大一经济数学基础微积分A

合集下载

大一经济数学基础知识点

大一经济数学基础知识点

大一经济数学基础知识点经济数学是应用数学的一个分支,它在经济学研究中扮演着重要的角色。

在大一的学习过程中,经济数学基础知识点是我们打下坚实基础的关键。

本文将介绍大一经济数学基础知识点的几个重要方面,包括微积分、线性代数和统计学。

一、微积分微积分是研究函数变化的一门学科,经济学中的许多问题都可以用微积分方法进行求解。

在大一学习中,主要涉及以下几个知识点:1. 导数和微分导数是描述函数变化率的概念,它可以帮助我们求解最优化问题、边际分析和弹性计算等。

微分则是导数的一个具体应用,它被广泛应用于边际成本和边际收益的计算中。

2. 积分和面积积分是导数的逆运算,可以帮助我们计算曲线下的面积、总收益和总成本等。

理解积分的概念和运算方法对于经济学问题的求解非常重要。

3. 微分方程微分方程是一种描述变化率和状态变化的方程,它在经济学中被广泛应用于模型的建立和分析中。

了解微分方程的基本概念和解法可以帮助我们理解经济学模型的动态特性。

二、线性代数线性代数是研究向量空间和线性变换的数学学科,它对经济学中的模型和理论具有重要的应用价值。

在大一学习中,我们需要掌握以下几个基本知识点:1. 向量和矩阵向量是线性代数的基础概念,它可以表示经济变量的组合和关系。

矩阵则是由多个向量组成的矩形阵列,它在经济学中用于表示多个变量之间的关系。

2. 线性方程组线性方程组是由多个线性方程组成的方程组,它在经济学中被广泛用于建立和求解模型。

了解如何求解线性方程组可以帮助我们分析经济关系和市场均衡等问题。

3. 特征值和特征向量特征值和特征向量是矩阵代数中的重要概念,它们可以帮助我们理解经济模型和系统的稳定性和变化规律。

三、统计学统计学是研究数据收集、分析和解释的学科,它在经济学中被广泛应用于模型估计和决策分析。

在大一学习中,我们需要了解以下几个关键知识点:1. 数据的类型和描述了解数据的类型和描述方法是进行统计分析的基础,包括定量数据和定性数据的区别,以及均值、方差和标准差等统计量的计算方法。

经济数学基础(微积分)讲义全

经济数学基础(微积分)讲义全

经济数学微积分学习讲义合川电大兰冬生知识点一:5个基本函数1,常数函数,c y = (c 是常数)例如:3=y ,1-=y ,这些函数可以看成是x 隐含,例如3=y 可看成30+=x y 。

2,幂函数,αx y =(α是一个数) 形如2x y =,3x y =,5x y =是幂函数,注意:仅仅是这种形式是幂函数,其他的任何一点形式变化都不是,2x y =是幂函数,22x y =就不是幂函数,只能是下面x ,上面(指数)是一个数!以下基本函数均如此3,指数函数,x a y =,(a 是一个数) 例如:x y 2=,x y 23⋅=不是指数函数。

4,对数函数x y a log =,这里要求x 必须大于零,我们的考试常常拿来考“求定义域”这里我们只认识两个特殊的对数函数,一个是x y ln =,他是x y e log =的简写,e 是一个数,718.2=e ,和我们知道的14.3=π一样,另一个是x y lg =,他是x y 10log =的简写。

5,三角函数x y sin =,x y cos =,特别注意的是x y sin 2=,x y 2sin =,都不是三角函数。

● 这5个基本函数是我们要学习的函数的主要构成细胞。

● 例如:12sin 232+++=x x e y x ,二次函数,由幂函数,常数函数构成632-+=x x y 。

知识点二:极限1,什么是数列?数列就是按照“一定规律排列的一组数”,我们常见的是无限数列。

数学符号记为:}{n a例如:数列:1,2,4,8,16,32,……,发展规律依n 2 变化,,4,3,2,1,0=n …… 1,21,41,81,……,发展规律依n 21变化,,4,3,2,1,0=n …… 2,极限学习极限,一个非常重要的认识就是“分母越大,分数越小” 数列的极限,就是指数列的一个趋近值,(即是指一串数的趋近值)例如:1,21,31,41,……,分母由1,2,3,4,……变化,当分母无限大时,1000001,1000000001,……,最后,这个无限数列趋近于0,这里,我们简单描述这个变化,∞→n01→n分母越大,分数越小 →是趋近,∞是无穷大的意思,无穷大是指非常非常大,无法计量。

大一高等数学a知识点

大一高等数学a知识点

大一高等数学a知识点在大一的高等数学A课程中,我们将学习一系列的数学知识点,包括但不限于以下内容。

一、微积分基础微积分是高等数学的重要分支,它研究函数的变化规律和各种变化率的运算方法。

大一高等数学A课程中,我们将学习如何求函数的导数和不定积分,掌握导数和积分的定义和性质,学习求导的各种方法,如基本初等函数的导数、导数的四则运算、复合函数求导、隐函数求导等等。

二、极限与连续在大一高等数学A课程中,我们将学习极限的概念及其性质。

极限是研究函数变化的重要工具,它描述了函数在某一点附近的变化趋势。

我们将学习如何计算各种类型的极限,如函数的极限、无穷大与无穷小的极限、级数的极限等。

此外,我们还将学习连续函数的概念,了解连续函数的性质和判定方法。

三、一元函数微分学一元函数微分学是微积分的重要内容,它研究函数的变化率和曲线的性质。

在大一高等数学A课程中,我们将学习函数的微分和微分中值定理,掌握函数的极值和最值的求解方法。

此外,我们还将学习泰勒展开式和函数的凸凹性,理解函数图像和曲线的几何性质。

四、一元函数积分学一元函数积分学是微积分的另一个重要内容,它研究函数的积分和曲线下的面积。

在大一高等数学A课程中,我们将学习不定积分和定积分的概念,掌握函数积分的基本性质和计算方法。

我们还将学习牛顿-莱布尼兹公式和换元积分法,应用不定积分解决实际问题。

五、多元函数微积分多元函数微积分是微积分的推广,研究多元函数的变化率和曲面的性质。

在大一高等数学A课程中,我们将学习多元函数的偏导数和全微分,掌握多元函数的极值和条件极值的求解方法。

此外,我们还将学习多元函数的多元积分,了解二重积分和三重积分的概念和计算方法。

六、常微分方程常微分方程是微分方程的一种形式,研究未知函数和其导数之间的关系。

在大一高等数学A课程中,我们将学习一阶常微分方程和二阶常微分方程的基本概念和解法。

掌握常微分方程的解法有助于我们理解自然现象、经济模型和物理问题等的数学描述和求解。

大一微积分知识点总结

大一微积分知识点总结

大一微积分知识点总结微积分是高等数学的重要组成部分,对于大一的同学来说,是一门具有挑战性但又十分重要的课程。

以下是对大一微积分主要知识点的总结。

一、函数与极限函数是微积分的基础概念之一。

我们需要理解函数的定义、定义域、值域、单调性、奇偶性、周期性等性质。

比如,单调递增函数指的是当自变量增大时,函数值也随之增大;偶函数满足 f(x) = f(x) ,奇函数满足 f(x) = f(x) 。

极限是微积分中一个极其重要的概念。

极限的计算方法有很多,例如直接代入法、化简法、等价无穷小替换法、洛必达法则等。

等价无穷小在求极限时经常用到,比如当 x 趋近于 0 时,sin x 与 x 是等价无穷小。

洛必达法则则适用于“0/0”或“∞/∞”型的极限。

二、导数与微分导数反映了函数在某一点处的变化率。

对于常见的基本初等函数,如幂函数、指数函数、对数函数、三角函数等,要熟练掌握它们的求导公式。

导数的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。

复合函数的求导法则是一个重点也是难点,需要通过链式法则来求解。

微分是函数增量的线性主部。

函数在某一点的微分等于函数在该点的导数乘以自变量的增量。

三、中值定理与导数的应用中值定理包括罗尔定理、拉格朗日中值定理和柯西中值定理。

这些定理在证明一些等式和不等式时非常有用。

利用导数可以研究函数的单调性、极值和最值。

当导数大于 0 时,函数单调递增;当导数小于 0 时,函数单调递减。

导数为 0 的点可能是极值点,但还需要通过二阶导数来判断是极大值还是极小值。

在实际问题中,经常需要通过求导数来找到最优解,比如求成本最小、利润最大等问题。

四、不定积分不定积分是求导的逆运算。

要熟练掌握基本积分公式,如幂函数的积分、指数函数的积分、三角函数的积分等。

积分的方法有换元积分法和分部积分法。

换元积分法包括第一类换元法(凑微分法)和第二类换元法。

分部积分法通常适用于被积函数是两个函数乘积的形式,比如 xe^x 。

经管类微积分大一上知识点

经管类微积分大一上知识点

经管类微积分大一上知识点在大一上学期的经济管理类专业中,微积分是一门重要的数学课程。

它为我们提供了解决实际问题的工具和方法,不仅在理论推导上有着广泛应用,而且在实际问题求解中也发挥着重要作用。

本文将围绕经管类微积分大一上的知识点,分别介绍导数、微分、定积分和微分方程等几个重要概念。

导数是微积分中最基础的概念之一。

它衡量了函数在某一点上的变化率。

具体而言,对于函数f(x),其导数可以通过极限的方法定义为:\[f'(x) = \lim_{h \to 0}\frac{f(x + h) - f(x)}{h}\]导数的概念非常直观,它可以解决一些有关速度、斜率等方面的问题。

在经管学科中,导数可以用来分析和决策相关的问题,比如成本、收益、市场需求等。

在经济学中,导数可以解释边际效应和边际收益等重要概念。

微分是导数的应用之一。

通过微分,我们可以更加精确地描述函数的变化。

对于函数f(x),它的微分可以表示为:\[df(x) = f'(x)dx\]微分的概念在经济学中经常用到,比如边际效用的计算就是基于微分的思想。

通过微分,我们可以得到边际效用的导数,从而理解经济主体在消费决策中的行为。

另一个重要的知识点是定积分。

它在经济学和管理学中有着广泛的应用。

定积分可以理解为曲线与x轴之间的面积,表示了一段区间上函数的累积效果。

对于函数f(x),其在区间[a, b]上的定积分可以表示为:\[\int_a^b f(x)dx\]定积分可以用来计算累积收益、累积成本等问题。

比如,经济学中的消费者剩余和生产者剩余就是通过定积分来计算的。

最后,微分方程是微积分的一种应用形式。

它描述了自然界中许多变化过程的规律。

在经管学科中,微分方程应用非常广泛。

比如,经济增长模型中的索洛模型和拉姆斯模型就是通过微分方程来描述的。

除了以上几个重要的知识点外,大一上微积分还包括一些其他内容,如常微分方程、不定积分等。

这些知识点是经管类专业学习的基础,并为以后更深入的专业课程打下了坚实的基础。

大一经济数学基础微积分A1-1PPT文档35页

大一经济数学基础微积分A1-1PPT文档35页
大一经济数学基础微积分A1-1
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

经济数学基础微积分第一篇第一章--函数

经济数学基础微积分第一篇第一章--函数
关键是对函数f 记 x的号理解 : (1)f x0表示函f数 x在xx0处的值 ;
(2)自变量可以取一, 个还 数可 值以取 一个表达式。
例 31: . 给定 fx 函 x2数 x2,试计 f0,f(x2),f1x.
解: f(0)02022
f(x 2 ) (x 2 )2 (x 2 ) 2 x 4 x 2 2
给定 r2, 就有 S4;
给定 r3, 就有 S9;
例 y 如 fx x 2 : x 1
给定 x1, 就y有 f11;
给定 x1, 就y 有 f1 3 ;
【注y 意 f】 x
二. 求定义域
函数的定义域:是使函数有意义的 自变量x取值的全体。 也就是自变 量x允 许取值的范围。
确定函数定义域的三条基本要求: (1) 分式的分母不能为零。即若 y 1
【公 ln x式 kkln 】 x, lo : ax g kkloax g
【解】 1 fx lx n 2 2 lx n(x 0 ) g x 2 ln x(x 0 )
表达式不同,定义域不同 所以它们是不同的函数。
2 fx lx n 3 3 lx n ( x 0 )
g x 3 ln x(x 0 )
-3 -2
2
x
【练习1】
求函 f(x数 )lo2g (x1)
1 的定.义 x21
【解】 要使f(x) 有意义,必须有
x 1 0
x
2
1
0
xx11x10
xx
1 1

x
1
即: x1
公共部分
写成区间 (1, : )
【练习2】
求函f(x数 ) 1 3x的定.义 lnx(3)
【解】 要使f(x) 有意义,必须有

经济应用数学基础(一)-微积分-课后习题答案_高

经济应用数学基础(一)-微积分-课后习题答案_高

第一章 函 数习 题 一(A)1.解下列不等式,并用区间表示解集合(其中δ>0):(1)(x-2)2>9; (2)|x+3|>|x-1|;(3)|x-x0|<δ;(4)0<|x-x0|<δ.解 (1)由(x-2)2>9得|x-2|>3,从而解得x-2>3 或 x-2<-3由此得 x>5或x<-1.因此,解集合为(-∞,-1)∪(5,+∞)(2)由绝对值的几何意义知,不等式|x+3|>|x-1|表示点x与-3的距离大于点x与1的距离,如下图所示:因此,该不等式的解集合为(-1,+∞)(3)由|x-x0|<δ得-δ<x-x0<δ,由此得x0-δ<x<x0+δ,因此,解集合为(x0-δ,x0+δ)(4)由0<|x-x0|知x≠x0,由|x-x0|<δ知x0-δ<x<x0+δ.因此,解集合为(x0-δ,x0)∪(x0,x0+δ)2.证明如下不等式:(1)|a-b|≤|a|+|b|;(2)|a-b|≤|a-c|+|c-b|证 (1)由绝对值性质(4),有|a-b|≤|a|+|-b|=|a|+|b|.(2)|a-b|=|a-c+c-b|≤|a-c|+|c-b|.3.判断下列各对函数是否相同,并说明理由:(1)y=x与y=x2;(2)y=1-x2+x与y=(1-x)(2+x);(3)y=1与y=sin2x+cos2x;(4)y=2cosx与y=1+cos2x;(5)y=ln(x2-4x+3)与y=ln(x-1)+ln(x-3);(6)y=ln(10-3x-x2)与y=ln(2-x)+ln(5+x).解 (1)因y=x2=|x|与y=x的对应规则不同(值域也不同),故二函数不相同.(2)因y=1-x2+x与y=(1-x)(2+x)的定义域均为D f=[-2,1],故此二函数相同.(3)因sin2x+cos2x≡1,x∈(-∞,+∞),故此二函数相同.(4)因y=1+cos2x=2cos2x=2|cosx|与y=2cosx的对应规则不同,可知此二函数不相同.(5)因y=ln(x2-4x+3)=ln[(x-1)(x-3)]的定义域为D f=(-∞,1)∪(3,+∞);y=ln(x-1)+ln(x-3)的定义域为D f=(3,+∞).因此,此二函数不相同.(6)因y=ln(10-3x-x2)=ln[(2-x)(5+x)]与y=ln(2-x)+ln(5+x)的定义域均为D f=(-5,2),故此二函数相同.4.求下列函数的定义域:(1)y=x2+x-2; (2)y=sin(x);(2)y=9-x2+1ln(1-x);(4)y=lnx2-9x10;(5)y=1x-3x+10x-10;(6)y=(x-1)(x-3)x-3.解 (1)使该函数有定义的x应满足条件:x2+x-2=(x-1)(x+2)≥0由此解得x≥1或x≤-2.因此,该函数定义域为D f=(-∞,2]∪[1,+∞).(2)使该函数有定义的x应满足条件:x≥0 且 sinx≥0而由sinx≥0得2kπ≤x≤(2k+1)π,k=0,1,2,….因此,该函数的定义域为D f=∪∞k=0[(2kπ)2,(2k+1)π2].(3)使该函数有定义的x应满足如下条件:9-x2≥0, 1-x>0, 1-x≠1解得 |x|≤3且x<1且x≠0.因此,该函数定义域为D f=[-3,0)∪(0,1).(4)使该函数有定义的x应满足条件:x2-9x10≥1由此得 x2-9x-10=(x+1)(x-10)≥0,解得x≥10或x≤-1因此,该函数定义域为D f=(-∞,-1]∪[10,+∞)(5)使该函数有定义的x应满足如下条件:x-3≠0, x-10≠0, x+10x-10≥0由此解得x>10或x≤-10.因此,该函数定义域为D f=(-∞,-10]∪(10,+∞).(6)使该函数有定义的x应满足条件:x-3≠0, (x-1)(x-2)x-3≥0即(x-1)(x-2)≥0 且 x-3>0痴x>3(x-1)(x-2)≤0 且 x-3<0痴1≤x≤2因此,该函数定义域为D f=[1,2]∪(3,+∞).5.已知函数f(x)=q-x2,|x|≤3x2-9,|x|>3求函数值f(0),f(±3),f(±4),f(2+a).解 因为x=0,x=±3时,|x|≤3,所以f(0)=9=3, f(±3)=9-(±3)2=0又因为x=±4时,|x|>3,所以f(±4)=(±4)2-9=7当|2+a|≤3即-5≤a≤1时,f(2+a)=q-(2+a)2=(1-a)(5+a)当|2+a|>3即a>1或a<-5时,f(2+a)=(2+a)2-9=(a-1)(a+5)所以f(2+a)=(1-a)(5+a),-5≤a≤1(a-1)(5+a),a<-5或a>1.6.讨论下列函数的单调性:(1)y=1+6x-x2; (2)y=e|x|.解 (1)易知该函数定义域为D f=[0,6].设x1,x2∈(0,6), x1<x2则f(x1)-f(x2)=6x1-x21-6x2-x22=(6x1-x21)-(6x2-x22)6x1-x21+6x2-x22=6(x1-x2)-(x21-x22)6x1-x21+6x2-x22=[6-(x1+x2)](x1-x2)6x1-x21+6x2-x22<0,0<x1<x2<3>0,3<x1<x2<6所以该函数在区间(0,3)上单调增加,在区间(3,6)上单调减少.另解,因6x-x2=9-(x-3)2,所以y=1+6x-x2是圆(x-3)2+(y-1)2=32的上半圆.由此可知,该函数在(0,3)上单调增加,在(3,6)上单调减少.(2)因y=e|x|=ex,x≥0e-x,x<0所以,该函数在[0,+∞)上单调增加,在(-∞,0]上单调减少.7.讨论下列函数是否有界:(1)y =x 21+x2; (2)y =e-x 2;(3)y =sin1x;(4)y =11-x.解 (1)因为|y |=x21+x 2=1-11+x2≤1所以,该函数有界.(2)因为|y |=e-x 2=1ex 2≤1e0=1所以,该函数有界.(3)因为sin1x≤1(x ≠0),所以,该函数有界.(4)对任意给定的正数M >0,令x 0=1-12M≠1,则|y (x 0)|=11-1-12M=2M >M此式表明,对任意给定的M >0,存在点x 0∈D f ,使|y (x 0)|>M .因此,该函数无界.8.讨论下列函数的奇偶性:(1)f (x )=x sinx +cosx ; (2)y =x 5-x 3-3;(3)f (x )=ln(x +1-x 2);(4)f (x )=1-x ,x <0,1,x =0,1+x ,x >0.解 (1)因为f (-x )=(-x )sin(-x )+cos(-x )=x sinx +cosx =f (x ),x ∈(-∞,+∞)所以,该函数为偶函数.(2)因为f (-x )=-x 5+x 3-3≠f (x )或-f (x )所以,该函数既不是偶函数,也不是奇函数.(3)因为f (-x )=ln(-x +1+x 2)=ln(1+x 2)-x2x +1+x2=-ln(x+1+x2)=-f(x), x∈(-∞,+∞)所以,该函数为奇函数.(4)因为x>0(即-x<0)时, f(-x)=1-(-x)=1+xx<0(即-x>0)时, f(-x)=1+(-x)=1-x所以f(-x)=1-x,x<01,x=01+x,x>0=f(x)因此,该函数为偶函数.9.判别下列函数是否是周期函数,若是周期函数,求其周期:(1)f(x)=sinx+cosx; (2)f(x)=|sinx|;(3)f(x)=xcosx;(4)f(x)=1+sinπx.解 (1)因为f(x)=sinx+cosx=2sinx+π4所以f(x+2π)=2sinx+2π+π4=2sinx+π4=f(x)因此,该函数为周期函数,周期为2π.(2)因f(x+π)=|sin(x+π)|=|-sinx|=|sinx|=f(x)所以,该函数为周期函数,周期为π.(3)因cosx是以2π为周期的周期函数,但是f(x+2π)=(x+2π)cos(x+2π)=(x+2π)cosx≠xcosx=f(x)所以,该函数不是周期函数.(4)因为f(x+2)=1+sin(x+2)π=1+sinπx=f(x)所以,该函数为周期函数,周期为2.10.求下列函数的反函数及其定义域:(1)y=1-x1+x; (2)y=12(ex-e-x);(3)y=1+ln(x-1);(4)y=53x-5;(5)y=2sinx3, x∈-π2,π2;(6)y=2x-1,0<x≤12-(x-2)2,1<x≤2.解 (1)由y=1-x1+x 解出x,得x=1-y1+y因此,反函数为y=1-x1+x其定义域为D(f-1)=(-∞,-1)∪(-1,+∞)(2)由所给函数解出ex,得ex=y±1+y2=y+1+y2(因为ex>0,所以舍去“-”号)由此得x=ln(y+1+y2)因此反函数为y=ln(x+1+x2)其定义域为D(f-1)=(-∞,+∞).(3)所给函数定义域为D(f)=(1,+∞),值域为Z(f)=(-∞,+∞).由所给函数解出x,得x=1+ey-1,故反函数为y=1+ex-1其定义域为D(f-1)=(-∞,+∞).(4)所给函数定义域、值域分别为D(f)=(-∞,+∞), Z(f)=(-∞,+∞)由所给函数解出x,得x=13(y5+5), y∈Z(f)=(-∞,+∞)所以,反函数为y=13(x5+5)其定义域为D(f-1)=Z(f)=(-∞,+∞)(5)由所给函数解出x,得x=3arcsiny2所以,反函数为y=3arcsinx2其定义域为D(f-1)=Z(f)=[-1,1].(6)由所给函数可知:当0<x≤1时,y=2x-1,y∈(-1,1];当1<x≤2时,y=2-(x-2)2,y∈(1,2];由此解出x,得x=12(1+y),-1<y≤12-2-y,1<y≤2 (舍去“+”号,因1<x≤2)因此,反函数为y=12(1+x),-1<x≤12-2-x,1<x≤2其定义域为D(f-1)=Z(f)=(-1,2].11.分析下列函数由哪些基本初等函数复合而成:(1)y=loga x; (2)y=arctan[tan2(a2+x2)];(3)y=e2x/(1-x2);(4)y=cos2x2-x-1.解 (1)所给函数由对数函数y=loga u与幂函数u=x复合而成;(2)所给函数由反正切函数y=arctanu、幂函数u=v2、正切函数v=tanw 和多项式函数w=a2+x2复合而成;(3)所给函数由指数函数y=eu和有理分式函数u=2x1+x2复合而成;(4)所给函数由幂函数y=u2、余弦函数u=cosv、幂函数v=w与多项式函数w=x2-x-1复合而成.12.设销售某种商品的总收入R是销售量x的二次函数,且已知x=0,10,20时,相应的R=0,800,1200,求R与x的函数关系.解 设总收入函数为R(x)=ax2+bx+c(a≠0)已知R(0)=0 所以c=0又知R(10)=800, R(20)=1200即有100a+10b=800, 400a+20b=1200整理后,得联立方程组10a+b=80, 20a+b=60由此解得 a=-2,b=100.因此,总收入函数为R(x)=100x-2x2=x(100-2x).13.某种电视机每台售价为2000元时,每月可售出3000台,每台售价降为1800元时,每月可多售出600台,求该电视机的线性需求函数.解 设该电视机的线性需求函数为Q=a-bp则由已知条件有Q(2000)=a-2000b=3000Q(1800)=a-1800b=3600由此解得a=9000,b=3.因此,该商品的线性需求函数为Q=9000-3p.14.已知某商品的需求函数与供给函数分别由下列方程确定:3p+Q2d+5Q d-102=0p-2Q2s+3Q s+71=0试求该商品供需均衡时的均衡价格p e和均衡数量Q e.解 供需均衡的条件为Q d=Q s=Q e,对应均衡价格为p e,于是有3p3+Q2e+5Q-102=0p e-2Q2e+3Q e+71=0由其中第二个方程得p e=2Q2e-3Q3-71 (倡)将上式代入第一个方程,得7Q2e-4Q e-315=0由此解得Q e=7(舍去负根).将Q e=7代入(倡)得p e=6.因此,该商品供需均衡时,均衡价格p e=6,均衡数量Q e=7.(B)1.填空题:(1)已知函数f(x)的定义域为(0,1],则函数f(ex)的定义域为,函数f x-14+f x+14的定义域为;(2)已知函数f(x)=x1+x2,则f(sinx)=;(3)已知函数f(x)=x1-x,则f[f(x)]=,f{f[f(x)]}=;(4)已知f(3x-2)=x2,则f(x)=;(5)已知某商品的需求函数、供给函数分别为:Q d=100-2p, Q s=-20+10p,则均衡价格p e=,均衡数量Q e=;答 (1)(-∞,0],14,34; (2)sinx|cosx|;(3)x1-2x,x1-3x;(4)19(x+2)2;(5)10,80.解 (1)由0<ex≤1得x∈(-∞,0],由0<x-14≤1且0<x+14≤1,得x∈14,34;(2)f(sinx)=sinx1-sin2x=sinxcos2x=sinx·|cosx|;(3)f[f(x)]=f(x)1-f(x)=x1-2x,f{f[f(x)]}=f[f(x)]1-f[f(x)]=x1-3x;(4)令t=3x-2,则x=13(t+2),于是f(t)=f(3x-2)=x2=13(t+2)2=19(t+2)2所以f(x)=19(x+2)2(5)由Q d=Q s=Q e,得100-2p e=-20+10p e解得 p e=10,从而Q e=80.2.单项选择题:(1)若函数y=x+2与y=(x+2)2表示相同的函数,则它们的定义域为.(A)(-∞,+∞); (B)(-∞,2];(C)[-2,+∞);(D)(-∞,-2].(2)设f (x )=1,|x |<1,0,|x |>1,则f {f [f (x )]}=.(A)0;(B)1(C)1,|x |<1,0,|x |≥1;(D)1,|x |≥1,0,|x |<1.(3)y =sin1x在定义域内是.(A)周期函数;(B)单调函数;(C)偶函数;(D)有界函数.(4)设函数f (x )在(-∞,+∞)内有定义,下列函数中,必为偶函数.(A)y =|f (x )|;(B)y =[f (x )]2;(C)y =-f (-x );(D)y =f (x 2)cosx .(5)设函数f (x )在(-∞,+∞)内有定义,且f (x +π)=f (x )+sinx ,则f (x ).(A)是周期函数,且周期为π;(B)是周期函数,且周期为2π;(C)是周期函数,且周期为3π;(D)不是周期函数.答 (1)C; (2)C; (3)D; (4)D; (5)B.解 (1)由(x +2)2=|x +2|=x +2≥0可知x ≥-2,故选(C).(2)因f [f (x )]=1,|f (x )|<10,|f (x )|≥1=1,|x |≥10,|x |<1f {f [f (x )]}=1,|f [f (x )]|<10,|f [f (x )]|≥1=1,|x |<10,|x |≥1故选(C).(3)因sin1x≤1,橙x ≠0,故选(D).(4)因f ((-x )2)cos(-x )=f (x 2)cosx ,故选(D).(5)因f (x +2π)=f (x +π)+sin(x +π)=f (x )+sinx -sinx =f (x )故f (x )为周期函数,且周期为2π,选(B).3.设f2x +12x -2-12f (x )=x ,求f (x ).解 令t =2x +12x -2,则x =2t +12t -2,代入所给方程,得f (t )-12f 2t +12t -2=2t +12t -2其中,由所给方程有f2t +12t -2=t +12f (t )于是得f (t )-12t +12f (t )=2t +12t -2由此得f (t )=23t 2+t +1t -1因此f (x )=23x 2+x +1x -1.4.证明下列各题:()若函数f (x ),g (x )在D 上单调增加(或单调减少),则函数h (x )=f (x )+g (x )在D 上单调增加(或单调减少).(2)若函数f (x )在区间[a ,b ],[b ,c ]上单调增加(或单调减少),则f (x )在区间[a ,c ]上单调增加(或单调减少).证 (1)对任意的x 1,x 2∈D ,且x 1<x 2,因f (x ),g (x )单调增加(减少),故有f (x 1)<f (x 2) (f (x 1)>f (x 2))g (x 1)<g (x 2) (g (x 1)>g (x 2))于是h (x 1)=f (x 1)+g (x 1)<f (x 2)+g (x 2)=h (x 2)(h (x 1)>h (x 2))所以,h (x )=f (x )+g (x )在D 上单调增加(减少).(2)对任意的x1,x2∈[a,c],x1<x2,若 a≤x1<x2≤b或b≤x1<x2≤c,则由题设有f(x1)<f(x2) (或f(x1)>f(x2))若 a≤x1≤b<x2≤c,则由题设有f(x1)≤f(b)<f(x2) (或f(x1)≥f(b)>f(x2))综上所述,f(x)在[a,c]上单调增加(或单调减少).5.设函数f(x)与g(x)在D上有界,试证函数f(x)±g(x)与f(x)g(x)在D 上也有界.证 因f(x)与g(x)在D上有界,故存在常数M1>0与M2>0,使得|f(x)|<M1, |g(x)|<M2, 橙x∈D.令M=M1+M2>0,则有|f(x)±g(x)|≤|f(x)|+|g(x)|<M1+M2=M,橙x∈D因此,f(x)±g(x)在D上有界.再令M=M1M2,则有|f(x)g(x)|=|f(x)||g(x)|<M1M2=M,橙x∈D因此,f(x)g(x)在D上有界.6.证明函数f(x)=xsinx在(0,+∞)上无界.证 要证f(x)=xsinx在(0,+∞)上无界,只需证明:对任意给定的常数M>0,总存在x0∈(0,+∞),使得|x0sinx0|>M.事实上,对任意给定的M>0,令x0=π2+2(1+[M])π∈(0,+∞)([M]为M的整数部分),则有|f(x0)|=π2+2(1+[M])π·sinπ2+2(1+[M])π=π2+2(1+[M])πsinπ2=π2+2(1+[M])π>M于是,由M>0的任意性可知,f(x)=xsinx在(0,+∞)上无界.7.已知函数函数f(x)满足如下方程af(x)+bf1x=c x,x≠0其中a,b,c为常数,且|a|≠|b|.求f (x ),并讨论f (x )的奇偶性.解 由所给方程有af1x+bf (x )=cx于是,解方程组af (x )+bf 1x=c xaf1x+bf (x )=cx可得f (x )=ac -bcx 2(a 2-b 2)x因为f (-x )=ac -bc (-x )2(a 2-b 2)(-x )=-ac -bcx2(a 2-b 2)x=-f (x )所以,f (x )为奇函数.8.某厂生产某种产品1000吨,当销售量在700吨以内时,售价为130元/吨;销售量超过700吨时,超过部分按九折出售.试将销售总收入表示成销售量的函数.解 设R (x )为销售总收入,x 为销售量(单位:吨).依题设有当0≤x ≤700时,售价p =130(元/吨);当700<x ≤1000时,超过部分(x -700)的售价为p =130×0.9=117(元/吨).于是,销售总收入函数为R (x )=130x , 0≤x ≤700130×700+117×(x -700), 700<x ≤1000=130x ,0≤x ≤700117x +9100,700<x ≤1000可见销售总收入R (x )为销售量x 的分段函数.9.某手表厂生产一只手表的可变成本为15元,每天固定成本为2000元,每只手表的出厂价为20元,为了不亏本,该厂每天至少应生产多少只手表?解 设每天生产x 只手表,则每天总成本为C (x )=15x +2000因每只手表出厂价为20元,故每天的总收入为20x (元),若要不亏本,应满足如下关系式:20x ≥15x +2000解得x≥400(只)即,若要不亏本,每天至少应生产400只手表.10.某玩具厂每天生产60个玩具的成本为300元,每天生产80个玩具的成本为340元,求其线性成本函数.该厂每天的固定成本和生产一个玩具的可变成本各为多少?解 设线性成本函数为C(x)=ax+b其中C(x)为总成本,x为每天的玩具生产量.由题设有C(60)=60a+b=300(元)C(80)=80a+b=340(元)由此解得a=2, b=180因此,每天的线性成本函数为C(x)=2x+180其中a=2元为生产一个玩具的可变成本,b=180元为每天的固定成本.第二章 极限与连续习 题 二(A)1.观察判别下列数列的敛散性;若收敛,求其极限值:(1)u n=5n-3n; (2)u n=1ncosnπ;(3)u n=2+-12n;(4)u n=1+(-2)n;(5)u n=n2-1n;(6)u n=a n(a为常数).解 (1)将该数列具体写出来为2,72,4,174,225,…,5-3n,…观察可知u n→5(n→∞).因此,该数列收敛,其极限为5.(2)因为u n=1ncosnπ=1n(-1)n=1n→0(n→∞)所以,该数列收敛,其极限为0.(3)因为u n-2=-12n=12n→0(n→∞)所以,该数列收敛,其极限为2.(4)该数列的前五项分别为:-1,5,-7,17,-31,…观察可知u n→∞(n→∞).因此,该数列发散.(5)该数列的前五项分别为0,32,83,154,245,…观察可知u n→∞(n→∞).所以,该数列发散.(6)当a<1时,u n=a n→0(n→∞);当a>1时,u n=a n→∞(n→∞);当a=1时,u n=1→1(n→∞);当a=-1时,u n=(-1)n,发散因此,a<1时,数列收敛,其极限为0;a=1时,数列收敛,其极限为1;a ≤-1或a>1时,数列发散.2.利用数列极限的定义证明下列极限:(1)limn→∞-13n=0; (2)limn→∞n2+1n2-1=1;(3)limn→∞1n+1=0;(4)limn→∞n2+a2n=1(a为常数).证 (1)对任意给定的ε>0(不妨设0<ε<1),要使u n-0=13n<ε只需n>log31ε (∵0<ε<1,∴log31ε>0)取正整数N=1+log31ε>log31ε,则当n>N时,恒有-13n-0<ε因此limn→∞-13n=0.(2)对任意给定的ε>0,要使u n-1=n2+1n2-1-1=2n2-1=2n+1·1n-1≤1n-1<ε只需n>1+1ε.取正整数N=1+1ε,则当n>N时,恒有n2+1n2-1-1<ε由此可知limn →∞n 2+1n 2-1=1.(3)对任意给定的ε>0,要使u n -0=1n +1-0=1n +1<1n<ε只需n >1ε2.取正整数N =1ε2+1,则当n >N >1ε2时,恒有1n +1-0<ε.由此可知limn→∞1n +1=0.(4)对任意给定的ε>0,要使u n -1=n 2+a2n -1=a2n (n 2+a 2+n )<a22n2<ε只需n >a2ε.取正整数N =a 2ε+1,则当n >N >a2ε时,恒有n 2+a2n-1<ε因此limn →∞n 2+a2n=1.3.求下列数列的极限:(1)limn →∞3n +5n 2+n +4; (2)limn →∞(n +3-n );(3)limn →∞(1+2n+3n+4n)1/n;(4)limn →∞(-1)n+2n(-1)n +1+2n +1;(5)limn →∞1+12+122+…+12n ;(6)limn →∞1+12+122+…+12n1+14+142+…+14n.解 (1)因为3n +5n 2+n +4=3+5n1+1n +4n 2→3(n →∞)所以limn→∞3n +5n 2+n +4=3.(2)因为n +3-n =3n +3+n →0(n →∞)所以limn →∞(n +3-n )=0.(3)因为(1+2n+3n+4n)1/n=414n+24n+34n+11/n→4(n →∞)所以limn→∞(1+2n+3n+4n)1/n=4.(4)因为(-1)n+2n(-1)n +1+2n +1=12·-12n+1-12n +1+1→12(n →∞)所以limn →∞(-1)n+2n(-1)n +1+2n +1=12.(5)因为 1+12+122+…+12n =1-12n +11-12=21-12n +1→2(n →∞)所以limn →∞1+12+122+…+12n =2.(6)因为1+12+122+…+12n =21-12n +1,1+14+142+…+14n =1-14n -11-14=431-14n +1于是1+12+122+…+12n 1+14+142+…+14n =32·1-12n +11-14n +1→32(n →∞)所以limn →∞1+12+122+…+12n1+14+142+…+14n=32.4.利用函数极限的定义,证明下列极限:(1)limx →3(2x -1)=5; (2)limx →2+x -2=0;(3)limx →2x 2-4x -2=4;(4)limx →1-(1-1-x )=1.证 (1)对任意给定的ε>0,要使(2x -1)-5=2x -3<ε只需取δ=ε2>0,则当0<x -3<δ时,恒有(2x -1)-5=2x -3<2δ=ε因此limx →3(2x -1)=5.(2)对任意给定的ε>0,要使x -2-0=x -2<ε只零取δ=ε2>0,则当0<x -2<δ时,恒有x -2-0=x -2<δ=ε所以limx →2+x -2=0.(3)对任意给定的ε>0,要使(x ≠2)x 2-4x -2-4=(x +2)-4=x -2<ε只需取δ=ε>0,则当0<x -2<δ时,恒有x 2-4x -2-4=x -2<δ=ε因此limx →2x 2-4x -2=4.(4)对任意给定的ε>0,要使(1-1-x )-1=1-x <ε只需0<1-x <ε2取δ=ε2>0,则当0<1-x <δ时,恒有(1-1-x )-1=1-x <δ=ε因此limx →1-(1-1-x )=1.5.讨论下列函数在给定点处的极限是否存在?若存在,求其极限值:(1)f (x )=1-1-x ,x <1,在x =1处;x -1,x >0(2)f (x )=2x +1,x ≤1,x 2-x +3,1<x ≤2,x 3-1,2<x ,在x =1与x =2处.解 (1)因为f (1-0)=limx →1-f (x )=limx →1-(1-1-x )=1f (1+0)=limx →1+f (x )=limx →1+(x -1)=0这表明f (1-0)≠f (1+0).因此,limx →1f (x )不存在.(2)在x =1处,有f (1-0)=limx →1-(2x +1)=3.f (1+0)=limx →1+(x 2-x +3)=3.因f (1-0)=f (1+0)=3,所以,limx →1f (x )=3(存在);在x =2处,有f (2-0)=limx →2-(x 2-x +3)=5f (2+0)=limx →2+(x 3-1)=7因f(2-0)≠f(2+0),所以limx→2f(x)不存在.6.观察判定下列变量当x→?时,为无穷小:(1)f(x)=x-2x2+2; (2)f(x)=ln(1+x);(3)f(x)=e1-x;(4)f(x)=1ln(4-x).解 (1)因为当x→2或x→∞时,x-2x2+2→0因此,x→2或x→∞时,x-2x2+2为无穷小.(2)因为当x→0时,ln(1+x)→0因此,x→0时,ln(1+x)为无穷小.(3)因为当x→+∞时,e1-x=eex→0,因此,x→+∞时,e1-x为无穷小.(4)因为当x→4-或x→-∞时,1ln(4-x)→0因此,x→4-或x→-∞时,1ln(4-x)为无穷小.7.观察判定下列变量当x→?时,为无穷大:(1)f(x)=x2+1x2-4; (2)f(x)=ln1-x;(3)f(x)=e-1/x;(4)f(x)=1x-5.解 (1)因为当x→±2时,x2-4x2+1→0因此当x→±2时,x2+1x2-4→∞所以,x→±2时,x2+1x2-4为无穷大.(2)因为当x→1时,1-x→0+当x→∞时,-x→+∞因此当x→1时,ln1-x→-∞当x→∞时,ln1-x→+∞所以,x→1或x→∞时,ln1-x为无穷大.(3)因为limn→0--1x=+∞所以limx→0-e-1/x=+∞由此可知,x→0-时,e-1/x为无穷大.(4)因为limx→5+x-5=0所以limx→5+1x-5=+∞由此可知,x→5+时,1x-5为无穷大.8.求下列函数的极限:(1)limx→3(3x3-2x2-x+2); (2)limx→05+42-x;(3)limx→16x-5x+4x-16;(4)limx→0(x+a)2-a2x(a为常数);(5)limx→0x2+a2-ax2+b2-b(a,b为正的常数);(6)limx→1x+x2+…+x n-nx-1(提示:x+x2+…+x n-n=(x-1)+(x2-1)+…+(x n-1))解 (1)由极限的线性性质,得原式=3limx→3x3-2limx→3x2-limx→3x+2=3x33-2×32-3+2=62(2)因为limx→0(2-x)=2≠0,所以原式=5+limx →042-x =5+4limx →0(2-x )=5+42=7.(3)因为x -5x +4=(x -4)(x -1),x -16=(x -4)(x +4).所以原式=limx →16(x -4)(x -1)(x -4)(x +4)=limx →16x -1x +4=38.(4)因为(x +a )2-a 2=x (x +2a ),所以原式=limx →0x (x +2a )x=limx →0(x +2a )=2a .(5)原式=limx →0(x 2+a 2-a )(x 2+a 2+a )(x 2+a 2+b )(x 2+b 2-b )(x 2+b 2+b )(x 2+a 2+a )=limx →0x 2(x 2+b 2+b )x 2(x 2+a 2+a )=limx →0x 2+b 2+bx 2+a 2+a=b a(6)因为 x +x 2+…+x n-n =(x -1)+(x 2-1)+…+(x n-1)=(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]所以原式=limx →1(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]x -1=limx →1[1+(x +1)+…+(x n -1+xn -2+…+1)]=1+2+…+n =12n (n +1).9.求下列函数的极限:(1)limx →∞[x 2+1-x 2-1]; (2)limx →∞(x -1)10(3x -1)10(x +1)20;(3)limx →+∞5x 3+3x 2+4x 6+1;(4)limx →∞(x +31-x 3);(5)limx →+∞x (3x -9x 2-6);(6)limx →+∞(a x+9)-a x+4(a >0).解 (1)原式=limx →∞2x 2+1+x 2-1=0.(2)原式=limx→∞1-1x103-1x 101+1x20=310(3)原式=limx →+∞5+(3/x )+(4/x 3)1+(1/x 3)=5.(4)因为(x +31-x 3)[x 2-x31-x 3+(31-x 3)2]=x 3-(31-x 3)3=1所以原式=limx→∞1x 2-x 31-x 3+(31-x 3)2=0.(5)因为x (3x -9x 2-6)=x (3x -9x 2-6)(3x +9x 2-6)3x +9x 2-6=x [9x 2-(9x 2-6)]3x +9x 2-6=6x3x +9x 2-6所以原式=limx →+∞6x3x +9x 2-6=limx →+∞63+9-(6/x 2)=1(6)原式=limx →+∞5a x+9+a x+4=1,0<a <110-5,a =10,a >1.10.求下列各题中的常数a 和b :(1)已知limx →3x -3x 2+ax +b=1;(2)已知limx →+∞(x 2+x +1-ax -b )=k (已知常数).解 (1)由于分子的极限limx →3(x -3)=0,所以分母的极限也应为0(否则原式=0≠1),即有limx →3(x 2+ax +b )=9+3a +b =0另一方面,因分子=x -3,故分母x 2+ax +b =(x -3)(x -c ),于是原式=limx →3x -3(x -3)(x -c )=limx →31x -c =13-c=1由此得c =2.于是得x 2+ax +b =(x -3)(x -2)=x 2-5x +6由此得a =-5,b =6(2)原式可变形为原式=limx →+∞[x 2+x +1-(ax +b )][x 2+x +1+(ax +b )]x 2+x +1+ax +b=limx →+∞(1-a 2)x 2+(1-2ab )x +(1-b 2)x 2+x +1+ax +b显然应有1-a 2=0,即有a =±1.于是原式=limx →+∞(1-2ab )x +(1-b 2)x 2+x +1+ax +b=limx →+∞1-2ab +(1-b 2)/x1+(1/x )+(1/x 2)+a +(b /x )=1-2ab1+a=k (a ≠-1)由上式可知,a ≠-1,于是a =1,从而有1-2b2=k 痴b =12-k .11.已知f (x )=2+x1+x(1-x )/(1-x )(1)limx →0f (x ); (2)limx →1f (x ); (3)limx →∞f (x ).解 令g (x )=2+x 1+x ,h (x )=1-x1-x.(1)因为limx →0g (x )=2,limx →0h (x )=1所以limx →0f (x )=limx →0g (x )h (x )=21=2.(2)因为 limx →1g (x )=32>0limx →1h (x )=limx →1(1-x )(1+x )(1-x )(1+x )=limx →111+x =12所以limx →1f (x )=limx →1g (x )h (x )=3212(3)因为limx →∞g (x )=limx →∞1+(2/x )1+(1/x )=1>0limx →∞h (x )=limx→∞(1/x )-(1-x )(1/x )-1=0所以limx →∞f (x )=limx→∞g (x )h (x )=10=1.12.求下列极限:(1)limx →0sin3x sin2x ; (2)limx →0tan5xsin2x ;(3)limx →0arctan4x arcsin2x;(4)limx →∞x sin1x;(5)limx →0sin2(2x )x2;(6)limx →0tan3x -sin2xx;(7)limx →01-cosxx sinx;(8)limx →0ax -sinbxtankx(a ,b ,k >0).解 (1)原式=limx →0sin3x3x·2x sin2x ·32=32.(2)原式=limx →0tan5x 5x ·2x sin2x ·52=52.(3)原式=limx →0arctan4x 4x ·2x arcsin2x ·42=2.(4)令u =1x,则x →∞时u →0.于是原式=limu →0sinu u=1.(5)原式=limx →0sin2(2x )(2x )2·4=4limx →0sin2x 2x 2=4.(6)原式=3limx →0tan3x 3x -2limx →0sin2x2x =3-2=1(7)因为1-cosx ~12x 2(x →0),所以原式=12limx →0x 2x sinx =12limx →0x sinx =12(8)原式=limx →0a k ·kx tankx -b k ·sinbx bx ·kxtankx=a k -b k =a -bk.13.求下列极限:(1)limx →∞1-1xx; (2)limx →∞1+5xx;(3)limx →0(1-sinx )1/x;(4)limx →0(1+3x )1/x;(5)limx →01-x22/x;(6)limx →∞x -2x +2x.解(1)原式=limx→∞1+1-x-x-1=1e.(2)原式=limx→∞1+1x /5x /55=e5.(3)令u =sinx ,则x →0时,u →0.于是原式=limu →0(1+u )1/u u /arcsin(-u )=e-1.(4)原式=limx →0[(1+3x )1/(3x )]3=e3(5)原式=limx →01-x 2-2/x-1=e-1(6)原式=limx →∞1-4x +2x=limx→∞1-4x +2-(x +2)/4-4x /(x +2)=e-4另解,令u =-x +24,则x =-4u -2,且u →∞(x →∞时),于是原式=limu →∞1+1u-4u -2=limu →∞1+1uu -4·limu →∞1+1u-2=e-4.14.求下列极限:(1)limx →0(cosx )1/(1-cosx ); (2)limx →0(sec2x )cot2x;(3)limx →π/2(1+cosx )5secx;(4)limx →0sinx -tanxsinx3;(5)limx →0(sinx 3)tanx1-cosx 2;(6)limx →π/61-2sinxsin(x -π/6);(7)limx →π/4(tan2x )tanπ4-x .解(1)令u =1-cosx ,则cosx =1-u ,且u →0(x →0时),因此原式=limu →0(1-u )1/u=e-1.(2)令u =cot2x ,则sec2x =1+1cot2x=1+1u ,且x →0时,u →+∞.因此原式=limu →+∞1+1uu=e(3)令u =cosx ,则secx =1u ,且x →π2时,u →0.因此原式=limu →0(1+u )5/u=limu →0(1+u )1/u 5=e5.(4)因为x →0时,sinx ~x ,sinx 3~x 3,cosx -1~-x22所以 原式=limx →0sinx (cosx -1)cosx ·sinx3=limx →0x ·(-x 2/2)x 3cosx=-12limx →01cosx =-12.(5)因为x →0时,sinx 3~x 3,tanx ~x ,1-cosx 2~12(x 2)2,所以原式=limx →0x 3·xx 4/2=2(6)令u =x -π6,则x →π6时,u →0,且有sinx =sinu +π6=12(3sinu +cosu )于是有 原式=limu →01-(3sinu +cosu )sinu=limu →01-cosu sinu -3=limu →0u 2/2sinu-3=-3.(7)因为tan2x =sin2x cos2x =sin2xcos2x -sin2xtanπ4-x =sinπ4-x cosπ4-x =cosx -sinx cosx +sinx所以tan2x tanπ4-x =sin2x cos2x -sin2x ·cosx -sinx cosx +sinx =sin2x (cosx +sinx )2从而原式=limx →π/4sin2x (cosx +sinx )2=122+222=12.15.讨论下列函数的连续性:(1)f (x )=x1-1-x ,x <0,x +2,x ≥0;(2)f (x )=e1/x,x <0,0,x =0,1xln(1+x 2),x >0.解 (1)由题设知f (0)=2,且f (0-0)=limx →0-x 1-1-x=limx →0-x (1+1-x )x =2f (0+0)=limx →0+(x +2)=2可见limx →0f (x )=2=f (0).所以,该函数在x =0处连续.另一方面,x1-1-x 在(-∞,0)内为初等函数,连续;x +2在(0,+∞)内为线性函数,连续.综上所述,该函数在(-∞,+∞)内连续.(2)因f (0)=0,且 f (0-0)=limx →0-e1/x=0, f (0+0)=limx →0+1xln(1+x 2)=limx →0+x ln(1+x 2)1/x 2=0·1=0所以 limx →0f (x )=0=f (0).因此,该函数在x =0处连续.另一方面,e1/x在(-∞,0)内连续,1xln(1+x 2)在(0,+∞)内连续.综上所述,该函数在(-∞,+∞)内连续.16.指出下列函数的间断点及其类型;如为可去间断点,将相应函数修改为连续函数;作出(1)、(2)、(3)的图形:(1)f (x )=1-x21+x ,x ≠-1,0,x =-1;(2)f (x )=x 2,x ≤0,lnx ,x >0;(3)f (x )=x x ; (4)f (x )=x sin1x.解 (1)由题设知f (-1)=0,而limx →-1f (x )=limx →-11-x 21+x =limx →-1(1-x )=2≠f (0)所以,x =-1为该函数的可去间断点.令f (-1)=2,则f ~(x )=1-x 21+x ,x ≠-12,x =-1=1-x在(-∞,+∞)内连续.f (x )的图形如图2.1所示.图2.1图2.2(2)由题设有f (0)=0,而f (0-0)=limx →0-x 2=0,f (0+0)=limx →0+lnx =-∞所以,x =0为该函数的无穷间断点.f (x )的图形如图2.2所示.(3)该函数在x =0处无定义,而f (0-0)=limx →0-xx =limx →0-x-x =-1,f (0+0)=limx →0+x x=limx →0+x x=1.图2.3因为左、右极限均存在但不相等,所以,x =0为该函数的跳跃间断点.f (x )的图形如图2.3所示.(4)该函数在x =0处无定义.因limx →0f (x )=limx →0x sin1x=0,故x =0为该函数的可去间断点.若令f (0)=0,则函数f ~(x )=x sin1x,x ≠00,x =0在(-∞,+∞)内连续.17.确定下列函数的定义域,并求常数a ,b ,使函数在定义域内连续:(1)f (x )=1x sinx ,x <0,a ,x =0,x sin1x+b ,x >0;(2)f (x )=ax +1,x ≤1,x 2+x +b ,x>1;(3)f (x )=1-x 2,-45<x <35,a +bx ,其他.解 (1)D f =(-∞,+∞).因f (x )在D f 的子区间(-∞,0)与(0,+∞)内均为初等函数.因此,f (x )在(-∞,0)∪(0,+∞)内连续.现讨论f (x )在分界点x =0处的连续性.已知f (0)=a ,而且f (0-0)=limx →0-sinxx =1,f (0+0)=limx →0+x sin1x+b =b 当f (0-0)=f (0+0)=f (0)时,即当a =b =1时,f (x )在x =0处连续.综上所述,当a =b =1时,该函数在其定义域(-∞,+∞)内连续.(2)D f =(-∞,+∞).因为f (-1)=1-a ,且f (-1-0)=limx →(-1)-(x 2+x +b )=bf (-1+0)=limx →(-1)+(ax +1)=1-a 所以,当a +b =1时,f (x )在x =-1处连续.又因f (1)=1+a ,且f (1-0)=limx →1-(ax +1)=a +1f (1+0)=limx →1+(x 2+x +b )=2+b所以,当a +1=2+b ,即a -b =1时,f (x )在x =1处连续.综上所述,当a +b =1且a -b =1,即a =1,b =0时,f (x )在x =-1和x =1处连续,从而f (x )在其定义域(-∞,+∞)内连续.(3)D f =(-∞,+∞).因f -45=a -45b ,且f -45-0=limx →-45-(ax +b )=a -45b f -45+0=limx →-45+1-x 2=35所以,当a -45b =35,即5a -4b =3时,f (x )在点x =-45处连续.又因f35=a +35b ,且f35-0=limx →35-1-x 2=45f35+0=limx →35+(a +bx )=a +35b 所以,当a +35b =45,即5a +3b =4时,f (x )在点x =35处连续.综上所述,当5a -4b =3且5a +3b =4,即a =57,b =17时,f(x)在x=-45与x=35处连续,从而f(x)在其定义域(-∞,+∞)内连续.(B)1.填空题:(1)limn→∞1n2+1(n+1)2+…+1(2n)2= ;(2)limx→0ln(x+a)-lnax(a>0)= ;(3)limx→a+x-a+x-ax2-a2(a>0)= ;(4)若limx→+∞xx n+1-(x-1)n+1=k≠0,n为正整数,则n= ,k= ;(5)x→0时,1+x-1-x是x的 无穷小;(6)设f(x)=sinx·sin1x,则x=0是f(x)的 间断点;(7)设f(x)=x x,则x=0是f(x)的 间断点;(8)函数f(x)=1x2-5x+6的连续区间是 .答 (1)0; (2)1a; (3)12a;(4)2008,12008; (5)等价;(6)可去; (7)跳跃; (8)(-∞,2)∪(3,+∞).解 (1)因为14n≤1n2+1(n+1)2+…+1(2n)2≤1n且limn→∞14n=0,limn→∞1n=0.所以,由夹逼定理可知,原式=0.(2)原式=limx→0ln1+x a1/x=1alimx→0ln1+x a a/x=1alnlimx→01+x a a/x=1alne=1a.(3)因为x-a+x-ax2-a2=x-ax+a(x+a)+1x+a且limx→a+x-ax+a(x+a)=0,limx→a+1x+a=12a所以,原式=12a.(4)因为x n+1-(x-1)n+1=[x-(x-1)][x n+x n-1(x-1)+…+x(x-1)n-1+(x-1)n]=x n1+1-1x+…+1-1x n-1+1-1x n所以,由题设有原式=limx→+∞x2008-n1+1-1x+…+1-1x n-1+1-1x n=k≠0显然,要上式成立,应有2008-n=0,即n=2008.从而原式=limx→+∞11+1-1x+…+1-1x n-11-1x n=1n=k所以,k=1n=12008.(5)因为limx→01+x-1-xx=limx→021+x+1-x=1所以,x→0时,1+x-1-x是x的等价无穷小.(6)因为limx→0sinx·sin1x=limx→0sinx x·limx→0xsin1x=1×0=0.所以,x=0是f(x)的可去间断点(令f(0)=0,即可).(7)因为f (0-0)=limx →0--x x =-1,f (0+0)=limx →0+xx=1左、右极限存在,但不相等,故x =0为跳跃间断点.(8)该函数有定义的条件是x 2-5x +6=(x -2)(x -3)>0由此得x <2或x >3.因此,该函数的连续区间为(-∞,2)或(3,+∞).2.单项选择题:(1)函数f (x )在点x 0处有定义,是极限limx →x 0f (x )存在的 .(A)必要条件; (B)充分条件;(C)充分必要条件;(D)无关条件.(2)下列“结论”中,正确的是 .(A)无界变量一定是无穷大;(B)无界变量与无穷大的乘积是无穷大;(C)两个无穷大的和仍是无穷大;(D)两个无穷大的乘积仍是无穷大.(3)设函数f (x )=1,x ≠1,0,x =1,则limx →1f (x )= .(A)0; (B)1; (C)不存在; (D)∞.(4)若limx →2x 2+ax +bx 2-3x +2=-1,则 .(A)a =-5,b =6; (B)a =-5,b =-6;(C)a =5,b =6;(D)a =5,b =-6.(5)设f (x )=1-x 1+x,g (x )=1-3x ,则当x →1时, .(A)f (x )与g (x )为等价无穷小;(B)f (x )是比g (x )高阶的无穷小;(C)f (x )是比g (x )低阶的无穷小;(D)f (x )与g (x )为同阶但不等价的无穷小.(6)下列函数中,在定义域内连续的是 .(A)f (x )=cosx ,x ≤0,sinx ,x >0; (B)f (x )=1x,x >0,x ,x ≤0;(C)f (x )=x +1,x ≤0,x -1,x >0;(D)f (x )=1-e-1/x 2,x ≠0,1,x =0.(7)下列函数在区间(-∞,1)∪[3,+∞]内连续的是 .(A)f (x )=x 2+2x -3; (B)f (x )=x 2-2x -3;(C)f (x )=x 2-4x +3;(D)f (x )=x 2+4x +3.(8)若f (x )在区间 上连续,则f (x )在该区间上一定取得最大、最小值.(A)(a ,b ); (B)[a ,b ]; (C)[a ,b ); (D)(a ,b ].答 (1)D; (2)D; (3)B;(4)A;(5)D; (6)D; (7)C; (8)B.解 (1)limx →x 0f (x )是否存在与f (x )在点x 0是否有定义无关,故应选(D).(2)(A)、(B)、(C)都不正确.例如n →∞时n sinn 是无界变量,而不是无穷大;n →∞时,n sinn 是无界变量,n 是无穷大,而n ·n sinn =n 2sinn 是无界变量,不是无穷大;n →∞时,n 与-n 都是无穷大,但n +(-n )=0是一常量,不是无穷大.(D)正确.例如,设limu →∞u 0=∞, limu →∞v n =∞则对任意给定的M >0,存在正整数N 1,N 2,使当n =N 1,n >N 2时,恒有u n>M ,v n >M取N =max{N 1,N 2},则当n >N 时,恒有u n v n=u n ·v n>M ·M =M2这表明limn →∞u n v n =∞.(3)易知f (1-0)=f (1+0)=1,从而limx →1f (x )=1,故应选(B).(4)因为limx →2(x 2-3x +2)=limx →2(x -2)(x -1)=0,因此,分子的极限也应为0,即应有x 2+ax +b =(x -2)(x -c )=x 2-(2+c )x +2c由此得a =-(2+c ),b =2c于是,由题设有limx →2x 2+ax +b x 2-3x +2=limx →2(x -2)(x -c )(x -2)(x -1)=limx →2x -cx -1=2-c =-1由此得c =3,从而得a =-5,b =6.故应选(A).(5)因为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)a+x是无理数 (2)当a≠0时,ax是无理数. 证:反证法
若a x b为有理数, 则因为有理数对四种运算满足 封闭性, x b a 也为有理数, 与已知矛盾,所以a x 为无理数.
3. 实数的绝对值
1).定义
a, a 0
a b a b
| a | a, a 0 a b b a a b
x2 2 0 x 1
解:可以看出,函数的定义域为
x [1,0]U(0,1] 即x [1,1].

设f
(
x)
1 2
0
x
1 ,
求函数
f
(
x
3)的定义域.
1 x2

f
(x)
1 2
0 x1 1 x2
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故f(x+3)的定义域为:[-3,-1]
y 1 cos2 x
u sin2 v
二、函数的表示法:列举法、描述法、列表法、图 象法.
三、分段函数
问题:是否所有的函数都可用一个数学式子表 示呢?
有的函数在其定义域的不同范围内,要用两个或 两个以上的数学式子来表示,这一类函数叫作分段 函数.
例:绝对值函数
y
x
x x
x0 x0
y
y=|x|
f ( x1 )
f ( x2 )
x1 o x2
x
例 证明函数y x3在(, )上是严格递增的.
分析: x1 , x2 (, ),且x1 x2 , 欲证x13 x23 ,
只要x23 x13 0即可. 0
不易判断
而x23 x13 ( x2 x1 )( x22 x1 x2 x12 )
证明: x1 , x2 (, ),且x1 x2 ,
当x1 , x2异号时, 有x1 0, x2 0, 或x1 0, x2 0,
此时, 都有x13 x23 . 当x1 , x2同号时, x23 x13 ( x2 x1 )( x22 x1 x2 x12 ) 0,
所以x13 x23 . 从而函数y x3在(, )上是严格递增的.
6 4 72 4 8
o

o
x0 x0 x0
定义3 点 x0的左邻域,即
U ( x0, ) {x 0 x0 x } ( x0 , x0 )
点 x0的右邻域,即
U ( x0 , ) {x 0 x x0 } ( x0 , x0 )
注:①所有的邻域都是开区间; ②邻域是考虑某点附近点的集合,故δ一般不会很大; ③邻域的中心: x 0 ;邻域的半径:δ> 0
称为点 x0 的δ 邻域 , 6记为4 U72(x40 ,8δ ).
o
o
x0 x0 x0
例1 U(2 , 1) ={x||x-2|<1}=(1,3).
U(- ½, ½) = {x||x + ½ |< ½}=(-1,0).
定义2 点 x0 的去心邻域.即
U 0( x0 , δ) { x 0 x x0 δ} ( x0 δ, x0 ) U( x0 , x0 δ).
§1.1 实 数 (R)
1. 实数的分类
实数 无理数:无限不循环小数 正数 有理数(Q):分数 q ( p 0) 零
p
负数
2. 实数的性质
正整数
正分数 负整数
负分数
1).实数关于加、减、乘、除四种运算封闭.
考虑自然数N、整数Z、无理数、有理数Q是否关于上
述四种运算封闭?
3 5 2 N
3 0.6 Z 5

x2 1 1 x 0
f (x)
,
2 0 x1
确定分段函数的定义域并求f (−1), f (0), f (1),
f (x−1).
解 f (1) 2 f (0) 2 f (1) 2
(x 1)2 1 1 x 1 0
f (x 1)
,
2
0 x11
x2 2x 2 0 x 1
§1.2 函数的概念
一、 函数的定义
定义 设D为一个非空实数集,若对D中每一个 值 x,按照一定的对应法则 ƒ,总有确定的数值y和它 对应,则称 f是定义在D上的一个函数,记作 y=ƒ(x). 称 x 为自变量, y 为因变量; D 为 f 的定义域;
当 x0 D时,称 f ( x0 )为函数在 x0 的函数值.
例 求函数 y
x 2 的定义域. x2 2x 3
解: 要使 y
x 2 有意义,必须有 x2 2x 3x2 Βιβλιοθήκη 2x2 2x 3 2x 3
0
0
x
2
x20 2x 3
0

x
2
x20 2x 3
0
(
x
x20 1)( x 3)
或 0
(
x
x20 1)( x 3)
°a
无穷区间
(,a] {x x a},
•a
{x x a},
[a, ) {x a x },
a•
{x x a},
(a, ) {x a x },

{x x a},
(, ) {x x }.
邻域
定义1 以x0为中心, 以δ 为半径, 长为2δ 的开区间.即
( x0 , x0 ) { x x x0 , 0},
函数值全体组成的数集 Z ={y|y=f(x), x∈D}为 f 的值域.
注:1. 要求定义域D为非空集合. 如:y 1 x2
2. 由f 确定的y 值,必须是唯一的.
这类函数成为单值函数, 还有一类函数为多值函数.
如:y2 x, x2 y2 a2 .
3. 函数的定义域是使函数有意义的自变量的全体。
Q | a | a | a |, | b | b | b |,从而 | a | a | a |, | b | b | b |,
| a | | b | a b | a | | b |, 于是 a b a b 成立.
ab a b 下证:| | a | | b || a b 即证 a b | a | | b | a b .
x x
x (, 0) U(0, )
定义域不同
f ( x) 1 x (, )
g(
x)
2
x (, )
对应法则不同
f ( x) | x | g( x) x2 形式上不同的函数可能表示同一个函数.
f ( x) x g( x) x2
值域不同
xR
Zf R Zg [0, )
由于有些函数的对应法则虽然形式上不同,但 却表示同一个函数,所以在判断过程中经常把两个 函数的定义域及值域是否相同作为一种判断方法.

•° °
•°
–2 –1 o• °1 2
x
• °–1
•°
•°
实际上是取左端点.
L
k
L
y
[x]
1 0
1
L
k
L
L k x k1
L 1 x 2 0 x1 1 x 0
L k x k 1
L
注:分段函数虽然有几个式子,但它们合起来 是一个函数,而不是几个函数.
四、函数定义域的求法
4. 常用的实数集----区间和邻域 区间
设a, b都是实数, 且a<b,有下面形式的区间
闭区间 [a, b] {x a x b},
a•
•b
半开半 闭区间
(a,b] {x a x b}, [a, b) {x a x b},
°a

b
•a
°b
无穷区间 (, a) {x x a}, 或 {x x a},
结论:同一定义域上两个单调性相同的函数之和 与这两个函数具有相同的单调性.
x1 , x2 D,且x1 x2 , 若f ( x), g( x)单增,
则f ( x2 ) g( x2 ) [ f ( x1 ) g( x1 )] [ f ( x2 ) f ( x1 )] [g( x2 ) g( x1 )] 0,
.
2
1 x2
习题
(1) y x的值域(, ), y x2的值域[0, ). (5) y 1 cos 2x 2cos2 x 2 | cos x | 值域为[0, 2],
y 2 cos x的值域为[ 2, 2].
§1.3 函数的基本性质
单调性、有界性、奇偶性和周期性
一、 单调性
设ƒ(x)为定义在区间 I 上的函数,若∀x1, x2∈D,
当x1< x2 时,恒有
或ff ((
x1 x1
) )
f f
( (
x2 x2
) )
f ( x1 ) f ( x2 ) f ( x1 ) f ( x2 )
则称ƒ(x)在区间
I
上严格单调或单调
. 增加
减少
对应曲线是
y
上升 下降
的.
y
y= ƒ(x)
f ( x2 )
f ( x1 )
x1 o x2
x
y= ƒ(x)
o
x
1, x 0

符号函数
y
sgn( x)
0,
x0
1, x 0
y

o•
x
°–1

狄立克莱函数
y
1,
0,
x Q (有理数集) x Q (无理数集)
例 取整函数(阶梯曲线) y = [x] 为不超过 x 的最大整
数部分.
y
[0.3]= 0 [2.8]= 2 [-0.3]= -1
[-2.6]= -3
0
相关文档
最新文档