件1与2组成两个高副。 图2-1 图2-2 2.如图2-2所示的曲轴1与机座2,曲轴两端中心线不重合,加工误差为△,试问装配后两构件能否相对转动,并说明理由。 3.局部自由度不影响整个机构运动,虚约束不限制构件独立运动,为什么实际机构中还采用局部自由度、虚约束的结构? 4.吊扇的扇叶与吊架、书桌的桌身与抽斗,机车直线运动时的车轮与路轨,各组成哪一类运动副,请分别画出。 5.绘制2-3图示各机构的运动简图。

相关文档
最新文档