信号与系统第一章答案陈后金版
信号与系统第一章(陈后金)

系统的分类
连续时间系统 与 离散时间系统 线性系统 与 非线性系统 非时变系统 与 时变系统 因果系统 与 非因果系统 稳定系统 与 不稳定系统
系统 是指由相互作用和依赖的若干事物组成
的、具有特定功能的整体。
ä è Å Å Ê È Ð ¹ ä ö Å Å Ê ³ Ð ¹
Å ¢ ´ Ð Ï Ô
´ · « Ð ÷ Æ
[例] 判断下列系统是否为线性系统?(其中 y(0)、 y[0]为系统的初始状态,x(t) 、x[k]为系统 的输入激励,y(t)、 y[k]为系统的输出响应)。
(1) y(t ) 5 y(0) 4 x(t )
(2) y(t ) 2 y(0) 6 x (t )
2
(3) y(t ) 4 y(0) x(t ) 3x(t )
线性系统:具有线性特性的系统。 线性特性 包括 均匀特性 与 叠加特性 。 1) 均匀特性:
若x1 (t ) y1 (t )
则Kx1 (t ) Ky1 (t )
2) 叠加特性:
若x1 (t ) y1 (t ), x2 (t ) y2 (t )
则x1 (t ) x2 (t ) y1 (t ) y2 (t )
二、系统的分类
2.线性系统 与 非线性系统
含有初始状态线性系统的 y1[ k ] y1[0] x2 [ k ] T y2 [k ] y 2 [0]
x1[ k ] x2 [ k ] T a b y [0] a y1[ k ] b y 2 [ k ] 2 y1[0]
di(t ) L Ri(t ) x(t ) dt
输入输出描述:N阶微分方程或N阶差分方程 状态空间描述:N个一阶微分方程组或N个一阶差分方程组
信号与系统 陈后金 第二版 课后习题答案(完整版)

(1) f (t) = 3sin 2t + 6 sinπ t
(2) f (t) = (a sin t) 2
(8)
f
(k)
=
cos⎜⎛ ⎝
πk 4
⎟⎞ ⎠
+
sin⎜⎛ ⎝
πk 8
⎟⎞ ⎠
−
2
cos⎜⎛ ⎝
πk 2
⎟⎞ ⎠
解:(1)因为 sin 2t 的周期为π ,而 sin πt 的周期为 2 。
显然,使方程
−∞
0
2-10 已知信号 f (t) 的波形如题 2-10 图所示,绘出下列信号的波形。
f (t)
2
1
−1 0
t 2
题 2-10 图
(3) f (5 − 3t) (7) f ′(t) 解:(3)将 f (t) 表示成如下的数学表达式
(5) f (t)u(1 − t)
由此得
⎧2
f
(t)
=
⎪ ⎨ ⎪ ⎩
f (t)u(1− t) 2
1
0.5
t
−1 0
1
(7)方法 1:几何法。由于 f (t) 的波形在 t = −1处有一个幅度为 2 的正跳变,所以 f ′(t) 在 此处会形成一个强度为 2 的冲激信号。同理,在 t = 0 处 f ′(t) 会形成一个强度为 1 的冲激信 号(方向向下,因为是负跳变),而在 0 < t < 2 的区间内有 f ′(t) = −0.5 (由 f (t) 的表达式可
第 1 页 共 27 页
《信号与系统》(陈后金等编)作业参考解答
(2)显然,该系统为非线性系统。 由于
T{f (t − t0 )}= Kf (t − t0 ) + f 2 (t − t0 ) = y(t − t0 )
信号与系统陈后金版答案

第二步:求差分方程的齐次 解: 2 求差分方程的齐次 第二步 h [ 0 ] = C 1 + C 2 r −5r /6 +1/ 6 = 0 1 k1 1 k 1 特征方程为: [ ( + 特征方程为=hCk1 ] = )[3 (C 2) ( −) 2 ( 求 ] u [ C ] = 3, C 2 = − 2 h [1] ⇒ ) 出 k1 ∴r =1/ 2, r2 =1/3 2 3 3 1 2
(3) 计算固有响应与强迫响应 计算固有响应与强迫响应:
1 7 1 k 4 1 k y[k ] = [ − ( ) + ( ) ]u[k ] 完全响应: 完全响应 2 2 2 3 3 7 1 k 4 1 k 固有响应: yh [k ] = [− ( ) + ( ) ]u[ k ] 固有响应 2 2 3 3 1 强迫响应: 强迫响应 y p [k ] = u[k ] 2 (4) 计算瞬态响应与稳态响应 计算瞬态响应与稳态响应:
特征根为 s1 = -2, s2 = -5, 又因为 n > m , 所以: 则 h ( t ) = K 1e − 2 t u ( t ) + K 2 e − 5 t u ( t )
h '(t ) = − 2 K 1e −2 t u (t ) + K 1δ (t ) − 5 K 2 e −5 t u (t ) + K 2δ (t ) = − 2 K 1e −2 t u (t ) − 5 K 2 e −5 t u (t ) + ( K 1 + K 2 )δ (t ) h ''(t ) = 4 K 1e −2 t u (t ) − 2 K 1δ (t ) + 25 K 2 e −5 t u (t ) − 5 K 2δ (t ) + ( K 1 + K 2 )δ '(t ) 代入方程有: = K 1 + K 2 = '( t ) = 2 K 2δ ( t ) + 5 K∴K2 + (7/3; K1 )δ −1/3; 2δ '( t ) + 3δ ( t ) 1δ ( t )
陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(上册)

图2-2
3.有一离散时间信号
(1)画出
(2)求序列 学]
使之满足
解:(1)
又 比较上述两式可得: 故如图2-3所示。
[电子科技大
图2-3
4.已知 如图2-4(a),画出
和
的波形。[北
京理工大学]
解:将 反转得 如图2-4(b)所示,将它们相加、减得 ,波形如图2-4(c)、(d)所示。
图2-4 5.已知f(t)的波形如图2-5所示,令r(t)=tu(t)。
大学]
图1-2 解:因为:
故:
y2(t)的波形如图1-3所示。
图1-3 3.将如图1-4(a)、(b)所示的连续信号展成如下形式:
给出信号
最简单的解析表达形式。[北京航空航天大学]
图1-4
解:(a)该信号可分为两段:
和
可化简为
故
,即:
(b)该信号可分为三段: 可化简为 故
,即
4.求
的值。[北京航空航天大学2006研]
,应该与齐次解有关,即系统的特征根为-1和-3,故特征方程应为 ,即a0=4,a1=3。
(2)设系统对激励 rzs(t),则
的零输入响应和零状态响应分别为rzi(t)和
由于
,则由线性时不变系统的微分特性可知
同时,设系统的单位冲激响应为h(t),则由线性时不变系统的叠加性 可知
由式(1)、式(2),并设
陈后金《信号与系统》(第2版)配 套模拟试题及详解
第一部分 名校考研真题 第1章 信号与系统分析导论 一、选择题
1.方程 天大学2007研] A.线性时不变 B.非线性时不变 C.线性时变 D.非线性时变 E.都不对 【答案】B
描述的系统是( )。[北京航空航
信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
信号与系统习题(陈后金版)

4-8 已知周期信号f(t)=2cos(2лt-3)+sin(6лt), 求傅立叶级数指数表示式,并画出其频谱.
0 2
f (t ) e
j ( 2t 3 )
e
j ( 2t 3 )
• 3-16
• 3-24
解:
•
3-26
3-39 计算序列卷积和。 (1)2ku[k]*u[k-4] (3)(1/2)k u[k]*u[k]
(1)
n
2 u[n] u[k n 4] 2 n u[k 4]
n n0
k 4
1 2 k 3 u[k 4] (2 k 3 1)u[k 4] 1 2
动态方程式的特征根s1,2 = -1,2, 且n>m, 故h(t)的形式为
3 8 为y(t ) (3te
2 t
e
2 t
e )u(t )
t
1 t 1 3 t 2 t 3 7 y f (t ) ( e e e )u (t ) 2 2
3-14
3-14
• (2) y"(t ) 4 y' (t ) 4 y(t ) 3 f') 2 f (t ),t 0; f (t ) et u(t ),y(0 ) 2, y' (0 ) 3 (t
动态方程式的特征根s1,2 =
2, 则零输入响应的形式为
2 t
y x (t ) K1e
动态方程式的特征根s1,2 = -1,2, 且n>m, 故h(t)的形式为
3 8 为y(t ) (3te
信号与系统课后习题答案—第1章

第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?解: ① 连续信号:图〔a 〕、〔c 〕、〔d 〕; ② 离散信号:图〔b 〕; ③ 周期信号:图〔d 〕; ④ 非周期信号:图〔a 〕、〔b 〕、〔c 〕; ⑤有始信号:图〔a 〕、〔b 〕、〔c 〕。
1-2 某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。
解: 设T 为此系统的运算子,由条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。
① 线性1〕可加性不失一般性,设f(t)=f 1(t)+f 2(t),那么y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而|f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)|即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。
由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。
2〕齐次性由条件,y(t)=T[f(t)]=|f(t)|,那么T[af(t)]=|af(t)|≠a|f(t)|=ay(t) 〔其中a 为任一常数〕即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。
② 时不变特性由条件y(t)=T[f(t)]=|f(t)|,那么y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|,即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。
依据上述①、②两点,可判定此系统为一非线性时不变系统。
信号与系统课后习题答案

1.1绘出下列函数波形草图。
(1) (2)
(3) (4)
(5) (6)
(7) (8)
(9) (10)
(11) (12)
(13) (14)
1.2确定下列信号的能量和功率,并指出是能量信号还Biblioteka 功率信号,或两者均不是。(1)
解 能量有限信号。信号能量为:
(2)
解 能量有限信号。信号能量为:
(3)
解 功率有限信号。周期信号在( )区间上的平均功率等于在一个周期内的平均功率, 的周期为1。
(4)
解 功率有限信号。 是周期序列,周期为8。
(5)
解功率有限信号。由题(3)知,在 区间上 的功率为1/2,因此 在 区间上的功率为1/4。如果考察 在 区间上的功率,其功率为1/2。
(6)
解功率有限信号。由题(4)知,在 区间上 的功率为1/2,因此 在 区间上的功率为1/4。如果考察 在 区间上的功率,其功率为1/2。
(1) (2)
(7)
解 非功率、非能量信号。考虑其功率:
上式分子分母对 求导后取极限得 。
(8)
解 能量信号。信号能量为:
1.3已知 的波形如题图1.3所示,试画出下列函数的波形。
(1) (2)
(3) (4)
(5) (6)
(7) (8)
(9)
(10)
(11)
(12) (13)
(14) =
1.4已知 及 的波形如题图1.4所示,试分别画出下列函数的波形,并注意它们的区别。