北京交通大学陈后金教授信号处理课件

合集下载

信号与系统第7章(陈后金)1

信号与系统第7章(陈后金)1

Re z
-1
z平面
例:求以下序列的z变换及收敛域。
(1) x[k ] a u[k ]
k
(2)
1 0 k N - 1 x[k ] 0 其它
Im z
解:
(1)
X ( z) a z
k k 0

-k
1 -1 1 - az
|a|
Re z
ROC : z a
(2)
X ( z ) z -k
四、单边z变换的主要性质
3. 指数加权特性
z a x[ k ] X ( ) a
k Z
ROC a Rx
例:求aksin(0k) u[k] 的z变换及收敛域
解:
sin( 0 k )u[k ]
z
sin 0 z -1 1 - 2 z cos 0 z
-1 -2
z 1
对上式应用初值定理,即得
a x[1] limz{X ( z) - x[0]} lim a -1 z z 1 - az 当|a|<1时,(z-1)X(z)的收敛域包含单位圆,由终 值定理,有 z -1 0 x[] lim z -1) X (z) lim ( -1 z 1 1 - az z1
例:求以下单边周期序列的单边z变换。
k
n 0, 1, 2, 1, k 2n, (1) x[ k ] 0, k 2n 1, n 0, 1, 2,
(2) y[k ] (-1)i x[k - i]
i 0
一般情况:周期为N的单边周期序列xN[k]u[k]可以表示为第一 个周期序列x1[k]及其位移x1[k-lN]的线性组合,即
证:Z{x1[k ] x2 [k ]} Z{ x1[n]x2 [k - n]}

信号与系统第五章(陈后金)3

信号与系统第五章(陈后金)3
Y 2 ( j ) F [ x h ( t ) sin c t ] 1 2j { X h [ j( c )] X h [ j( c )]}
Y S ( j ) Y1 ( j ) Y 2 ( j )
利用希尔伯特变换下边带幅度调制的频谱
X ( j )
A
Y1 ( j )
A/ 2
c
c
Y2 ( j )

m
m
X h ( j )

A/ 2
c
A/ 2

Aj
c

YS ( j )
A
m
m
c
c

四、频分复用
X 1 ( j )
调制系统
cos( c1t )
x1 (t )
0
X 2 ( j )

x 2 (t )
一、双边带调幅 (Amplitute Modulation)
信号的频谱分析
x (t )
y (t )
c ( t ) cos c t y ( t ) x ( t ) cos c t
c (t )
幅度调制方块图
Y ( j )
1 2π
1 2
X ( j ) * π [ ( c ) ( c )]
...

例 如图所示系统中,已知输入信号x(t)的频谱X(j), 试分析系统中A、B、C、D各点及y(t)的频谱并画出 频谱图,求出y(t)与x(t)的关系。
H1(j) x(t) H2(j) C 1 1 y(t)

A
B

-100 -80 80 100
ห้องสมุดไป่ตู้

信号系统(陈后金)第4章-信号的频域分析

信号系统(陈后金)第4章-信号的频域分析
w0 w0
0 2 lim[ 2 ] 2 0 + w


2 w dw 2arctg( ) 2 2 2 +w
f (t )
dt (t )e jwt dt 1


(t )
(1)
1
F (w )
0
t
0
w
单位冲激信号及其频谱
(4) 直流信号
直流信号不满足绝对可积条件,可采用极限 的方法求出其傅里叶变换。
F [1] lim F [1 e
0
| t|
2 ] 2 (w ) ] lim[ 2 2 0 + w
符号表示:


F ( jw ) F[ f (t )] f (t ) F 1[ F ( jw )]

f (t ) F ( jw )
F
狄里赫莱条件
(1)非周期信号在无限区间上绝对可积


f (t ) dt
(2)在任意有限区间内,信号只有有限个最大值 和最小值。 (3)在任意有限区间内,信号仅有有限个不连续点, 且这些点必须是有限值。 狄里赫莱条件是充分不必要条件
P 1
2 2 2 | C ( n w ) | C ( 0 ) + 2 | C ( n w ) | 0.1806 0 0 n =1 4 4
n =—4
P 0.1806 1 90 % P 0.200
周期矩形脉冲信号包含在有效带宽内的各谐波平均功 率之和占整个信号平均功率的90%。
虚指数信号 正弦型信号单位冲激序列
• 常见周期信号的频谱密度
1. 常见非周期信号的频谱
(1) 单边指数信号

信号与系统第二章(陈后金)3

信号与系统第二章(陈后金)3

1.信号分解为直流分量与交流分量
连续时间信号
x(t ) xDC (t ) + xAC (t )
x (t)
1 b xDC (t ) a x(t )dt b-a
x(t ) xDC (t ) + xAC (t )
直流
t
交流
离散时间信号
x[k ] xDC [k ] + xAC [k ]
信号与系统
Signals and Systems
普通高等教育“十一五”国家级规划教材 《信号与系统》
陈后金,胡健,薛健
高等教育出版社, 2007年
信号的时域分析
连续时间信号的时域描述 连续时间信号的基本运算
离散时间信号的时域描述
离散时间信号的基本运算 确定信号的时域分解
离散时间信号的基本运算
翻转 (x[k] x[-k] ) 位移 ( x[k] x[kn] ) 内插与抽取 序列相加 序列相乘 差分与求和
1. 翻转
x[k] x[-k]
将 x[k] 以纵轴为中心作180度翻转
x[k] 2 1 -1 0 1 2 3 k
-2 -1 0 1
3 2
x[-k] 2
3 2 1 2 k
2. 位移 x[k] x[kn]
n>0
x[k-n]表示将x[k]右移n个单位。 x[k+n]表示将x[k]左移n个单位。
原信号x
4倍抽取后信号x1
8倍抽取后信号x1
4. 序列相加
指将若干离散序列序号相同的数值相加
y[k ] x1[k ] + x2[k ] + + xn [k ]
x1[ k ]
1 k 0 -1

信号与系统第四章(陈后金)3

信号与系统第四章(陈后金)3

则ax1 (t ) bx2 (t ) F aX1 ( j) bX2 ( j)
其中a和b均为常数。
2. 共轭对称特性
若 x(t ) F X ( j)

x * (t ) F X * (- j) x * (-t ) F X * ( j)
X(j)为复数,可以表示为
cos 0t 1
( π)
X ( j )
( π)
t
- 0
0
0

余弦信号及其频谱函数
(二)常见周期信号的频谱密度
2. 正弦型信号
sin 0 t 1 j0t (e - e - j0t ) F - jπ[d ( - 0 ) - d ( 0 )] 2j
sin 0 t 1
3. 时移特性
若x(t ) F X ( j) 则x(t - t0 ) F X ( j) e- jt0
式中t0为任意实数 证明:
F[ x(t - t0 )]


-
x(t - t0 )e
- jt
dt
令x = t-t0,则dx = dt,代入上式可得
F[ x(t - t0 )]
信号与系统信号与系统signalssystemssignalssystems普通高等教育十一五国家级规划教材普通高等教育十一五国家级规划教材信号与系统信号与系统高等教育出版社高等教育出版社20072007年年连续周期信号的频域分析连续周期信号的频域分析连续非周期信号的频域分析连续非周期信号的频域分析离散周期信号的频域分析离散周期信号的频域分析离散非周期信号的频域分析离散非周期信号的频域分析信号的时域抽样和频域抽样信号的时域抽样和频域抽样连续时间信号的傅氏变换及其频谱连续时间信号的傅氏变换及其频谱常见连续时间信号的频谱常见连续时间信号的频谱连续时间傅氏变换的性质连续时间傅氏变换的性质常见非周期信号的频谱常见非周期信号的频谱频谱密度频谱密度单边指数信号单边指数信号双边指数信号双边指数信号eeaatt单位冲激信号单位冲激信号ddtt直流信号直流信号符号函数信号符号函数信号单位阶跃信号单位阶跃信号uutt常见周期信号的频谱密度常见周期信号的频谱密度虚指数信号虚指数信号正弦型信号正弦型信号单位冲激串单位冲激串单边指数信号单边指数信号幅度频谱幅度频谱相位频谱相位频谱单边指数信号单边指数信号双边指数信号双边指数信号幅度频谱幅度频谱cossin相位频谱相位频谱单位冲激信号单位冲激信号dt单位冲激信号及其频谱直流信号直流信号xxtt11tt直流信号不满足绝对可积条件可采用极限的方法求出其傅里叶变换

信号与系统第7章(陈后金)3

信号与系统第7章(陈后金)3

一、系统函数
2. H(z)与h[k]的关系
[k]
h[k] yzs [k] = [k]*h[k] h[k ]
Z { yzs [k ]} Z {h[k ]} H ( z) Z {h[k ]} Z { [k ]} 1
H ( z ) Z {h[k ]}
h[k ] Z [H ( z)]
H(z)
2.5 1.25 z 1 0.5 z 2 H ( z) 1 0.25 z 2
二、系统函数的零极点分布
系统函数可以表达为零极点增益形式,即
( z r1 )( z r2 )( z rm ) N ( z) H ( z) K D( z ) ( z z1 )( z z2 )( z zn )
-
-
-
W(z)
an-1 an
z域框图
二、离散系统的模拟框图
2. 级联型结构
将系统函数的N(z) 和D(z)分解为一阶或二阶实系
数因子形式,将它们组成一阶和二阶子系统,即
H(z) = H1(z) H2(z) ….. Hn(z)
画出每个子系统直接型模拟流图,然后将各 子系统级联。
X(z)
H1(z)
H2(z)
D(z)=0的根是H(z)的极点,在z平面用表示。 N(z)=0的根是H(z)的零点,在z平面用 表示。 例如
(2) 1 Im (z) j 0. 5j (3) 0. 5 0 0. 5j j Re (z) 0. 5 1
H (z)
z3(z 1 j)(z 1 j)
(z 0.5)(z 1)2(z 0.5 j0.5)(z 0.5 j0.5)
w[k ] a j w[k j ] x[k ]

信号与系统第五章陈后金2

信号与系统第五章陈后金2

Yzs (e jΩ ) X (e jΩ )
DTFT {h[k ]}
DTFT{d [k]}
DTFT{h[k ]}
H(ej)一般可表示为幅度与相位的形式
H (e j ) | H (e j ) | e jj( )
幅度响应
相位响应
(magnitude response) (phase response)
( ) dj( ) 群延时 ( group delay )
即在间断点的前后出现了振荡,其振荡 的最大峰值约为阶跃突变值的9%左右, 且不随滤波器带宽的增加而减小。
结论
1. 输出响应的延迟时间取决于理想低通滤波器的 相位响应的斜率。
2. 输入信号在通过理想低通滤波器后,输出响应 在输入信号不连续点处产生逐渐上升或下降的 波形,上升或下降的时间与理想低通滤波器的 通频带宽度成反比。
低通变为无失真传输系统, h(t)也变为冲激信号。
五、理想模拟滤波器
2. 理想低通滤波器的冲激响应
分析:
2) h(t)主峰出现时刻 t = td 比输入信号d (t) 作用
时刻t = 0延迟了一段时间td 。td是理想低通 滤波器相位响应的斜率。
3) h(t)在 t<0 的区间也存在输出,可见理想低 通滤波器是一个非因果系统,因而它是一个 物理不可实现的系统。
Yzs (e j X (e j
) )
若n阶离散LTI系统的差分方程为
y[k] a1 y[k 1] an1 y [k n 1] an y[k n] b0x[k ] b1x[k 1] bm1x [k m 1] bm x[k m]
则离散系统的频率响应可表示为
H (e j
变,而相位没有失真。
四、线性相位的离散时间LTI系统

信号与系统第3章(陈后金)1

信号与系统第3章(陈后金)1
齐次解yh(t)的形式由齐次方程的特征根确定
特解yp(t)的形式由方程右边激励信号的形式确定
一、系统的零输入响应
定义:系统的零输入响应是输入信号为零,仅由系 统的初始状态单独作用而产生的输出响应。 数学模型:
y ( n) (t ) an1 y ( n1) (t ) a1 y ' (t ) a0 y(t ) 0 求解方法: 根据微分方程的特征根确定零输入响应的形式
y ( n ) (t ) an 1 y ( n 1) (t ) a1 y ' (t ) a0 y (t ) bm x ( m ) (t ) bm 1 x ( m 1) (t ) b1 x ' (t ) b0 x(t )
ai 、 bj为常数。
离散LTI系统用n阶常系数线性差分方程描述

dx(t ) dy (t ) T{ } dt dt
离散时间系统, 若 T{x[k]}= y[k] 则 T{ x[k] -x[k-1]}= y[k] - y[k-1]
线性非时变(LTI)系统的特点
4.积分(求和)特性
连续时间系统,若 T{x(t)}=y(t) 则
T {
t
x( )d }
2
非线性系统 非线性系统 线性系统 线性系统
(3) y(t ) 4 y(0) x(t ) 3x(t )
dx(t ) (4) y(t ) 4 y(0) 2 sin t dt
不满足可分解性
(5) y[k ] ky[0]

i 0
k
x[i]
线性非时变(LTI)系统的特点
2.非时变特性
1
0
1
t
0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章 数字滤波器的实现
第9章 数字语音信号
主要参考书
[1] 陈后金等译:数字信号处理及MATLAB仿真, 机械工业出版社, 2015
[2] S.K. Mitra. 数字信号处理(第4版) 清华大学出版社, 2012
[3] A.V.Oppenheim. 离散时间信号处理(第3版)英文版 ,电子工业出版社, 2011 [4] 胡广书.数字信号处理.清华大学出版社(第3版), 2012. [5]P.P. Vaidyanathan, Multirate systems and filter banks, Prentice Hall, Englewood Cliffs NJ,1993. [6] N.J.Fliege, Multirate digital signal processing. John Wiley &Sons, NY,1994. [7] I.Daubechies, 小波十讲(修订版) ,国防工业出版社, 2011 [8] S. Mallat 信号处理的小波导引:稀疏方法(第3版)英文影印版, 2012
第4章 IIR数字滤波器的设计
第5章 FIR数字滤波器的设计
第6章 随机信号功率谱估计
第7章 数字系统的结构 第8章 多速率信号处理基础Fra bibliotek主要教材
第1章 概述 第2章 离散时间信号 第3章 频域概念 第4章 抽样与重建 第5章 FIR滤波器设计与分析 第6章 IIR滤波器设计与分析 第7章 抽样速率转换
近代数字信号处理
(Advanced Digital Signal Processing)
信号与图像处理研究室 电子信息工程学院
主要教材
主教材: 普通高等教育“十一五”国家级规划教材
《数字信号处理》第2版
陈后金,薛健,胡健 高等教育出版社,2008
主要教材
第1章 离散信号与系统分析基础 第2章 离散傅里叶变换DFT 第3章 DFT快速算法FFT
相关文档
最新文档