如何防止硫化亚铁自燃
1#催化裂化装置防止硫化亚铁自燃的措施

1#催化装臵防止硫化亚铁自燃的措施一、硫化亚铁的产生原因及自燃机理1、硫化亚铁的产生原因:硫化亚铁是深棕色或黑色固体,难溶于水,密度 4.74g/cm3,熔点1193℃。
油品中的硫大致分成活性硫和非活性硫两大类,活性硫包括单质活性硫(S)、硫化氢(H2S)、硫醇(RSH)。
其特点是可以和金属直接反应成金属硫化物。
在200℃以上,干硫化氢可和铁发生直接反应生成FeS。
360~390℃之间生成率最大,至450℃左右减缓而变得不明显。
在350~400℃下,单质硫很容易与铁直接化合生成FeS。
2、硫化亚铁自燃的机理:硫化亚铁及铁的其它硫化物在空气中受热或光照时,会发生如下反应:FeS+3/2O2=FeO+SO2+49KJ2FeO+1/2O2=Fe2O3+271KJFeS2+O2=FeS+SO2+222KJFe2S3+3/2O2=Fe2O3+3S+586KJ从硫化亚铁自燃的现象看,硫化亚铁自燃的过程中如没有一定的可燃物支持,将产生白色的SO2气体,常被误认为水蒸汽,伴有刺激性气味;同时放出大量的热。
当周围有其它可燃物(如油品)存在时,会冒出浓烟,并引发火灾和爆炸。
3、预防硫化亚铁自燃的要点硫化亚铁的存在、与空气中的氧接触、一定的温度,是硫化亚铁在设备检修中发生自燃的三个要素。
在设备检修中为了预防硫化亚铁自燃事故发生,至少要消除其中之一要素。
二、1#催化裂化装臵内产生硫化亚铁的部位1、反分岗位:分馏塔上部、粗汽油罐、分馏后冷冷却器(7台)、顶油气空气冷却器(6台)、顶油气与低温热水换热器(8台)、含硫污水罐2、稳定双脱岗位吸收塔、解吸塔、稳定塔、再吸收塔、稳定塔顶回流罐、脱吸塔底重沸器(1台)、稳定塔底重沸器(1台)、脱吸塔进料换热器、稳定塔进料换热器(1台)、吸收塔一中冷却器(2台)、吸收塔二中冷却器(2台)、稳定塔顶冷却器(4台)、补充吸收剂冷却器(2台)。
脱硫系统各设备液态烃预碱洗塔、汽油预碱洗分离罐、汽油脱硫醇缓冲罐、汽油无碱脱臭反应塔、汽油砂滤塔。
石化装置停工大检修防硫化亚铁自燃的对策和措施

石化装置停工大检修防硫化亚铁自燃的对策和措施
1、硫化亚铁性质。
干燥的硫化亚铁在空气中的自燃温度一般为300-350℃。
当硫化亚铁含水量在20%以下时,会导致硫化亚铁的自热,从而使硫化亚铁发生自燃。
但当硫化亚铁含水60%以上时,则可以有效抑制硫化亚铁自热和自燃现象的发生。
2、各单位在装置停工前,应根据装置特点,制定落实防止硫化亚铁自燃措施,对存在硫化亚铁自燃风险的设备、管线,要进行危害识别,并制定钝化清洗方案,通过采取化学处理的方法,消除硫化亚铁自燃的风险。
对未进行钝化清洗的塔、容器、换热器等设备,要采取有效的防范措施,防止硫化亚铁自燃。
3、含有硫化亚铁的设备、管线,在温度降至常温后方可打开,设备在拆开接触空气后,应及时安排人员用水冲洗和清洗,并在现场配置消防水带,一旦发现硫化亚铁自燃现象应立即采取喷淋等应急措施,防止硫化亚铁自燃烧坏设备和管线。
4、设备、容器未经有效彻底置换清扫前,其附属的热电偶不得提前拆除。
进入受限空间作业期间,操作人员应随时在DCS显示屏上关注设备容器内温度的变化,监控硫化亚铁自燃情况。
一旦出现异常,作业人员必须立即撤出,停止作业。
5、清扫出来的硫化亚铁应用水浇湿,进行妥善处理并及时运走,防止硫化亚铁氧化自燃引发火灾。
五、。
防硫化亚铁自然的措施

防硫化亚铁自然的措施一、硫化亚铁产生的原因当有水存在时,H2S、甲硫醇、乙硫醇、COS等物质,对铁质管线(设备)具有明显的腐蚀作用,反应过程为:H2S ——H+ + HS-HS-—— H+ + S2-这是一种电化学腐蚀过程,阳极反应为:Fe→Fe2+ + 2e阴极反应为:2H+ + 2e→H2 (渗透钢中) Fe2+与S2-及HS-反应: Fe2+ + S2-——FeS ↓Fe2+ + HS- ——FeS↓+H+生成的FeS结构比较疏松,均匀地附着在设备及管道内壁。
通常,FeS 的自燃发生在设备和管线停用后的检查和维修期间。
在设备停用后进行维修之前,这种自燃的FeS 是比较稳定的,一旦它与空气接触就迅速引发如下氧化放热过程:4FeS + 3O2 = 2Fe2O3 + 4S +热4FeS + 7O2 = 2Fe2O3 + 4SO2 +热如果没有可燃物支持,反应放出的热量是可以迅速扩散的,期间生成的白色SO2气体通常被误认为是水蒸气。
由于腐蚀而产生的FeS 通常在塔盘等内构件上,如果在开塔或开罐之前,这些易燃的FeS 没有妥善处理,就很容易引发FeS自燃。
在吹扫过程中,如果不及时清除设备内不安定的可燃气、油等物质,就会因FeS 的自燃而点燃,引发火灾和爆炸事故。
二、防范硫化亚铁自然措施1、管线(设备)材质升级联合装置各系统中,工艺介质硫化氢等硫化物浓度较高部分,工艺管线(设备)材质应采用抗硫材质,如采用不锈钢材质、抗硫等级较高的碳钢等,减少硫化物对管线(设备)的腐蚀。
硫磺回收单元中的硫封看窗材质为普通碳钢,该部位易产生并聚集硫化亚铁,在生产过程中,需经常开关看窗检查液硫的流动情况,由于密封性差、与空气接触等,极易放生硫化亚铁自然,目前,部分装置硫封改为不锈钢材质,提高抗硫等级。
2、检修中防范硫化亚铁自然措施(1)硫化亚铁钝化。
装置检修过程中,打开设备检维修时,设备内部硫化亚铁与空气中的氧接触发生强氧化还原反应并放出大量的热,热量积累后引发自燃,造成火灾和爆炸事故,因此,装置检修前提准备工作中,需进行硫化亚铁的钝化工作。
检修过程中硫化亚铁自燃事故及对策

五、全面落实冬季安全生产的工作
5.1.3 加强日常操作管理 加强有关岗位的操作管理,防止因操作不当造成 硫化亚铁的不断生成。 5.2采用化学处理方法消除硫化亚铁。 对于像减压塔填料,酸性水汽提塔板极易产生硫 化亚铁部位,可采用化学方法处理。 酸洗:可用稀盐酸清洗来消除硫化亚铁存在,但 会释放出硫化氢气体,需加额外硫化氢抑制剂,以转 化并消除硫化氢气体。 氧化处理:可用氧化剂高锰酸钾氧化硫化物,具 有使用安全,容易实施的优点。
四、全面落实生产受控的制度
学腐蚀的进行而当有Cl-存在即使温度较低时也会发 生如下反应: Fe+2HCl→FeCl2+H2↑ FeCl2+H2S→FeS↓+2HCl Fe+H2S→FeS↓+H2↑ FeS+2HCl→FeCl2+H2S 对于常压塔顶冷凝系统,即塔顶、油气挥发线、水冷 器及回流罐等部位,易发生低温H2H-HCl-H2O腐蚀。 4案例分析 案例1事故分析: ○1由于长时间停电使风机停转,造成其焚烧炉熄火, 而H2S浓度较高的酸性气通过烟囱排放;由于炉
的水洗降温,能冷却的冷却降温,不能冷却和水洗的 得准备好消防水,拆开后立即打水降温。另在通风时, 能水洗的水不能停,泵不能断电,以防外一。清除来 的硫化亚铁粉末趁湿装袋深埋地下。 硫化亚铁能发生自燃还是接触了空气的缘故,温度高 时,很容易发生,温度低时,不太容易发生但危险性 更高,谁知道什么时候着啊,因此出现过很多大大小 小的问题。我们最常用的方法就是喷水保湿,隔绝空 气降温,这比较麻烦;现在,在某些装置和设备采取 钝化技术,效果很好,价格不低;还有些设备是采用 氮气保护,象加氢卸剂肯定是通氮气微正压保护,卸 完剂立即进行清扫和中和清洗、冲洗等。
案例2:2001年5月2日,某石化厂催化车间进行 检修期间,分馏系统吹扫完毕,设备打开放空。第 二天下午2时,发现分馏塔顶油气分离器人孔冒出浓 烟,紧接着发生闪爆事故,并伴有刺激性气味放出, 判断是二氧化硫气体,车间人员立即向此罐内打水 冷却,制止了事态的发展,未引起大的损失。
利用化学清洗剂FZC-1防止硫化亚铁自燃

利用化学清洗剂FZC-1防止硫化亚铁自燃
硫化亚铁是一种常见的金属化合物,常用于制备电线电缆和汽
车轮胎中的胶料,具有较好的硬度和耐磨性。
但是,硫化亚铁在空
气中易发生自燃,会造成严重的火灾危害。
因此,如何有效防止硫
化亚铁自燃,成为了一个重要的问题。
化学清洗剂FZC-1是一种专门用于防止硫化亚铁自燃的化学品,其主要成分是苯酚、甲醛、氢氧化钠等化学物质。
FZC-1能够有效
地降低硫化亚铁的自燃温度,增加其水分子吸附作用,防止其与空
气中的氧气反应产生自燃反应,从而实现防止硫化亚铁自燃的效果。
FZC-1的使用方法相对简单,具体如下:
第一步:清洗硫化亚铁表面
首先,需要将硫化亚铁表面的污物和脏物彻底清洗干净,确保FZC-1能够充分接触硫化亚铁表面。
第二步:喷洒FZC-1
将FZC-1喷洒在硫化亚铁表面,均匀覆盖整个硫化亚铁表面。
注意,喷洒时需要保持一定的距离,避免喷洒太近引起喷雾。
第三步:晾晒干燥
等待FZC-1自然晾干,不需要进行额外的处理。
需要注意的是,FZC-1对人体和环境均有一定的危害性。
使用
过程中要注意通风,避免吸入气味。
同时,要避免将FZC-1溅到皮
肤上,如有不慎,应立即用清水冲洗干净。
化学清洗剂FZC-1是一种有效的防止硫化亚铁自燃的化学品,
其使用方法简单,但使用时要注意安全。
在生产和使用硫化亚铁时,可以采取这种化学清洗剂来防止自燃事故的发生,保障人身安全和
财产安全。
石油罐硫化亚铁自燃预防措施

石油罐硫化亚铁自燃预防措施石油罐硫化亚铁自燃预防措施我国大量进口中东地区的高含硫原油,储存这种原油使得储罐的腐蚀普遍严重,引发了多起自燃爆炸事故。
例如1998年,金陵石化公司某油品分厂成品车间619#粗汽油储罐,因腐蚀产生硫化亚铁而引起罐顶出现火苗,酿成火灾[1]。
2000年5月16日,天津石化炼油厂818#球罐没有吹扫置换,即拆开人孔,硫化亚铁自燃,发生火灾[2]。
1 硫化亚铁自燃机理油罐设备长期处于含硫工作环境,介质中的硫特别是硫化氢与设备材质发生化学反应,在设备表面生成硫化亚铁(该硫化亚铁一般是指FeS、FeS2、Fe3S4等几种化学物质的混合物),内防腐涂层被硫化成胶质膜,由于胶质膜对储罐的保护,使硫化亚铁氧化时,氧化热不易及时释放,积聚起来。
在罐顶通风口附近,硫化亚铁与空气接触,迅速氧化,热量不易积聚。
而在油罐下部,越靠近浮盘的气相空间,氧含量越低,部分硫化亚铁被不完全氧化,生成单晶硫,这种单晶硫呈黄色颗粒状,其燃点较低,掺杂在硫铁化物中,为硫铁化物的自燃提供了充分的燃烧基础。
当油罐处于付油状态时,大量空气被吸入并充满油罐的气相空间,原先浸没在浮盘下和隐藏于防腐膜内的硫铁化物逐渐被暴露出来。
并在胶质膜薄弱部位首先发生氧化,当散热速度不足以使其内部因放热反应而产生的热量及时散发出来时,热量不断在堆积层内部积聚起来,使堆积层内部温度升高。
由于部分硫化亚铁的不完全氧化生成的单晶硫掺杂在硫化亚铁堆积层中,温度升至100℃以上时,在堆积层内部少量的单质硫开始熔化。
温度继续安全技术及工程专业在读硕士上升,促进了硫化亚铁的氧化,释放出更多的热量,反应释放的热量聚集起来会加速反应速率,而反应速率加快,又会使单位时间释放出更多的热量。
热量急剧增大,使油品及硫铁化物的温度迅速上升,引起自燃。
2 硫化亚铁自燃事故的预防措施基于对已发生事故的调查分析及硫化亚铁自燃机理的研究现状,预防措施主要可分为以下方面:2.1严格控制进罐油品的硫含量,从源头上降低事故隐患油品脱硫的方法很多,加氢脱硫是最常见的方法,此外还有氧化脱硫、生物脱硫等非加氢脱硫方法。
预防硫化亚铁自然的防护知识

预防硫化亚铁自燃的防护知识1 硫化亚铁产生的原因、自燃的机理和影响因素1.1硫化亚铁产生的原因1.1.1电化学腐蚀反应生成硫化亚铁,均匀地附着在设备及管道内壁。
1.1.2 大气腐蚀反应生成硫化亚铁装置由于长期停工,设备内构件长时间暴露在空气中,会造成大气腐蚀,而生成铁锈。
铁锈由于不易彻底清除,在生产过程中就会与硫化氢作用生成硫化亚铁。
此反应较易进行,由于长期停工,防腐不善的装置更具有生成硫化亚铁的趋势。
1.2 硫化亚铁自燃的机理及现象1.2.1 硫化亚铁自燃的机理硫化亚铁及铁的其它硫化物在空气中受热或光照时,会发生如下反应:FeS+3/2O2=FeO+SO2+49KJ2FeO+1/2O2= Fe2O3+271KJFeS2+O2=FeS+SO2+222KJFe2S3+3/2O2= Fe2O3+3S+586KJ1.2.2 硫化亚铁自燃的现象硫化亚铁自燃的过程中如没有一定的可燃物支持,将产生白色的SO2气体,常被误认为水蒸汽,伴有刺激性气味,同时放出大量的热。
当周围有其它可燃物(如油品)存在时,会冒出浓烟,并引发火灾和爆炸。
1.3 影响硫化亚铁生成速度的因素从硫化亚铁的生成机理可知,在日常生产中,硫化亚铁的生成过程就是铁在活性硫化物作用下而进行的电化学腐蚀反应过程。
因此,控制电化学腐蚀反应是限制硫化亚铁生成的关键手段。
只要我们找出生产装置易发生硫腐蚀的部位,根据各部位特点采取有效措施,就可减少硫化亚铁的生成量,进而从根本上避免硫化亚铁自燃事故的发生。
油品的含硫量、温度、水及Cl-的存在等因素是影响此电化学腐蚀反应进行速度的重要因素。
1.3.1 原油加工过程中的硫分布规律只有在有硫存在的情况下,才会发生硫的化学腐蚀,所以含硫量高的油品所处的部位是最容易发生腐蚀的。
因此,分析原油在加工过程硫的分布状况,对于控制硫化亚铁的生成将具有指导意义。
原油经常压蒸馏后,约85%的硫都集中在350℃以上的馏分,即常压渣油中,因此常压渣油流经的设备受硫腐蚀的倾向较大;在实际生产中,减压塔塔内构件及减压单元换热器是硫化亚铁最易生成的部位。
检修压力容器硫化亚铁自燃的预防

硫化亚铁自燃通常发生在潮湿、 缺氧的环境下,当硫化亚铁暴露 在空气中并接触到水时,会发生 化学反应。
自燃原因分析
01
02
03
物质特性
硫化亚铁具有还原性,能 够与水反应生成硫酸,同 时放出大量热能。
环境条件
在潮湿、缺氧的环境下, 硫化亚铁与水接触后更容 易发生化学反应,导致自 燃。
设备缺陷
如果压力容器存在缺陷, 如裂缝、密封不严等,会 导致硫化亚铁与水接触, 从而引发自燃。
02
禁止在容器内进行明火作业,以 防止引发硫化亚铁自燃。
定期检查设备状况
定期对压力容器进行检查,包括外观 、密封性、阀门等部件,确保设备处 于良好状态。
对于发现的问题及时进行维修和更换 ,防止设备带病运行。
及时清理积聚物
在检修过程中,及时清理容器内的积聚物,特别是硫化亚铁等易燃物质。 保持容器的清洁和干燥,防止积聚物自燃引发事故。
THANKS
谢谢您的观看
危害及后果
设备损坏
硫化亚铁自燃会损坏压力 容器本身及其附件,造成 设备停运或报废。
环境污染
自燃产生的硫酸和高温烟 气会对环境造成污染,对 周围设备和人员造成危害 。
安全隐患
自燃可能导致火灾事故, 对人员和财产安全构成威 胁。
02
压力容器检修过程中的预防措 施
严格遵守操作规程
01
严格按照压力容器操作规程进行 检修,确保检修过程中的安全和 规范。
命,减少故障发生。
维修记录
建立详细的维修记录,记录设备 的维修历史、故障原因及处理方
法,为后续维护提供参考。
加强员工培训,提高员工对硫化亚铁 自燃危险性的认识,增强员工的安全意识。
操作技能培训
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如何防止硫化亚铁自燃
摘要:本文借鉴了同类装置停工经验,介绍了独山子芳烃装置首次检修中可能遇见的硫化亚铁自燃问题,并提出解决办法。
关键词:氮气吹扫;蒸汽吹扫;FeS;自燃;
0 引言
芳烃装置采用美国GTC公司专利技术,以乙烯裂解装置来裂解加氢汽油为原料,采用Techtiv-100型混合溶剂作为萃取剂,经抽提蒸馏和普通精馏,得到合格的苯、甲苯和混合二甲苯产品。
由中国石化集团洛阳石化工程公司总承包。
装置设计年加工能力60万吨,于2009年8月建成投产。
2011年装置将迎来开工后的首次停工检修工作,为实现装置平稳停工,实现安全检修,装置借鉴了同类装置检修经验,论证本次检修期间可能存在的硫化亚铁的产生原因、危害,并提出相应的解决方法。
1 事故案例
图1 上海石化芳烃抽提蒸馏塔FeS自燃火灾事故
上海石化芳烃联合装置制苯车间芳烃抽提单元的抽提蒸馏塔DA-4503高73.6米、直径3米。
2002年1月14日,该塔按《2002年3#抽提装置改造开停车方案》的要求,于1月14日21∶00完成退料,1月15日通入蒸汽(压力1.05Mpa,温度240℃)蒸塔。
蒸塔过程中,塔顶温度为101℃,塔底温度为218℃,填料区域温度为170℃。
1月19日21∶00蒸塔结束,待塔自然冷却。
1月20日上午7∶30,经检查塔顶温度为85℃,塔底温度为95℃,填料区域温度为120℃。
10∶00制苯车间安排施工人员开塔底、塔顶人孔,约11∶00塔底人孔被打开,12∶05左右,塔体在高约30米处发生变形,上部向东南方折倒,倚在空冷器EC-4503和EC-4504上。
在塔上作业的上海建筑安装公司(外来施工单位)起重工坠落死亡。
该事故造成直接经济损失30万元。
1999 年1 月茂名石化公司乙烯裂解装置稀释汽发生器(塔270)在检修过程中发生硫化亚铁自燃事故;2000 年茂名石化公司炼油厂加氢裂化车间第二分馏塔(T-106)在停汽检修时发生硫化亚铁自燃烧塔事故;
2002年12月茂名石化公司二重整车间苯抽提塔-301 在停汽检修期间,发生硫化亚铁自燃塔事故;2003年9 月金陵石化公司烷基苯厂在检修中准备更换C-405 填料塔塔内件和填料,经退油、加盲板并进行了72 小时蒸汽吹扫后打开塔的人孔通风,准备交出施工时,塔内硫化亚铁遇空气发生自燃引起火灾,导致C-405塔体1/3处折断。
以上案例可以看出芳烃装置抽提系统是检修期间防范FeS自燃的关键。
2 硫化亚铁的来源
硫化亚铁是油品中硫及其硫化物与铁及其氧化物腐蚀作用的产物。
这些油品中的硫主要来自于原油(通常把含硫量低于0.1%的原油叫做超低硫原油,如我国的大庆原油,含硫量0.1-0.5%的原油叫做低硫原油,含硫量为0.5-2%的原油称为含硫原油,含硫量大于2%的原油叫做高硫原油,如胜利原油和中东原油等),亦有部分来自于原油加工过程中的添加剂(如加氢催化剂硫化钼、硫化钴等再生过程产生SO2,在烧掉积炭沉积物时与CO 发生反应,这时可产生具有腐蚀活性的单质硫)。
根据硫化物对金属的作用,可将其分为活性硫和非活性硫两类,这种分法是相对的,活性硫具有较高的腐蚀活性,能直接与金属反应而使金属腐蚀如单质硫、硫化氢(H2S)和硫醇(R-SH);非活性硫是指那些通常不能直接与金属发生反应的硫化物,如硫醚(RSR′)、二硫化合物(RSSR′)、环状硫化物、烷基亚矾、噻吩等。
非活性硫作为分子单体来说,不能直接与金属发生反应,但在原油炼制过程的催化裂化反应中,这些所谓非活性硫的有机硫化物会发生分解,而形成S 和H2S等活性硫,这些活性硫在不同条件下与铁或铁的化合物发生反应生成硫化亚铁或铁的其它硫化物。
目前装置使用的溶剂为专利商专有溶剂,但其主要成分仍为环丁砜,也称四氢噻吩砜,分子式
为,分子式为:C4H8O2S,分子量为:120.17,属于含硫的硫化物。
日常生产中,在220℃以下时,环丁砜溶剂分解速度比较慢,但超过220℃时,随着温度的升高,其分解速度急剧上升,过高的温度将促使环丁砜分解生成浅黑色的聚合物(聚丁二烯和氧化铁混合物)和SO2。
抽提系统三个塔换热器表面存在局部过热问题,温度超过220℃,故存在环丁砜分解现象,所以会有国内同类装置发生塔内硫化亚铁自然事故。
图2 设备内壁腐蚀物
3 停工检修过程硫化亚铁自燃事故过程分析
装置停工检修过程硫化亚铁自燃事故是塔(设备)在检(维)修期间发生的硫化亚铁自燃事故。
硫化亚铁在塔设备中是一个累积的过程,而且它也不是纯净物,是与焦炭粉、油垢等混在一起形成的污垢,结构一般较为疏松。
设备在正常运转期间,塔内硫化亚铁处于无氧环境,不会与空气接触而发生氧化反应。
但当设备处于检修期,沉积在塔内的硫化亚铁和低聚物不能被蒸汽彻底吹扫,因此当打开设备人孔时硫化亚铁与空气中的氧气发生氧化反应,释放出大量的热量,由于局部温度升高,加速了周围硫化亚铁的氧化,形成连锁反应。
如果污垢中存在碳和重质油,则它们在硫化亚铁的作用下,会迅速燃烧,放出更多的热量。
这种自燃现象易造成火灾爆炸事故。
FeS FeS FeS
图3 塔器检修过程硫化亚铁自燃示意图
4 硫化亚铁自燃特性
图4 不同粒径干燥硫化亚铁自热升温曲线
图5含水10%的不同粒径硫化亚铁自热曲线
由图4和图5的实验数据可知,含水10%硫化亚铁起始自热温度较干燥的起始自热温度低,
其起始自热温度从120~256℃降至30~40℃。
由此表明,水成了硫化亚铁氧化反应的重要影响因素,一定量的水可加速了硫化亚铁在空气中的氧化反应,使硫化亚铁更易于发生自热反应甚至自燃。
图6饱和水蒸汽中的硫化亚铁自热曲线
由图6的实验数据可知随空气的相对湿度增大,硫化亚铁的升温速度逐渐增加表明,空气中的湿度增大时,硫化亚铁的自热性能逐渐增强。
5 防硫化亚铁自燃对策
目前,国内外治理硫化亚铁自燃事故的对策有以下几种方法:
a) 隔离法:即防止硫化亚铁与空气中的氧气接触,如用氮气保护、水封保护等。
b) 清洗法:如对设备进行机械清洗、化学清洗等。
c) 钝化法:用钝化剂进行设备处理,将易自燃的硫化亚铁转变为较稳定的化合物,从而防止硫化亚铁的自燃。
隔离法适用于在线保护,但在检修过程中很难有效防止硫化亚铁自燃。
钝化法的成本较高,且不能将硫化亚铁从设备上除去。
清洗法包括物理清洗和化学清洗。
物理清洗主要是利用特殊机械清洗设备表面垢层。
化学清洗有碱洗、酸洗、有机溶剂清洗,以及根据不同结垢采用的表面活性剂与碱、有机溶剂等组成的混合化学清洗溶液的清洗。
相对而言,清洗法简便有效,而且成本低,是比较常见的方法。
常用清洗法有:蒸汽吹扫、酸洗、碱洗、高pH 溶剂、多级氧化剂清洗。
本次装置检修采用清洗法中的蒸汽吹扫后增加水封保护的方法,分别对抽提蒸馏塔C-1001,溶剂回收塔C-1002及溶剂再生塔C-1003进行蒸汽吹扫完后进行注水保护。
这要求值班人员密切监视记录此三塔的液位及温度,防止因液位下降引起自燃事故。
[参考文献]
[1] 谢传欣王慧欣黄飞,等。
硫化亚铁自燃危害及预防。
中国石油化工股份有限公司青岛安全工程研究院化学品安全研究室。