循环流化床锅炉脱硫计算

合集下载

130t循环流化床锅炉设计计算表

130t循环流化床锅炉设计计算表

饱和蒸汽焓
21
饱和水焓
22
给水温度
23
给水焓
24
最大连续蒸发量
25
锅炉排污水流量
26
锅炉机组有效利用热量
27
脱硫工况时当量燃料消耗量
28
脱硫工况时计算燃料消耗量
29
脱硫工况时燃料消耗量
30
计算石灰石消耗量
31
石灰石消耗量
32
计算燃料当量消耗量
3.3 炉膛膜式水冷壁传热系数计算
trk θpy tlk
pg pgs ηpw Dpw
3
石灰石水分
4
石灰石灰分
2、燃烧脱硫计算
2.1 无脱硫工况时的燃烧计算
序号
名称
1
理论空气量
2
三原子气体体积
3
理论氮气体积
4
理论水蒸气体积
5 2.3 脱硫计算 序号
飞灰份额 名称
1
SO2原始排放浓度
2
SO2最高允许排放浓度
3
计算脱硫效率
4
燃煤自脱硫能力系数
5
石灰石脱硫能力系数
6
钙硫摩尔比
7
石灰石中CaCO3含量
ACaO ACaSO4
ADar ad aDd af aDf ηf an a μDSO2 ηSO2
η
符号 DMCR pgr t''gr Dp Dd tgs
7
热空气温度
8
排烟温度
9பைடு நூலகம்
冷空气温度
10
锅筒蒸汽压力
11
给水压力
12
锅炉排污率
13
锅炉排污流量
14
燃烧方式

循环流化床锅炉烟气脱硫技术

循环流化床锅炉烟气脱硫技术

ABB-NID1、ABB锅炉烟气脱硫技术ABB锅炉烟气脱硫技术简称NID,它是由旋转喷雾半干法脱硫技术基础上发展而来的。

NID的原理是:以一定细度的石灰粉(CaO)经消化增湿处理后与大倍率的循环灰混合直接喷入反应器,在反应器中与烟气二氧化硫反应生成固态的亚硫酸钙及少量硫酸钙,再经除尘器除尘,达到烟气脱硫目的。

其化学反应式如下:CaO+H2O=Ca(OH)2Ca(OH)2+SO2=CaSO3·1/2H2O+1/2H2ONID技术将反应产物,石灰和水在容器中混合在加入吸收塔。

这种工艺只有很有限的商业运行经验,并且仅运行在100MW及以下机组,属于发展中的,不完善的技术。

和CFB技术相比,其主要缺点如下:由于黏性产物的存在,混合容器中频繁的有灰沉积由于吸收塔内颗粒的表面积小,造成脱硫效率低由于吸收塔中较高的固体和气体流速,使气体固体流速差减小,而且固体和气体在吸收塔中的滞留时间短,导致在一定的脱硫效率时,钙硫比较高,总的脱硫效果差。

需要配布袋除尘器,使其有一个”后续反应”才能达到一个稍高的脱硫效率,配电除尘器则没有”后续反应”。

对于大型机组,由于烟气量较大,通常需要多个反应器,反应器的增多不便于负荷调节,调节时除尘器入口烟气压力偏差较大。

脱硫剂、工艺水以及循环灰同时进入增湿消化器,容易产生粘接现象,负荷调节比较滞后。

Wulff-RCFBWulFF的CFB技术来源于80年代后期转到Wulff 去的鲁奇公司的雇员。

而LEE 近年来开发的新技术,Wulff公司没有,因此其技术有许多弱点:电除尘器的水平进口,直接积灰和气流与灰的分布不均。

没有要求再循环系统,对锅炉负荷的变化差,并直接导致在满负荷时烟气压头损失大。

消石灰和再循环产物的加入点靠近喷水点,使脱硫产物的黏性增加。

喷嘴上部引入再循环灰将对流化动态有负面影响,导致流化床中灰分布不均,在低负荷时,流化速度降低,循环灰容易从流化床掉入进口烟道中,严重时,大量的循环灰可将喷嘴堵塞。

循环流化床半干法烟气脱硫设计计算

循环流化床半干法烟气脱硫设计计算

A Vg,FGDin,r
m2 m3/h
L1*L2 (273.15+T1)*Vg,FGDin/273.1 5
24 1394757
5
现有除尘器入口管道烟速
wESP
m/s Vg,FGDin,r/(3600*A)
16.14302
6 烟道设计流速
w
m/s <15m/s
14.5
3 3.1 序号 1 2 3 4
脱硫系统 脱硫塔设计参数
80 0 99.98 0 0 0.05 0 75 60 20 0 5 5 0 1.3
16 脱硫系统入口烟气压力
P
kPa 给定
98.3
2 烟气系统
序号
名称
符号 单位 计算公式
数值
1 现有除6
2 现有除尘器入口烟道边长2 L2
m 根据现场
4
3 4
现有除尘器入口烟道截面 积现有除尘器入口实际烟气 量
ηSO2 ηd0 ηsep ηd2 Δαd0 Δαd1 Δαd2 T2 TH2O Tslime nl0 nl nl1 nl2 Ca/S
% 给定 % 取用 % 给定 % 给定
选自除尘器参数资料 选自除尘器参数资料 选自除尘器参数资料 ℃ 给定 ℃ 给定 ℃ 给定 % 给定 % 给定 % 给定 % 给定 mol/mol 给定
脱硫系统 脱硫塔与
1 脱硫系统总性能参数
序号
名称
符号 单位 计算公式
数值
1 系统总脱硫率 2 预除尘效率 3 一级除尘器分离效率 4 二级除尘效率 5 预除尘器漏风系数 6 一级除尘器漏风系数 7 二级除尘器漏风系数 8 脱硫塔出口烟温 9 脱硫塔喷水温度 10 消石灰粉温度 11 预除尘器热损失系数 12 脱硫塔热损失系数 13 一级除尘器热损失系数 14 二级除尘器热损失系数 15 脱硫系统钙硫摩尔比

循环流化床半干法烟气脱硫设计计算

循环流化床半干法烟气脱硫设计计算

%
6 收到基灰分
Aar
%
7 收到基水分
War
%
8 收到基低位发热量
Qnet.ar
kJ/kg
3 燃烧产物容积及焓计算
3.1 理论空气量及理论烟气量容积计算
给定 给定 给定
给定 给定 给定 给定 给定 给定 给定 给定
计算公式
21.91
95 145 1.5 1.5 1.5 1.5 1.55
预除尘器入口 不考虑脱硫塔漏风
循环流化床半干法烟气脱硫系统烟气量及成份特性计算
1 锅炉参数
序号 名称 1 实际燃煤量
符号
单位 计算公式
B
T/h 给定
2 固体不完全燃烧损失份额
q4
给定
数值 22.87
4.19
备注
3 计算燃料消耗量
Bcal
T/h
4 锅炉飞灰份额
αf,a
5 脱硫系统入口烟温
T0

6 脱硫系统入口过量空气系数 α0′
7 脱硫塔入口过量空气系数
7 未反应的CaO质量
符号
ns n ns,g M CaO
M Ca (OH )2
GCaO GCaO,l
单位
kmol/h
计算公式 根据《锅炉原理》应为0.7~0.9
kmol/h
kg/kmol
kg/kmol T/h
T/h
8 未反应的Ca(OH)2质量
9
CaSO3

1 2
H 2 O分子量
Nm3/h
21 二级除尘器出口烟气容积
Vg,d2out
Nm3/h
红色区域为组分的份额 绿色区域为需要输入的初始参数
362.4

循环流化床半干法脱硫装置计算书

循环流化床半干法脱硫装置计算书

一、喷水量的计算(热平衡法)参数查表: 144℃: ρ(烟气)=0.86112Kg/m 3; C p(烟气)=0.25808Kcal/Kg ·℃ 78℃: ρ(烟气)=1.0259Kg/m 3; C p(烟气)=0.25368Kcal/Kg ·℃ 144℃:C 灰=0.19696Kcal/Kg ·℃78℃: C 灰=0.19102Kcal/Kg ·℃;C 灰泥,石膏=0.2Kcal/Kg ·℃C Ca(OH)2=0.246Kcal/Kg ·℃1.带入热量: Q 烟气, Q 灰,Q Ca(OH)2,Q 水M 烟气=ρ烟气·V 烟=510453.286112.0⨯⨯510112.2⨯=(Kg/hr )Q 烟气=C P ·M ·t 5510489.7814410112.225808.0⨯=⨯⨯⨯=(Kcal/hr)M 灰253105694.4810453.2108.19⨯=⨯⨯⨯=-(Kg/hr )Q 灰=C 灰•M 灰•t =52103775.1144105694.4819696.0⨯=⨯⨯⨯(Kcal /hr) Q Ca(OH)2=C Ca(OH)2•M •20=20246.02)(⨯⨯OH Ca M当 Ca/S=1.3, SO 2浓度为3500mg/m 3时Kg M OH Ca 244.151810743.185.06410453.21035003532)(=⨯⨯⨯⨯⨯⨯⨯=-- ∴Q Ca(OH)2=76.746920244.1518246.0=⨯⨯(Kcal/hr)Q 水=cmt=χχ20201=⨯⨯(Kcal/hr) 其中χ为喷水量2.带出热量:Q 灰3,Q 烟气,Q 灰2,Q 蒸汽,Q 散热M 灰3=M Ca(OH)2=1518.244Kg ; Q 灰3=Q Ca(OH)2=7469.76(Kcal/hr)Q 烟气=cmt=551079.417810112.225368.0⨯=⨯⨯⨯(Kcal/hr);Q 灰2=264.7576810785694.482.02=⨯⨯⨯(Kcal/hr)Q 蒸汽=630.5χ(Kcal/Kg )热损失以3%计: Q 散=(Q 烟气+Q 灰)03.0⨯03.0)103775.110489.78(55⨯⨯+⨯=3.系统热平衡计算: Q in =Q out ,即:03.0)103775.110489.78(5.630264.757681079.4176.74692076.7469103775.110489.7855555⨯⨯+⨯+++⨯+=++⨯+⨯χχ∴χ=5.72(t/hr)二、脱硫主塔结构尺寸的计算1.出口计算主要计算脱硫塔出口高度,出口顶部颗粒速度为零。

毕业设计-130th循环流化床燃烧锅炉设计及炉内初步计算

毕业设计-130th循环流化床燃烧锅炉设计及炉内初步计算

本科毕业设计(论文)题目130T/H循环流化床燃烧锅炉设计及炉内初步计算院(系部)机械与动力工程专业名称热能与动力工程年级班级热能10-1班学生姓名指导教师年月日摘要随着人们对能源需求量的日益扩大以及对环境质量要求的不断提高,作为近年来国际上发展起来的新一代高效、低污染的清洁燃烧锅炉,循环流化床锅炉得到了迅速地推广,是一项具有重要实际意义的研究课题。

本次设计题目为130T/H循环流化床燃烧锅炉。

本设计进行了循环流化床锅炉燃烧脱硫计算、锅炉热平衡及燃料和石灰石消耗量、炉膛模式水冷壁传热系数计算、炉膛汽冷屏传热系数计算、炉膛结构计算、炉膛热力计算以及旋风分离器烟气阻力计算、炉膛风室压力计算、回料器设计计算、对流受热面设计计算(高温过热器,低温过热器,省煤器,空气预热器的热力计算)、锅炉热平衡计算误差校核。

关键词:循环流化床;锅炉;过热器;脱硫AbstractWith people of the growing demand for energy and environmental quality requirements, as a steady improvement in recent years the international community develop new generation of highly efficient, low pollution in the boiler, the vessels of a boiler has been rapidly spread,is a major significance of the research topics.This design topic is 130T/H steam separation circulation fluid bed burning boiler. The design of the case of the burning vessels, the balance of heat and fuel and limestone mode of the cold water, the heat transfer of the calculating, the heat transfer of the calculating, structural calculations, the cyclone heat and the drag the smoke the chamber pressure to calculate and design calculations, convection design calculations (high fever, at a heat exchanger, save coal, the warm air of heat and hot) the calculations. the nuclear balance.Keywords: circulating fluidized; bed boiler; superheater; desulfurization目录前言 (1)1 燃料和脱硫剂 (2)1.1燃料 (2)1.2脱硫剂 (3)2 锅炉性能预计 (5)2.1SO排放浓度 (6)22.2碳的燃尽度 (7)2.3灰平衡与灰循环倍率 (7)3 脱硫工况时物质平衡与热平衡 (8)3.1燃烧和脱硫的化学反应式 (8)3.2当量灰分 (12)3.3灰比换算 (13)3.4当量理论空气量 (17)3.5燃烧和脱硫产生的烟气量 (17)3.6脱硫对热效率的影响 (20)4 燃烧产物热平衡方程式 (24)4.1灰循环倍率 (24)4.2炉膛有效放热量 (24)4.3烟气的焓增 (25)4.4分离器热平衡 (25)4.5炉膛及EHE的传热系数 (26)5 循环流化床锅炉机组热力计算 (28)5.1热平衡及燃料和脱硫剂消耗计算 (28)5.2炉膛热力计算 (30)总结 (48)致谢 (49)参考文献 (50)河南理工大学本科毕业设计前言我国是世界上最大的产煤国家。

循环流化床锅炉低氮改造技术介绍

循环流化床锅炉低氮改造技术介绍

循环流化床锅炉低氮改造方案1目录1.NOx生成机理及影响因素2.脱硝改造方案33.杭锅烟气清洁排放技术2CFB 锅炉NOx 来源——燃烧温度影响Nox 生成机理及影响因素¾燃烧最高温度Tmax <1500K(1267℃ ),燃料型NOx为主¾燃烧最高温度Tmax >1900K(1627℃ ),燃料型NOx所占比例减少¾燃烧最高温度Tmax >2200K(1927℃ ),热力型NOx为主CFB锅炉炉膛温度在850~950℃,热力型NOx占总排放10%以下,以燃料型NOx为主。

NOx浓度理论计算公式——泽利多维奇公式C NOx =K(C N2C O2)1/2exp(-21500/RT T ) g/m 3;3NOx 生成与燃烧温度关系——摘自《CFB 锅炉NOx 的生成机理与计算》CFB锅炉NOx来源——物料粒径影响Nox生成机理及影响因素¾细颗粒可加强炉膛传热,使得炉膛内燃烧热量分配更趋合理,保证炉膛温度场均匀,避免密相区出现局部超温。

¾物料越细,燃烧速率提高,O2加速消耗,利于CO生成,炭粒表面还原气氛增强,抑制NOx生成。

制成¾细颗粒反应表面积增大,焦炭对NOx还原能力增强。

¾细颗粒着火提前,相应延长NOx分解还原时间。

物料粒径对NOx生成的影响——摘自《不同煤种高温燃烧时NOx和SO2生成影响因素的实验》4Nox生成机理及影响因素CFB锅炉NOx来源——过量空气系数影响过量空气系数增加,NOx生成增加¾贫氧燃烧条件下,燃烧中间产物易向N2转化,同时未燃尽C与还原气体抑制NOx生成¾富氧燃烧条件下,燃烧中间产物易向NOx转化转化。

煤过量空气系数与NO浓度关系——《不同种类煤粉燃烧NOx排放特性试验研究》5¾减小次风率使密相区为还原性气氛抑制NO 生成密相区流化风速CFB 锅炉NOx 来源——一、二次风率影响Nox 生成机理及影响因素减小一次风率,使密相区为还原性气氛,抑制NOx生成;密相区流化风速减小,气体及煤颗粒停留时间增加,抑制NOx生成.提高二次风率,增强二次风穿透能力,加强稀相区的气固混合降低飞¾提高二次风率,增强二次风穿透能力,加强稀相区的气固混合, 降低飞灰含碳量。

220t h 循环流化床锅炉说明书

220t h 循环流化床锅炉说明书

220t/h循环流化床锅炉说明书目录一、锅炉基本特性 (3)1、主要工作参数 (3)2、设计燃料 (3)3、安装和运行条件 (4)4、锅炉基本尺寸 (4)二、锅炉结构简述 (5)1. 炉膛水冷壁 (5)2. 高效蜗壳式汽冷旋风分离器 (7)3. 锅筒及锅筒内部设备 (7)4. 燃烧设备 (8)5. 过热器系统及其调温装置 (11)6. 省煤器 (11)7. 空气预热器 (12)8. 锅炉范围内管道 (12)9. 吹灰装置 (12)10. 密封装置 (12)11. 炉墙 (13)12. 构架 (13)13.膨胀系统 (14)14.锅炉水压试验 (14)15.锅炉过程监控 (14)三、性能说明 (16)一、锅炉基本特性1、主要工作参数额定蒸发量 220 t/h额定蒸汽温度 540 ℃额定蒸汽压力(表压) 9.8 MPa给水温度 215 ℃锅炉排烟温度 ~140 ℃排污率≤2 %空气预热器进风温度 20 ℃锅炉计算热效率 90.5 %锅炉保证热效率 90%燃料消耗量 41.7 t/h 石灰石消耗量 585 kg/h 一次热风温度 200 ℃二次热风温度210 ℃一、二次风量比 55:45循环倍率 25~30脱硫效率(钙硫摩尔比为2.5时)≥ 70 % 2、设计燃料(1)煤种及煤质煤的入炉粒度要求:粒度范围0~10mm,50%切割粒径d50=2mm,详见附图。

(2)点火及助燃用油锅炉点火用油:甲醇和甲醇油(3)石灰石特性颗粒度0-1mm.d50=0.25mm.3、安装和运行条件地震烈度里氏6度,按7度设防。

锅炉给水满足GB/T12145《火力发电机组及蒸汽动力设备水汽质量》标准。

4、锅炉基本尺寸炉膛宽度(两侧水冷壁中心线间距离) 8770mm炉膛深度(前后水冷壁中心线间距离) 6610mm炉膛顶棚管标高 37600mm锅筒中心线标高 41000mm锅炉最高点标高 45000mm运转层标高 8000mm操作层标高 5400mm锅炉宽度(两侧柱间中心距离) 23000mm锅炉深度(柱Z1与柱Z4之间距离) 27600mm二、锅炉结构简述锅炉为高温高压,单锅筒横置式,单炉膛,自然循环,全悬吊结构,全钢架π型布置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

mg/Nm 1180 3kg/h 217
计算 计算
烟气脱硫计 石灰石粉理论消耗量 kg/h 340
计算

石灰石粉实际消耗量 kg/h 494
计算
CaSO4生成量
kg/h 462
计算
炉内脱硫70%
给定
FGD入口SO2含量
mg/Nm 3539
FGD装置SO2反应量 3kg/h 742
计算 计算
石灰石粉理论消耗量 kg/h 1160
计算
石灰石粉实际消耗量 kg/h 1688
计算
CaSO4生成量
kg/h 1577
计算
备注:本表数据来自遵义公司锅炉数据,有些数据可能考虑不周不完全正确,只作交流参考。ytg
计算
空预器、除尘器漏风系数
0.05
给定
氧化风机风量
Nm3/h
FGD出口SO2排放浓度 mg/Nm
3200
氧化风机技术协议,两台 运行风量
给定
200
给定
实际钙硫比
3
1.31 验证数据
给定
FGD入口烟气量
Nm3/h 222502
计算
FGD入口粉尘浓度 g/Nm3 22
计算
炉内脱硫90%
给定
FGD入口SO2含量 FGD装置SO2反应量
CaCO3+SO2+1/2O2=CaSO4+CO 2(合并反应式)
计算
计算
石灰石粉实际需要量 kg/h 8202
计算
灰渣生成量
kg/h 20234
排灰与下渣比例按6:4 计算
其中:锅炉出口飞灰量 kg/h 12309
计算
除尘器输灰量 kg/h 12304
计算
冷渣机排渣量 kg/h 7924
计算
锅炉出口粉尘浓度 g/Nm3 58.1
循环流化床锅炉炉内脱硫及烟气脱硫计算
类别
名称
单位 数据
说明
煤用量
kg/h
33366 锅炉热力数据表
给定
煤硫含量Sar
%
4.14 锅炉热力数据表
给定
煤灰分Aar
%
36.09 锅炉热力数据表
给定
实际钙硫比
2 锅炉热力数据表
给定
CaCO3含量Leabharlann %90给定
飞灰可燃物
%
10
给定
炉渣可燃物
%
5
给定
炉内脱硫率
%
90 锅炉热力数据表
给定
除尘器效率
%
99.96 除尘器技术协议
给定
锅炉出口烟气量 炉内计算 锅炉出口SO2浓度
Nm3/h 211907 mg/Nm3 1239
计算
忽略SO3,炉内脱硫率90% 计算
炉内SO2生成量
kg/h 2625
S+O2=SO2
计算
石灰石粉理论消耗量 kg/h 3691
CaSO4生成量
kg/h 5019
相关文档
最新文档