第二章流体运动学基本概念
流体力学第2章流体运动学基本概念

10
→
→
→
→
对于任一流体质点,其速度可表示为:
r x y z v i j k vx i v y j vz k t t t t 其加速度可表示为:
用拉格朗日法描述流体运动看起来比较简 单,实际上函数B(a,b,c,t)一般是不容易找到的, 往往不能用统一的函数形式描述所有质点的物
理参数的变化。所以这种方法只在少数情况下
使用,在本书中主要使用欧拉法。
13
2.2.2 欧拉法(也叫场法)
基本思想:在确定的空间点上来考察流体的流动, 将流体的运动和物理参量直接表示为空间坐标和时间的 函数,而不是沿运动的轨迹去追踪流体质点。 例:在直角坐标系的任意点(x,y,z)来考察流体流 动,该点处流体的速度、密度和压力表示为: v=v(x,y,z,t)=vx(x,y,z,t)i+ vy(x,y,z,t)j+ vz(x,y,z,t)k
15
2.2.3 质点导数
定义:流体质点的物理量对于时间的变化率。
拉格朗日法中,由于直接给出了质点的物理量的表达 式,所以很容易求得物理量的质点导数表达式。
B B(a, b, c, t ) t t
如速度的质点导数(即加速度)为:
v ( a , b, c , t ) a ( a , b, c , t ) t
v v v vy vz 又由矢量运算公式:v v vx x y z
其中矢量算子 i j k 叫哈密顿算子 x y z
18
于是质点的速度增量可以表示为:
v v ( v v )t t
流体运动学基础

1
常见过流断面的湿周、水力半径和当量直径的计算式
a
过流断面
a c
b
d b
h
R
de
2r
r 2
r
r 2
d bc
2a b
ab 2a b 2ab a b
a b h 2d b c
2a b h d b c
2r
2r
连续性方程
2、沿程有分流的伯努利方程式
q1 q 2 q 3
q1
1
1
2
3
q2 3 2 q3
通过过流断面1的流体,不是流向断面2,就是流向断面3,对 断面1-2,1-3分别列出伯努利方程式:
2 2 p v1 p v2 z1 1 1 z 2 2 2 h f 1 2 g 2 g g 2 g 2 2 z p1 1 v1 z p3 3 v 3 h 3 f 13 1 g 2 g g 2 g 将上面方程1乘以 gq2 ,方程2乘以 gq3 ,相加得分流的伯努利方程
三、其它几种形式的伯努利方程
1、总流的伯努利方程式 在总流上任取一过流断面,过流断面型心的高度为z,p取过流 断面的压力,过流断面的平均速度为 v ,过流断面上单位重力流体 的平均动能为 v 2 2 g , 为动能修正系数。 实际(粘性)流体总流上的伯努利方程式为:
z1
p1 v p v z2 2 h f 12 g 2g g 2g
v dA
A
A2
v2 dA2 v1dA1 2 v 2 A2 1 v1 A1 0
A1
一元定常流动的连续方程式:
流体运动的基本概念

流体运动的基本概念流体运动是物质在空间中运动的一种形式,它是一个复杂而又广泛研究的领域。
流体运动可以是气体、液体和等离子体等,这些物质的运动是由流体力学原理所控制的。
流体运动的研究是非常重要的,因为它们在大自然、工程、以及科学研究中都有广泛的应用。
流体的性质流体是一种没有固定形状和体积的物质,其分子之间存在着相互作用力。
这些分子以各种不同的速度在流体中运动,形成了流体的各种性质。
密度流体的密度定义为单位体积内的质量,以公斤/立方米(kg/m³)为单位。
通常情况下,流体密度变化很小,这是由于流体中分子之间的作用力总是抵消了它们之间的空隙,从而将整个流体装载在一个宏观的容器中。
黏度流体的黏度是衡量流体内部分子之间相互作用力的一种物理量。
比如说,在液体中,分子之间会发生相互碰撞,并使物体受到抵抗。
黏度通常用作流体内部分子阻力的量度,以帕(Pa)或牛顿秒/平方米(N·s/m²)为单位。
压强流体内部分子之间的相互作用力会产生压强。
压强表示在不同流体层之间的压力差。
压强通常用千帕(kPa)或巴(Pa)为单位。
流速流速是衡量流体运动强度的一个物理量,通常用米/秒(m/s)为单位。
流体运动的速度可以通过测量流量以及流动的横截面积来计算。
流速建立一个用于计算流体的物理模型,也为分析流体运动提供了重要的依据。
流量流量是指单位时间内通过流体运动的物质总量,常用升/秒(L/s)为单位。
流量有助于衡量流体的大量运动,特别是在水力学和空气动力学中,该量可用于计算流体开口处的速度。
雷诺数雷诺数是一种描述流体运动不稳定性的物理量,它建立在对流体内部分子相互作用力特性的基础上。
雷诺数衡量了流体内部分子之间的相互作用力与其内部速度之间的比值。
当这个比值超过某一阈值时,流体内部的运动就会发生不稳定性,表现为涡流和湍流等。
这些基本概念提供了一种理解流体运动的方式,是研究流体动力学的基础。
流体动力学是一种物理分支,旨在研究流体在不同条件下的运动和对流体特性的影响,包括密度、压强、黏度和流速等。
流体运动学(课件)

由于流线不会相交,根据流管的定 义可以知道,在各个时刻,流体质点不 可能通过流管壁流出或流入,只能在流 管内部或沿流管表面流动。
因此,流管仿佛就是一条实际的管 道,其周界可以视为像固壁一样,日常 生活中的自来水管的内表面就是流管的 实例之一。
图3-13 流管
3.2流体运动的若干基本概念
2. 流束
流管内所有流体质点所形成的流动称为流束,如图3-14所示。流 束可大可小,根据流管的性质,流束中任何流体质点均不能离开流束。 恒定流中流束的形状和位置均不随时间而发生变化。
3.2流体运动的若干基本概念
3.2. 6.2非均匀流
流场中,在给定的某一时刻,各点流速都随位置而变化的流动称 为非均匀流,如图3-21所示。 非均匀流具有以下性质:
1)流线弯曲或者不平行。 2)各点都有位变加速度,位变加速度不为零。 3)过流断面不是一平面,其大小和形状沿流程改变。 4)各过流断面上点速度分布情况不完全相同,断面平均流速沿程 变化。
3.2流体运动的若干基本概念
控制体是指相对于某个坐标系来说,有流体流过的固定不变的空 间区域。
换句话说,控制体是流场中划定的空间,其形状、位置固定不变, 流体可不受影响地通过。
站在系统的角度观察和描述流体的运动及物理量的变化是拉格朗 日方法的特征,而站在控制体的角度观察和描述流体的运动及物理量 的变化是欧拉方法的特征。
图3-1 拉格朗日法
3.1流体运动的描述方法
同理,流体质点的其他物理量如密度ρ、压强p等也可以用拉格朗p=p(a,b,c,t)。
从上面的分析可以看到:拉格朗日法实质上是应用理论力学中的 质点运动学方法来研究流体的运动。
它的优点是:物理概念清晰,直观性强,理论上可以求出每个流 体质点的运动轨迹及其运动参数在运动过程中的变化。
流体力学2章讲稿

第二章 流体运动学只研究流体运动, 不涉及力、质量等与动力学有关的物理量。
§2.1 流体运动的描述 两种研究方法:(1)拉格朗日(Lagrange)法: 以流场中质点或质点系为研究对象, 从而进一步研究整个流体。
理论力学中使用的质点系力学方法,难测量,不适用于实用理论研究。
(2)欧拉(Euler)法: 将流过空间的流体物理参数赋予各空间点(构成流场),以空间各点为研究对象,研究其物理参数随时间t ,位置(x ,y ,z )的变化规律。
易实验研究,流体力学的主要研究方法。
两种研究方法得到的结论形式不同,但结论的物理相同。
可通过一定公式转换。
1. 拉格朗日法有关结论质点: r=r (t ) dt d rV = dtd dt d V r a ==22x=x (t ) dt dxu = 22dtx d a x =y=y (t ) dtdyv = 22dt y d a y =p=p (t ) T=T (t ) .. .. .. .. .. .. .. .. 质点系:x=x (t,a,b,c ) p=p (t,a,b,c ) T=T (t,a,b,c ) .. .. .. .. .. .. .. ..(a, b, c)是质点系各质点在t =t 0时刻的坐标。
(a, b, c)不同值表不同质点2. 欧拉法物理量应是时间t 和空间点坐标x, y,z 的函数u =u(x, y, z, t) p =p(x, y, z, t) T =T(x, y, z, t) 3. 流体质点的随体导数!!流体质点的随体导数:流体质点物理参数对于时间的变化率。
简称为质点导数。
例:质点速度的随体导数(加速度)dt d V 质点分速度的随体导数dtdu质点压力的随体导数dtdp质点温度的随体导数dt dT.. .. .. .. .. .. 质点导数是拉格朗日法范畴的概念。
流体质点随体导数式---随体导数的欧拉表达式dt d V =z wy v x u t t∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V V V V V V Vdt du =z u w y u v x u u t u u tu∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂Vdt dT =z T w y T v x T u t T T tT∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V普遍形式: dt dF =z F w y F v x F u t F F tF∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂VF t )(∇⋅+∂∂=V证其一: dt d V =V V V∇⋅+∂∂t 由 dt d V=tt ∆-→∆V V 'lim 0因 V=V (x ,y , z,t )V ’=V (x+Δx ,y+Δy ,z+Δz,t+Δt )所以 V ’=V++∆∂∂x x V +∆∂∂y y V z z∆∂∂V t t ∆∂∂+V 代入上式得dt d V==∆∆∂∂+∂∂∆+∂∂∆+∂∂∆→∆tt z z y x xt tV V y V V lim 0V V V z V y V x V t V ∇⋅+∂∂=∂∂+∂∂+∂∂+∂∂=tw v u 可见, 在欧拉法中质点速度的随体导数(即加速度)由两部分组成。
流体力学第二章 流体运动学基础

整理课件
5
2.1.1拉格朗日方法
流体力学第二章
✓ 拉格朗日方法是着眼于流体质点来描述流体的运动状态. 如何区别流体的质点呢?
➢ 质点标识----通常是用某时刻各质点的空间坐标(a,b,c) 来表征它们。
➢ 某时刻一般取运动刚开始的时间.以初始时刻流体质点 的坐标作为区分不同流体质点的标志.
拉格朗日方法的一般表达:
流体力学第二章
第二章
流体运动学基础
2021/6/29
整理课件
1
第二章 流体运动学基础
流体力学第二章
✓ 流体运动学是运用几何的方法来研究流体的运动,通常不 考虑力和质量等因素的影响。
✓ 流体运动学是用几何学的观点来研究流体的运动规律,是 流体力学的一个组成部分。
✓ 本章的学习目标:
➢ 掌握描述流动的两种方法(拉格朗日法及欧拉法), 结合迹线,流线,流管,流体线等显示流动特性的曲 线研究流动特性。
Vr
Vr r
V r
Vr
Vz
Vr z
V
2
r
ddVt
V t
Vr
V r
V r
V
Vz
V z
VrV r
dVz
dt
Vz t
Vr
Vz r
V r
Vz
Vz
Vz z
可得平面极坐标中加速度的表达式
Vz 0
ddVtr
Vr t
Vr
Vr r
V r
Vr
V
2
r
dV dt
V t
Vr
V r
V r
V
VrV r
2021/6/29
整理课件
2
流体力学第二章
3.2 流体运动学基本概念

y t 1
dy vy y dt 积分得 ln xy C 由过 (1, 1) 点得 C 0
得迹线方程为
xy 1
可以看出,当流动恒定时流线和迹线重合。
四、流管、流束、微小流束和总流 流管:流场中过封闭曲线上各点作流线所围成的管状 曲面,见图。
流体运动学基本概念
宫汝志
§3-2 流体运动学基本概念
一、流场,运动参数和一、二、三元流动 运动参数指表征流体运动特征的物理量。
一、二、三元流动又称为一、二、三维流动。 一元流动(One-dimensional Flow):流体的运动 参数只是一个坐标的函数,如 v v(s) ,见图。
二元流动(Two-dimensional Flow):流体的运动 参数为两个坐标的函数,如 v v(r , x) ,见图。
流线可以形象的描述流场状态,见动画。
(2)流线的作法:欲作流场中某瞬时过A点的流线,可 在该瞬时作A点速度 v1 ;在 v1 上靠近A点找点 2,并在同 一时刻作 2点速度 v 2 ;再在 v 2 上靠近2点找点3,也在同一 时刻作速度 v3 ;依次作到 N点,得到折线A-2-3-…-N,当 各点无限靠近时得到的光滑曲线即为流线。
积分得:ln x ln c1 ln y 则: y c1 x 此外,由 vz 0 得 dz 0 z c2 因此,流线为xoy平面上的一簇通过原点的直线, 这种流动称为平面点源流动(c>0时)或平面点汇 流动(c<0时)。
例二 已知某平面流场流速分布为 vx x (t 3), vy y 2 求其流线和迹线方程。
4a 1 a 4 a
2( a b) ab 2( a b) 2ab ab
第二章2.1 流体运动学

郭宁
山东轻工业学院
化学工程学院 2008.3
2.1流体运动的表示方法
一.拉格朗日法
着眼于流体个别质点的运动。
标
流Ar (体a,坐b,标c):来起表始示时,刻称(为t=拉0格),朗每日个坐质标点。的他坐始
终表示同一个流体xr=质f点(Ar。,t它) 在t时刻的坐标:
轨线 流体质点位置随时间的变化。
是均匀流
例:速度场ux=a,uy=bt,uz=0(a、b为常数) 求:(1)流线方程及t=0、1、2时流线图;
(2)迹线方程及t=0时过(0,0)点的迹线。 解:(1)流线: dx dy
a bt
积分:
y c=2
c=1
c=0
o
x
y bt x c a
y c=2 c=1 c=0
o
——流线方程
y
x
o
x t 1
y t 1 x y 2 ——迹线方程(直线)
(3)若恒定流:ux=x,uy=-y
流线 xy 1 迹线 xy 1
注意:恒定流中流线与迹线重合
例:速度场
u
(4
y
6
x)ti
(6
y
9x)tj
求(1)t=2s时,在(2,4)点的加速度;
(2)是定常流还是非定常流;
(3)是均匀流还是非均匀流。
解:(1)ax
dux dt
ux t
ux
ux x
uy
ux y
uz
ux z
(4y 6x) (4y 6x)t(6t) (6y 9x)t(4t)
解:(1)流线: dx dy
xt yt
积分: ln(x t)(y t) c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Dv v v v v v=xti+ytj+ztk 2) vx vy vz Dt x y z t Dvx v x v x v x v x ax vx vy vz Dt x y z t ( xt 2 ) 0 0 x x(t 2 1) ay Dvy Dt x y z t Dvz v z v z vz v z az vx vy vz z (t 2 1) Dt x y z t a a x i a y j a z k (t 1)(xi yj zk )
23
解:1)
T=At2/(x2+y2+z2)
DT T T T T vx vy vz Dt t x y z 2 At 2x 2 2 2 xt At yt At 2 2 2 2 2 2 x y z (x y z ) 2y 2z 2 2 zt At 2 2 2 2 (x y z ) ( x y 2 z 2 )2 2 At 2 At 3 2 At(1 t 2 ) 2 2 2 2 2 2 2 2 2 x y z x y z x y z
球坐标:r—径向坐标,θ—周向坐标,Ф—轴向坐标
D 1 1 (vr v v ) Dt r r sin t
22
例2-1. 已知流场的速度为
v=xti+ytj+ztk
温度为T=At2/(x2+y2+z2)。 求:1)流体质点温度的变化率。
2)速度变化率即加速度。
式中:a,b,c被称为拉格朗日变数。不同的一组(a,b,c) 表示不同的流体质点。
10
→
→
→
→
对于任一流体质点,其速度可表示为:
r x y z v i j k vx i v y j vz k t t t t
其加速度可表示为:
15
2.2.3 质点导数
定义:流体质点的物理量对于时间的变化率。
拉格朗日法中,由于直接给出了质点的物理量的表达
式,所以很容易求得物理量的质点导数表达式。
B B(a, b, c, t ) t t
如速度的质点导数(即加速度)为:
v ( a , b, c , t ) a ( a , b, c , t ) t
描述流体运动的两种不同方法。
拉格朗日法
(a,b,c,t)
在数学上可以互相推导 两种变数之间的数学变换
欧拉法
(x,y,z,t)
27
(1)拉格朗日表达式→欧拉表达式 若已知拉格朗日法变数(a,b,c,t)表示的物理参 数Ф= Ф (a,b,c,t)。 由式
x x ( a , b, c , t ) y y ( a , b, c , t ) z z ( a , b, c , t )
20
D vx vy vz Dt x y z t Dp p p p p vx vy vz Dt x y z t
推而广之,欧拉法中任意物理量Ф的质点导数可 以写成:
D vx vy vz Dt x y z t
3
2.1.2 流动的分类
(1)按随时间变化特性:稳态流动和非稳态流动
稳态流动:流体运动参数与时间无关,也叫 定常流动、恒定流动。
vx= vx(x,y,z)
vy= vy(x,y,z)
vz= vz(x,y,z)
非稳态流动:流体运动参数与时间有关,也 叫非定常流动、非恒定流。(例1.2.) 说明一点:流体流动稳态或非稳态流动与所选 定的参考系有关。
用拉格朗日法描述流体运动看起来比较简 单,实际上函数B(a,b,c,t)一般是不容易找到的, 往往不能用统一的函数形式描述所有质点的物
理参数的变化。所以这种方法只在少数情况下
使用,在本书中主要使用欧拉法。
13
2.2.2 欧拉法(也叫场法)
基本思想:在确定的空间点上来考察流体的流动, 将流体的运动和物理参量直接表示为空间坐标和时间的 函数,而不是沿运动的轨迹去追踪流体质点。 例:在直角坐标系的任意点(x,y,z)来考察流体流 动,该点处流体的速度、密度和压力表示为: v=v(x,y,z,t)=vx(x,y,z,t)i+ vy(x,y,z,t)j+ vz(x,y,z,t)k
流态的判断:雷诺准数Re=ρud /μ 对于管内流动,Re<2300为层流, Re>4000为湍流。
7
2.2 描述流体运动的两种方法
2.2.1拉格朗日法(又称质点法) 通过研究流场中单个质点的运动规律,进 而研究流体的整体运动规律。具体地说:是沿 流体质点运动的轨迹进行跟踪研究。 基本思想:将流体质点表示为空间坐标、 时间的函数。在描述流体时,跟踪流体质点, 指出各流体质点在不同时刻的位置和有关的物 理参数(比如速度,压强、密度、温度等)。
v v v vy vz 又由矢量运算公式:v v vx x y z
其中矢量算子 i j k 叫哈密顿算子 x y z
18
于是质点的速度增量可以表示为:
v v (v v )t t
则速度的质点导数——加速度
16
对于欧拉法描述的流场,质点导数以速度为例 分析: z 假设在直角坐标系中存在速度 p vΔt ṕ 场 v(x,y,z,t)。
x y
设在时刻t和空间点p(x,y,z)处, 流体质点的速度为: vp=v(x,y,z,t)
经过时间间隔Δt后,该流体质点运动到 p′(x+vxΔt,y+vyΔt,z+vzΔt)点,质点移动的距离为vΔt。 在p′点处流体质点的速度为:
dx dy dz v x ( x, y , z , t ) , v y ( x, y , z , t ) , v z ( x, y , z , t ) dt dt dt
对上面微分方程进行求解,其结果为:
x x(c1 , y, z, t ) , y y( x, c2 , z, t ) , z z( x, y, c3 , t )
2
25
vx
v y
vy
v y
vz
v y
v y
y (t 1)
2
思考题
1.流体流动与固体运动有何区别? 2.流体流动如何分类? 3.拉格朗日法和欧拉法的基本思想有何不同? 4.两种方法质点导数的求法是否相同?为什么? 5.流体的速度导数包括哪两部分?
26
2.2.4两种方法的关系(拉格朗日法和欧拉法)
ρ=ρ(x,y,z,t)
p=p(x,y,z,t)
14
按欧拉法,流动问题有关的任意物理量φ(可以 是矢量,也可以是标量)均可表示为:
φ = φ(x,y,z,t)
若流场中任何一物理量φ都不随时间变化,这 个流场就称之为稳态流场。相应的流动称为稳态 流动或定常流动,或者说对于稳态流动有:
0 t
另一部分是随时间的变化率әv/әt 部分。
表示流场的非稳态
通常用符号Dv/Dt来表示欧拉法中的质点导数,则加 速度可以写成:
Dv v v v v v a v v vx vy vz Dt t x y z t
类似地,可用同样方法得到其他物理量的质点导数, 如密度和压力的质点导数分别为:
17
vp′=v(x+vxΔt, y+vyΔt, z+vzΔt, t+Δt)
显然,经过时间间隔Δ t后,流体质点的速度增量为:
Δv= vp′- vp= v(x+vxΔt, y+vyΔt, z+vzΔt, t+Δt)-v(x,y,z,t)
对上式右边第一项作泰勒展开并略去二阶以上高阶无穷 小量得:
v v v v v (vx vy vz ) t x y z t
2
在数学上,流体的运动参数被表示为空间 和时间的函数。 vx = vx (x, y, z, t) vy = vy (x, y, z, t) vz = vz (x, y, z, t) 场:由于流体团所占据的空间每一点都是 研究对象,因此就将其看成一个“场”。 流场:充满流体的空间被称为“流场”。 相应地有“速度场”、“加速度场”、 “应力场”、“密度场”等。
可解得:
a a ( x, y , z , t ) b b ( x, y , z , t ) c c ( x, y , z , t )
则代入Ф= Ф (a,b,c,t)后,就得到该物理参数的欧 拉法表达式 Ф= Ф (x,y,z,t)。
(2)欧拉法表达式→拉格朗日表达式 若已知用欧拉法变数(x,y,z,t)表示的物理量 Ф= Ф (x,y,z,t),则首先由欧拉法的速度表达式求 出欧拉变数
v v x v y v z a i j k ax i a y j az k t t t t
式中:
v x = vx(a,b,c,t)
ax = ax(a,b,c,t)
vy = vy(a,b,c,t)
ay = ay(a,b,c,t)
vz = vz(a,b,c,t)
az = az(a,b,c,t)
11
同样流体密度、压力和温度可表示为:
ρ=ρ(a,b,c,t)
p= p (a,b,c,t)
T= T(a,b,c,t)
对于流体任一物理参数B均可类似地表示为
B=B(a,b,c,t).
对于任一流体质点的任一物理参数B的变化率都可 以表示为:
12
B B(a, b, c, t ) t t
v v v v v v a lim v v vx vy vz t 0 t t x y z t