第六章回归分析资料
第六章 相关分析与回归分析

b<0,y 有随 x 的增加而减少的趋势
●●●回归直线一定通过由观测值的平均值(x,y )所组成的点:
∵ yˆ a bx
a y bx
∴ yˆ y bx bx y b(x x)
当 xx 时, yˆ y,即回归直线通过点(x,y )
●直线回归方程配置的实例
实例:对表 6-1 的北碚大红番茄果实横径与果重进行回归分析
| r |愈接近于 1,相关愈密切 | r |愈接近于 0,相关愈不密切 0<r<1 时,为正相关 -1<r<0 时,为负相关 ●相关系数计算的实例: 实例:表 6-1 为番茄果实横径与果实重的观测值,求其相关性。
表 6-1 北碚大红番茄果实横径与果实重
果实横径(cm)
果重(g)
x
y
10.0
140
其中: r
n
[ x2 ( x)2 ][ y 2 ( y)2 ]
n
n
x、y——为两个变数的成对观测值 n——为观测值的对数(样本容量)
●●相关系数的性质:
●●●r 的符号取决于 x、y 离均差的乘积和(lxy 或 SP);符号的
性质表示两个变数之间的相关性质,即
r>0,表示正相关
r<0,表示负相关
∑y2=133071.0
n=10
a=-23.834
b=16.425
r=0.9931
结论:北碚大红番茄果实横径与果实重量的回归方程为:
yˆ 23.834 16.425 x
●回归关系的显著性测定——有 3 种方法。 ●●直线回归方程的方差分析
●●●y 的总变异的分解
SS y lyy ( y y)2 [( y yˆ) ( yˆ y)]2 ( y yˆ)2 ( yˆ y)2 2 ( y yˆ)(yˆ y) ( y yˆ)2 ( yˆ y)2 其中: 2 ( y yˆ )( yˆ y) =0
第六章 多元回归分析

2
可决系数
ESS RSS R 1 TSS TSS
2
该统计量越接近于1,模型的拟合优度越高。
调整的可决系数(adjusted coefficient of determination) 在样本容量一定的情况下,增加解释变量必定使 得自由度减少,所以调整的思路是:将残差平方和 与总离差平方和分别除以各自的自由度,以剔除 变量个数对拟合优度的影响:
[ RSS ( RSS1 RSS2 )] / k F ~ Fk ,n1 n2 2 k ( RSS1 RSS2 ) /(n1 n2 2k )
例6-1:在一个F3,60分布中5%的临界值和拒绝域
面积=0.95
面积=0.05
0 2.76 拒绝区域
例6-2:考虑如下解释主要俱乐部棒球运动员薪水的模型:
6.2 参数的最小二乘估计
拟合值和残差的重要性质
(1)残差的样本均值为0; (2)每个自变量和OLS残差之间的样本协方差为0;拟合
值与残差之间的样本协方差也为0;
(3)点( X 2 , X 3 ,
, X k , Y ) 总位于OLS回归线上;
ˆ ˆ X ˆX Y 1 2 2 3 3
(i=2,3…k)
注意:一元线性回归中,t检验与F检验一致
一方面,t检验与F检验都是对相同的原假设H0: 2=0 进行检验;
另一方面,两个统计量之间有如下关系:
F
e
2 ˆ y i 2 i
n2 ˆ 2
e
ˆ 2 x2 2 i
2 i2) xi2
ˆX k k
随机误差项的均值为0,方差的估计量为:
ee ˆ nk
2
6.3 最小二乘估计量的性质
统计学06第六章相关与回归分析

-5.3339 -21.2729 -20.0669
0.02111209 -58.5559
0.0675121 -201.421
2019/11/7
第六章 相关与回归分析
20
2.2 相关系数的特征及判别标准
解法 1
n x y
Lxx
L yy
Lxy
2
xx
2
y y
xx
3559.59
22
2.2 相关系数的特征及判别标准
解法 2
n x y x2 y2 x y
10 6470 5.813 4814300 3.446609 3559.59
r
10 3559.59 6471 5.813
10 4814300 64702 10 3.446609 5.8132
第六章 相关与回归分析
第二节 简单线性相关分析
2.1 相关系数的计算公式 2.2 相关系数的特征及判别标准 2.3 相关系数的检验
2.1 相关系数的计算公式
相关系r数与计ρ算公式: X 、Y 的协方差
相总关样 系体数本:相关 系V数Caor是 vXX一,Va个 YrY统
计量。可以证明,样本相
y y
10 6470 5.813 628210 0.0675121 -201.421
r
201 .421
628210 0 .0675121
0 .978051034 0.9781
2019/11/7
第六章 相关与回归分析
21
2.2 相关系数的特征及判别标准
x
280 320 390 530 650 670 790 880 910 1050
第六章相关与回归分析

• 总体相关系数ρ——根据总体数据计算的,
• 样本相关系数 r ——根据样本数据计算的。
6 - 12
统
计
相关关系的计算பைடு நூலகம்式
学
rSxy
(xx)y (y)
SxSy
(xx)2 (yy)2
或化简为
r
nx yxy
nx2x2 ny2y2
6 - 13
统
计
相关系数取值及其意义
相关图——也称为散点图。一对数据对应坐标图 上一个点,将成对的观察数据表现为坐标图 的散点而形成的图。
编制相关表、图的意义——有助于分析者判断 相关的有无、方向、形态、密切程度。
6 - 10
统
计
相关关系的图示
学
完全正线性相关
正线性相关
完全负线性相关
负线性相关
非线性相关
不相关
2. 一元线性(总体)回归方程的形式如下:
3.
E( y ) = α + b x
▪ 方程的图示是一条直线,因此也称为直线回归方程
▪ α 是回归直线在 y 轴上的截距,是当 x=0 时 y 的期 望值,是回归直线是起始值;
▪ b 是直线的斜率,表示当 x 每变动一个单位时,y
的平均变动值。
6 - 22
统
6 - 11
统
计 学
(二)相关系数和判定系数
1. 都是对变量之间关系密切程度的度量; 2. 判定系数=相关系数的平方; 3. 不同类型的相关,相关系数的计算方法也不同.
对两个变量之间线性相关程度的度量称为简单相 关系数(也称直线相关系数),常简称相关系数.
此外还有复相关系数、非线性相关系数、偏相关系 数
第六章 回归分析

第六章Excel在回归分析中的应用6.1 概述现实世界中大多数现象表现为相关关系,人们通过大量观察,将现象之间的相关关系抽象概括为函数关系,并用函数形式或模型来描述与推断现象间的具体变动关系,用一个或一组变量的变化来估计与推算另一个变量的变化。
这种分析方法称为回归分析。
回归分析的主要内容▪回归参数估计▪方程拟合效果评价▪回归参数的推断6.2 图表分析与回归函数分析例近年来国家教育部决定将各高校的后勤社会化。
某从事饮食业的企业家认为这是一个很好的投资机会,他得到十组高校人数与周边饭店的季销售额的数据资料,并想根据高校的数据决策其投资规模。
操作过程:①打开“饭店.xls”工作簿,选择“饭店”工作表,如下图所示。
②从“插入”菜单中选择“图表”选项,打开“图表向导”对话框如下图所示。
在“图表类型”列表中选择XY散点图,单击“下一步”按钮。
③在数据区域中输入B2:C11,选择“系列产生在——列”,如下图所示,单击“下一步”按钮。
④打开“图例”页面,取消图例,省略标题,如下图所示。
⑤单击“完成”按钮,便得到XY散点图如下图所示。
250200150100500510********⑥如图1所示,用鼠标激活散点图,把鼠标放在任一数据点上,单击鼠标右键,打开菜单,在菜单栏里选择“填加趋势线”选项,打开趋势线对话框如图2所示。
⑦打开“类型”页面,选择“线性”选项,Excel将显示一条拟合数据点的直线。
⑧打开“选项”页面如图3所示,在对话框下部选择“显示公式”和“显示R平方根”选项,单击“确定”按钮,便得到趋势回归图如图4所示。
y = 5x + 60R 2 = 0.9027501001502002500510********回归分析中的工作表函数▪截距函数INTERCEPT功能:利用已知的x 值与y 值计算回归直线在y 轴的截距。
语法结构:INTERCEPT(known_y's,known_x's)▪斜率函数SLOPE功能:返回根据known_y‘s 和known_x’s 中的数据点拟合的线性回归直线的斜率。
第六章回归分析误差理论与数据处理费业泰-PPT课件

第一节
回归分析的基本概念
二、回归分析思路
1、由数据确定变量之间的数学表达式-回归方程或经 验公式; 2、 对回归方程的可信度进行统计检验; 3、 因素分析。
合肥工业大学
误差理论与数据处理
第二节
一、回归方程的确定
19.1
76.30
一元线性回归
一元线性回归:确定两个变量之间的线性关系,即 直线拟合问题。
N
一元线性回归
x
t 1 N t 1
N
t
y
t
t
(x
t 1 N
x)
2
N
t 1
1 N xt ( xt ) 2 N t 1
2
(x
t 1 N
t
x )( yt y )
N
t 1
N 1 N x t y t ( x t )( y t ) N t 1 t 1
Q—残余平方和,反映所有观测点到回归直线的残 余误差,即其它因素对y变差的影响。
合肥工业大学 误差理论与数据处理
第二节
一元线性回归
(二)回归方程显著性检验— F检验法 基本思路:方程是否显著取决于U和Q的大小,U越 大Q越小说明y与x的线性关系愈密切。 计算统计量F
U / U F Q / Q
例:确定某段导线的电阻与温度之间的关系:
25.0
77.80
30.1
79.75
36.0
80.80
40.0
82.35
46.5
83.90
50.0
85.10
散点图:
84 82 80 78 76 2025 30 35 40 45 50 误差理论与数据处理
06第六章 相关与回归分析

3 r — 只是对线性相关关系的 度量 。
2014-3-30
第六章 相关与回归分析
17
2.2 相关系数的特征及判别标准
2. 相关关系密切程度的划分 — 无直线相关; 1 r 0 . 3 2 0 . 3 r 0 . 5 — 低度相关; 3 0 . 5 r 0 . 8 — 显著相关 — 高度相关 4 r 0 . 8
2
y y
0.1017 0.00937 0.0827 0.0677 -0.0143 0.0207 -0.0373 -0.0913 -0.0763 -0.1453
y y x x y y
2
0.01034289 0.00877969 0.00651249 0.00458329 0.00020449 0.00042849 0.00139129 0.00833567 0.00582169 0.02111209
ˆ yi
x n ,y n
残差平方和
Q x1 ,y1
0
2014-3-30
y
i
ˆ yi
2
2 ˆ ˆ yi yˆ y !!! β0 β2 xi i i — 1最小的直线
x
第六章 相关与回归分析
29
3.2 一元线性回归模型的参数估计
最小二(平方)乘法:
别 自、因变量—随机变量 因变量是随机变量
2014-3-30
第六章 相关与回归分析
12
1.5 相关分析与回归分析的关系
注意:
1. 进行相关和回归分析时要坚持定性分
析和定量分析相结合的原则,在定性 分析的基础上开展定量分析。
2. 只有当变量间存在高度相关时,才进
MATLAB程序设计 第6章 回归分析和方差分析

参数估计和假设检验
(1)区间估计 ❖例:有一大批糖果,现从中随机地取16袋,称得质量(单位:g)如下: 506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496
参数估计和假设检验
❖计算的MATLAB程序如下:
x0 = [506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496]; x0 = x0( : ); alpha = 0.05; mu = mean( x0); sig = std( x0 ); n =length(x0 ); t =[mu -sig/sqrt(n)*tinv(1-alpha /2,n-1),mu+ sig/sqrt(n)*tinv(1 -alpha/2,n-1)]; %以下命令ttest的返回值ci就直接给出了置信区间估计 [h,p,ci] =ttest(x0, mu,0.05)%通过假设检验也可求得置信区间
记
多元线性回归
(2)参数估计 理论模型中的参数 β0 ,β1,…,βm用最小二乘法估计,即应选取估计值
, j=0,1,…,m 时,误差平方和达到最小。
,使当
令
得
整理化为正规方程组
多元线性回归
正规方程组的矩阵形式为
,
当矩阵 X列满秩时,XT X 为可逆方阵,
将 代回原模型得到 y 的估计值,
而这组数据的拟合值为,
非线性回归
非线性回归是指因变量 y对回归系数 β1 ,…, βm (而不是自变量)是非线性的。 MATLAB统计工具箱中的命令 nlinfit、nlparci、nlpredci、nlintool,不仅可以给出 拟合的回归系数及其置信 区间,而且可以给出预测值及其置信区间等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
yi2
1 n
(
yi )2
yi2 ny 2
Lxy
(xi x)(yi y)
xi
yi
1 n
xi
yi
xi yi nxy
所以有
bˆ Lxy Lxx
aˆ yi bˆ xi
n
n
求回归方程式的系数往往是通过列表进行的。 这里,我们以下表资料为倒,通过求某钢铁厂炼 钢精炼时间对含碳量的回归方程,说明回归方程 的确定。
xi yi x2i (
xi yi xi )2
xi yi nxy
x
2 i
nx 2
(xi x)(yi y) (xi x)2
aˆ yi bˆ xi
n
n
几个规律
如果令Lxx
(xi x)2
xi2
1 n
(
xi )2
xi2 nx 2
则相应有Lyy
( yi y)2
由极值原理,Q取极小值的必要条件是Q对a, b的两个一阶偏导数
为零,有Q 2 a
( yi a bxi ) 0
Q
2 b
( yi a bxi )xi 0
整理得,na b xi yi
a
xi b
x
2 i
xi yi
对上式联立求解,得到回归系数的估计值为
bˆ n n
• 联系:是研究客观事物之间相互依存关系的两个 不可分割的方面。一般先进行相关分析,由相关 系数的大小决定是否需要进行回归分析。在相关 分析的基础上建立回归模型,以便进行推算和预 测。
回归分析概述
• Y对X的回归方程反映了X固定在x值条件下Y的平 均值,即Y对X的回归就是Y对X的条件期望函数。 该求解过程可称为曲线拟合。
某钢铁厂十个炉次钢液含碳量和精炼时间
第六章 回归分析
什么是回归
➢是研究自变量和因变量之间的 关系形式的分析方法
➢其目的是根据已知自变量来估 计和预测因变量的总平均值
6.1 回归分析和相关分析
相关关系的概念
• 函数关系:反映客观事物之间存在着严格的依存关系。这种 关系中,对于某一变量的每一个数值,都有另一个变量的确 定的值与之对应,并且这种关系可以用一个数学表达式反映 出来。例如:欧姆定律:I=U/R
因变量y就是我们的预测目标,由于受各种随机因素的影响,它是一个以回归直线
上的对应值为中心的正态随机变量,即y ~ N (a bx, 2 )
常数a,b是待定参数,给定x, y的n对观测值xi , yi ,i 1,2,...,n,代入上式中得
yi a bxi i 也是一个一元线性回归模型。其中 i为的n个观测值。
(或减少)多少。可以证明,当b 0时,x与y正相关,b 0时,x与y负相关。
OLS估计(ordi的方法:最小二乘法
• 中心思想:通过数学模型,配合一条理想的趋势 线。这条趋势线必须满足以下要求:
(1)原数列的观测 值与模型估计值 的离差平方和为 最小
6.2 一元线性回归模型
设x为自变量,y为因变量,y与x之间存在某种线性关系,即一元线性回归模型为:
y a bx
式中,x代表影响因素,往往认为它是可以控制的或预先给定的,故称之为自变量;
表示各随机因素对y的影响的总和,根据中心极限定理,可以认为它服从正态分 布,即 ~ N (0, 2 );
一元线性回归模型
令
yˆi a bxi 为由一组观测值(xi , yi )得到的回归方程,则上式中,
yˆi为yi的估计值。对于每个自变量xi,都可以得到一个估计值yˆi a bxi;
a和b为回归系数,其中a是直线yˆi在y轴上的截距,它是xi 0时yˆi的估计值;
b是直线yˆi的斜率,表明自变量增加(或减少)一个单位,因变量yˆi相应增加
(a)直线关系 (b)反直线关系 (c)正曲线关系
(d)反曲线关系 (e)较分散的 (f )没有关系 反直线关系
x与y的一些可能关系的散点图
回归分析与相关关系
• 都是研究和测度两个或两个以上变量之间关系的 方法。
• 相关分析研究的是两个或两个以上随机变量之间 线性依存关系的紧密程度。常用相关系数,复相 关系数表示。
• 三个问题: ➢什么形式的回归方程? ➢最佳的回归方程? ➢特定方程的性质?
回归模型的种类
• 根据自变量的多少,分为一元回归模型和多元回 归模型
• 根据回归模型的形式线性与否,分为线性和非线 性回归模型
• 根据回归模型是否带有虚拟变量,分为普通回归 和带虚拟变量的回归模型。
• 根据回归模型是否用滞后的因变量作自变量,分 为无自回归现象的回归模型和自回归模型。
相关关系的特点
• 客观事物之间在数量上确实存在一定的内在联系。 表现在一个变量发生数量上的变化,要影响另一 个变量也相应地发生数量上的变化
• 客观事物之间的数量依存关系不是确定的,具有 一定的随机性。表现在给定自变量一个数值,因 变量会有若干个数值和它对应,并且,因变量总 是遵循一定规律围绕这些数值的平均数上下波动。 其原因是影响因变量发生变化的因素不止一个。
(2)原数列的观测 值与模型估计值的 离差总和为0
( yi yˆi )2 min ( yi yˆi ) 0
式中,yi为原数列的观测值; yˆi为模型的估计值
OLS估计(ordinary least square)
根据最小二乘法的要求,记Q ( yi yˆi )2 ( yi a bxi )2
• 相关关系:反映客观事物之间的非严格、不确定的线性依存 关系。其特点是:对应于一个变量的某个取值,另一个变量 以一定的概率分布取值。例如身高和体重的关系。
• 相关关系的定义:设有二维随机变量X和Y,若对应于其中 任一随机变量的每一(可能的)取值都有另一个随机变量的 一个确定的(条件)分布,则称X与Y存在有相关关系。
• 回归分析是研究某一个随机变量(因变量)与另 一个或几个普通变量(自变量)之间的数量变动 的关系。回归模型通常是不可逆的。
回归分析与相关关系的区别与联系
• 区别:相关分析研究的变量都是随机变量,并且 不分自变量和因变量,它们处于对称的地位;回 归分析研究的变量要首先明确哪些是自变量,哪 些是因变量?并且自变量是确定的普通变量,因 变量是随机变量。因此,获得的回归方程是不可 逆转的。