2012第三章泊松过程
泊松过程

dPk 1 ( t ) 已得 Pk 1 ( t ) Pk ( t ) dt
t d [ e Pk 1 ( t )] t 两边同乘 e 得, e t Pk ( t ) dt
k d [ e t Pk 1 ( t )] [ ( t s )] 即 e s dt k!
对t s, n m:
4. P{N t n | N s m} e ( t s ) [ (t s )]n m ( n m)!
n s m 5. P{N s m | N t n} ( ) (1 s ) n m t m t
例 : 顾客依泊松过程到达某商店,速率为 4人/小时。已知商店上午9:00开门. (1)求到9:30时仅到一位顾客,而到11:30时 已到5位顾客的概率? (2)求第2位顾客在10点前到达的概率? (3)求第一位顾客在9:30前到达且第二位 顾客在10:00前到达的概率?
第三章:泊松过程
1.生成函数与泊松分布
分布律为:
或母函数
浙大数学随机过程
1
生成函数唯一地决定各阶矩 (可能为 ) (可能为 )
例如:
定理:如果X 和Y 都是取值非负整数值的随机变量, 那么当X 与Y 独立时,对0 s 1都有: X Y ( s ) X ( s )Y ( s ). 这里 X Y , X ,Y 分别是X Y ,X ,Y 的生成函数.
泊松过程也可用另一形式定义: 称 N (t ), t 0是参数为的泊松过程,若满足: 1. N (0) 0 2. 独立增量 3. 对任意的t s 0, N (t ) N (s) ~ t s
证 : P{N (t h ) N (t ) 1} he h(1 h o( h )) h o( h )
第三章泊松过程

定理 设是{N (t), t≥0}一个强度为l的泊松过程,则对任 意固定的t, N(t)服从泊松分布,即
P(N (t) = k ) = (lt)k e-l t
k!
k = 0,1, 2,L
二、泊松过程的数字特征与特征函数
1. 泊松过程的均值函数
mN (t) = E[N(t)]= lt
2. 泊松过程的方差函数
DN (t) = D[N(t)]= lt
3. 泊松过程的均方值函数
y
2 N
(t)
=
E[N
2
(t)]
=
DN
(t)
+
mN2
(t)
=
lt
+
(lt)2
4. 泊松过程的自相关函数
E(N (t1)N (t2 ))
令t2 ³ t1E{[N (t1)- N (0)][N (t2 )- N (t1)+ N (t1)]} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]+ [N(t1)- N(0)]N(t1)} 展开 E{[N(t1)- N (0)][N (t2 )- N(t1)]}+ E{[N(t1)- N (0)]N (t1)} 增量独立E{[N(t1)- N(0)][N(t2 )- N(t1)]}+ E{[N(t1)- N(0)]N(t1)} 增量独立E[N (t1)- N (0)]E[N (t2 )- N (t1)]+ E{[N (t1)- N (0)]N (t1)}
mN (t) = 4t = DN (t)
RN (t1,t2 ) = 4 min(t1,t2 ) + 16t1t2 , t1,t2 Î T
CN (t1,t2 ) = 4 min(t1,t2 )
随机过程第三章-泊松过程

N (tk )
X (tk ) X (tk1)
Yi
iN (tk1 )1
相互独立,即 X (t)具有独立增量性.
k 1,2, , n
(2) (2)的证明需要用到矩母函数(略).
例3.10 在保险中的索赔模型中,设索赔 要求以平均2次/月的速率的泊松过程到达 保险公司.每次赔付为均值为10000元的 正态分布,则一年中保险公司平均赔付额 是多少?
例3.3 设进入商店的顾客数可以用一个泊松过程来近似.
第 i 个顾客在商店购物支付的款数记作 Yi ,并设 Y1,Y2 ,
相互独立同分布,则在时段 (0,t] 中商店的营业额
N (t)
X (t) Yi i 1
是一个复合泊松过程.
例3.4 设保险公司接到的索赔次数服从一个泊松过程,每 次要求赔付的金额独立同分布,则在任一时段内保险公司 需要赔付的总金额就是一个复合泊松过程.
事件A发生的次数.
如果在不相交的时间区间中发生的事件数是独立的,则该 计数过程有独立增量.即到时刻t已发生的事件个数必须独 立于时刻t与t+s之间所发生的事件数.这就意味着, N(t)与 N(t s) N(t) 相互独立.
若在任一时间区间中发生的事件个数 N(t) 的分布只依 赖于时间区间的长度,则称计数过程 N(t) 有平稳增量.这就 意味着此时 N (t2 s) N (t1 s)与 N(t2 ) N(t1) 有相同的分布.
,
x0
0,
x0
则称 X 服从参数为 , 的 分布,记为 X ~ ( , )
当 1 时,就是参数为 的指数分布.
(4) 分布关于参数 具有可加性.即若 X ~ (1, ),
Y ~ (2, ), 且 X 与 Y 独立,则
泊松过程

(t ) D[ X (t )] D[ X (t ) X (0)] t
2 X
R X ( s, t ) E[ X ( s ) X (t )] E[ X ( s )( X (t ) X ( s ) X ( s ))] E[ X ( s )( X (t ) X ( s ))] E[( X ( s ))2 ] E[( X ( s ) X (0))(X (t ) X ( s ))] D[ X ( s )] E[ X ( s )]2 E[ X ( s ) X (0)]E[ X (t ) X ( s )] D[ X ( s )] E[ X ( s )]2 s (t s ) s (s ) 2 s (t 1)
从而W1的条件分布函数为
0 , s 0 s FW1| X (t )1 ( s) , 0st t 1 , s t
条件分布密度函数为
1 , 0st fW1| X (t )1 (s) t 0 ,
设{X(t), t0}是泊松过程, 已知在[0, t]内 事件A发生n次,则这n次事件的到达时间 W1< W2<< Wn的条件概率密度为
T1服从均值为1/的指数分布
t t
FT1 (t ) P T1 t 1 P T1 t 1 e
(2)n=2
P{T2>t| T1=s} = P{在(s, s+t]内没有事件发生| T1=s}
=P{X(s+t) -X(s)=0 | X(s) -X(0) =1} = P{X(s+t) -X(s)=0 }
等待时间Wn与时间间隔Tn均为随机变量
时间间隔Tn
设{X(t), t0}是参数为的泊松过程, {Tn,n1}是相应第n次事件A发生的时间间隔 序列,则随机变量Tn是独立同分布的均值 为1/的指数分布。
随机过程——泊松过程(习题讲解)

n ( x t )n
n!
e ( x t )
因此,
dP( Sn k
k 1 n ( x t )n ( x t ) d 1 e k k 1 n! x | N (t ) n) n 0 ( x t ) e ( x t ) dx dx (k 1)!
即,在 N (t ) n 条件下,在时刻 t 之后首次事件发生的平均时间为 t
1 .
下面求 E{Sn k | N (t ) n} , ( k 1) : E ( Sn k | N (t ) n)
t
xdP(Sn k x | N (t ) n) ,而
由于在 N(t)=n 的条件下,n 个到达时刻 < < …< 区 间 [0 , t] 上 均 匀 分 布
( )<
与时间
,
,… ,
的 顺 序 统 计量
<…<
有相同分布,所以
故
= 习题九:假设车站有两辆客车准备开出,乘客以速率为 泊松过程登上 A 车,当 A 车坐满 的事件,乘客以速率为 的
个乘客就开出;与此独立
P( Sn k x, N (t ) n) P( N ( x) N (t ) k , N (t ) n) P( N (t ) n) P( N (t ) n) P( N ( x) N (t ) k ) P( N (t ) n) P( N ( x t ) k ) 1 P( N ( x t ) k 1) P( N (t ) n) P( Sn k x | N (t ) n) 1
t
e ( x t )
随机过程第三章 泊松过程 ppt课件

第 n次事件发生的时刻, X n 是第 n次与第n 1 次事件发生
的时间间隔.
一. X n和 T n 的分布
定理3.2 X n (n 1)服从参数为 的指数分布,且相互独立.
证 当 t 0时,有
F 1 ( t ) P { X 1 t } 1 P { X 1 t } ቤተ መጻሕፍቲ ባይዱ1 P { N ( t ) 0 }
重复以上的推导可证定理之结论.
定理3.3 Tn ~(n,)
n
证 由于 Tn
Xi
i 1
故由定理3.2以及引理的结论马上可得本定理之结论.
注:1 (n,)的概率密度为
fTn (x) et
(t)n1
(n1)!
2. {T nt} {N (t)n}
(t 0)
由定理3.2,我们给出泊松过程的另一个等价定义.
p 的泊松过程.
证 M (t)满足定义3.2中的前两个条件是显然的,下证它也 满足第三个条件.
显然, M (t)的可能取值为 0,1,2, ,并且由全概率公式,有
P { M (t) m } P { M (t) m |N (t) n } P { N (t) n } n 0
而 P { M (t) m |N (t) n } 0 若 nm
f (x)() x1ex, x0
0,
x0
则称 X服从参数为 , 的 分布,记为 X~(,)
当 1 时,就是参数为 的指数分布.
(4) 分布关于参数 具有可加性.即若 X~(1,),
Y~(2,),且 X与 Y独立,则
X Y~ (1 2,)
指数引分理布,则设有X1,X2, ,Xn 相互独立且均服从参数为 的 X 1 X 2 X n ~ ( n ,)
随机过程第三章 泊松过程
解:设一年开始为 0 时刻,1 月末为时刻 1,则年末为时刻 12,依泊松过程的定义可知
PN (12) N (0) n e412 (412)n
n!
平均索赔请求次数及金额
E[N(12) N(0)] 412 48
3.2 与泊松过程相联系的若干分布
记 Tn , n 1, 2,表示第 n 次事件发生的时刻,规定T0 0 。记 Xn , n 1,2, 表示第 n
即
N(t) n Tn t
因此
PTn
T
P N (t )
n
in
et
(t)i i!
对上式求导,得到Tn 的概率密度函数
f (t)
et (t)i
et
(t)i1
et
(t )( n 1)
in
i! in
(i 1)!
(n 1)!
命题得证。
注:Tn 的数字特征
ETn
n
,
DTn
n 2
;且
ETn
nEX n
P ti Ti ti hi ,i 1, 2,, n N (t) n
PN (ti
hi )
N (ti )
1,
N (ti1) N (ti hi )
PN (t) n
0,1
i
n,
N (t1)
0
h1e h1
h e e hn (th1h2 hn ) n et (t)n / n!
n! tn
-2-
P0 (t) et
类似地,当 n 1时
Pn (t h) PN (t h) n PN (t) n, N (t h) N (t) 0 PN (t) n 1, N (t h) N (t) 1
第3讲第三章泊松过程
P Tn t T1 s1,,Tn1 sn1 P Nt s1 sn1 Ns1 sn1 1T1 s1,,Tn1 sn1
PN t s1 sn1 N s1 sn1 1
1 PN t s1 sn1 N s1 sn1 0
(2) N(t)是独立增量过程;
(3) 对一切0≤s,t, N(t+s) -N(s) ~P(λt),即
P[N (t s) N (s)] k et [t]k , k 0,1, 2,
k! 称{N( t ),t≥0)是参数为λ的齐次泊松过程.
注1 从增量分布知:齐次泊松过程也是平稳增量过程.
注2 N(t) ~P(λt).
et (t)k1 dt
t0
(k 1)!
例3.3 设N1(t)和N2( t )分别是强度为λ1和λ2的相互独立的
泊松过程, Wk1为过程N1(t)的第k个事件的到达时间,
W12 为过程N2(t)的第1个事件的到达时间,求 P Wk1 W12
解: fwk1
x
e1x 1
1 x k1
(k 1)!
所以3.2→定义3.3
再证 由定义3.3 → 定义3.2
即:需证明 N(t s) N(s) ~ t 由于是平稳增量故只需证 N(t) ~ t
记:Pn t PN(t) n
下面我们依次求Po(t), P1(t),…, Pk(t) ,…
首先,由定义3.3中的条件(3):
P1 h h oh
P0
0
1,由条件1
N
0
0
解得p0 (t) et , t 0
当n≥1时, n
pn (t h) pk (h)pnk (t) k 0 p0 (h) pn (t) p1(h) pn1(t) oh
随机过程 第3章 泊松过程
泊松过程
[定义] 称计数过程{ X (t) , t 0 }为具有参数 的泊松过程, 若它满足下列条件: (1) X (0) = 0 ; (2) X (t) 是独立增量过程; (3) (平稳性)在任一长度为 t 的区间中,事件A发生的次 数服从参数 >0的泊松分布,即对任意 s , t 0 ,有
3.2 泊松过程的基本性质
泊松分布:
( t ) n t P{ X (t s ) X ( s ) n} e , n!
n 0, 1,
( t ) n t P{ X (t ) n} e , n 0, 1, 2, n!
Φ X ( ) E[e
假设在[0 , t ]内事件A已经发生一次,确定这一事件到 达时间W1的分布 ——均匀分布
P{W1 s, X (t ) 1} P{W1 s X (t ) 1} P{ X (t ) 1} P{ X ( s ) 1, X (t ) X ( s ) 0} P{ X (t ) 1} P{ X ( s ) 1} P{ X (t ) X ( s ) 0} P{ X (t ) 1}
故仪器在时刻 t0 正常工作的概率为:
k 1 ( t ) P P (T t 0 ) e t dt t0 ( k 1)! n k 1 ( t ) 0 P [ X (t 0 ) k ] e t
0
n0
n!
(3) 到达时间的条件分布
P{ X k }
k e
k!
, k 0, 1, 2, ( 0为常数 )
则随机变量X 服从参数为 的泊松分布,简记为 ()。
E(X ) ,
第3章 泊松过程
第一节 泊松过程的定义
一、计数过程
N(t)表示到时刻t为止以发生的“事件”的总数,称{N(t), t≥0}为计数过程。 N(t)满足 1, N(t) ≥0
2, N(t)为整数
3,若s < t , 则 N(s) ≤N(t) 4,当s < t 时,N(t)- N(s) 为区间(si 1
n
则
X i Ti Ti 1
称Tn为事件A第n 次出现的等待时间(到达时间).
定理1 设{Xn, n≥1}是参数为λ的泊松过程 {N(t), t≥0}的时间间隔序列, 则{Xn, n≥1}相互 独立同服从指数分布, 且E{X}=1/λ. 证 (1) 因 {X1>t}={(0, t)内事件A不出现} P{X1>t}=P{N(t)=0}=e-λt
P0 t h P0 t o h P0 t h h dP0 t P0 t 令h 0, 得 dt P 0 1, 条件1N 0 0 0
解得
p0 ( t ) e
t
,
t 0.
Fn t P X n t 1 e t , t 0.
注 (1)上述定理的结果应该在预料之中,因为泊
松过程有平稳增量,过程在任何时刻都“重新开 始”,这恰好就是“无记忆性”的体现,正好与指 数 分布的“无记忆性”是对应的.
(2)泊松过程的另一个等价定义:
独立,且服从同一参数 的指数分布,则记数过
两边同乘以eλt 后移项整理得
d [e t Pn ( t )] t e pn 1 ( t ) dt
当n=1, 则
( 2)
d [e t P1 ( t )] e t P0 t e t e t dt P 0 0 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机过程第三章:泊松过程
第三章:泊松过程
3.1 泊松过程定义
3.2 泊松过程的数字特征
3.3 时间间隔分布、等待时间分布、
到达时间的条件分布
3.4 非齐次泊松过程
3.5 复合泊松过程
例如:
•
电话交换机在一段时间内接到的呼叫次数;•
火车站某段时间内购买车票的旅客数;•
机器在一段时间内发生故障的次数;•……
泊松过程是一类时间连续状态离散的随机过程。
3.1 泊松过程定义
定义3.3:
称计数过程{X(t),t≥0} 为具有参数λ>0 的泊松过程,若它满足下列条件:
(1)X(0) = 0;
(2)X(t) 是独立、平稳增量过程;
(3)X(t) 满足下列两式:
{()()1}(){()()2}()
P X t h X t h o h P X t h X t o h λ+−==++−≥=在充分小的时间内,最多有一个事件发生,而不能有两个或两个以上事件同时发生。
证明定义3.2和定义3.3是等价的
3.3 时间间隔分布、等待时间分布、
到达时间的条件分布
用泊松过程来描述服务系统接受服务的顾客数,则顾客到来接受服务的时间间隔、顾客排队的等待事件等分布问题都需要进行研究。
下面讨论三个时间分布问题: 时间间隔分布;
等待时间分布;
到达时间的条件分布。
{X(t), t≥0} 是泊松过程,令X(t)表示t时刻事件
定理3.2:
设{X(t),t≥0} 为具有参数λ的泊松过程,{T n ,n≥1}是对应的时间间隔序列,则随机变量T n 是独立同分布的均值为1/λ的指数分布。
即: 对于任意n=1,2, …事件A 相继到达的时间间隔Tn 的分布为:1,0(){}0,
0n t T n e t F t P T t t λ−⎧−≥=≤=⎨<⎩其概率密度为:⎩⎨⎧<≥=−0
,00,)(t t e t f t T n λλ
所以,T2也服从均值为1/λ的指数分布。
{}{}
{}
{}{}
112211121121()11|,...,1(...)(...)01()(0)01n T n n n n n n n t
F t P T t P T t P T t T s T s T s P X t s s s X s s s P X t X e λ−−−−=≤=−>=−>====−++++−+++==−−==−-因此,对于任意的n=1,2,…, 事件相继到达的时间间隔T n 也服从均值为1/λ的指数分布。
对于任意的n=1,2,…, 和,有121,,...0n s s s −≥
等待时间W n是指第n次事件A出现的时刻(或第n次事件A的等待时间):
是n个相互独立的指数分布随机变量之和。
解:
定理3.4:
设{X(t),t≥0}是泊松过程,已知在[0,t]内事件A发生n次,求这n次到达事件W1<W2, …<W n的联合概率密度函数。
证明:
这与n个[ 0,t ]上均匀分布的独立随机变量的顺序统计量有相同的分布。
例题3-1
设在[0,t]内事件A已经发生n次,且0<s<t,对于0<k<n,求P{X(s)=k|X(t)=n}
解:
例题3-2
设在[0,t]内事件A已经发生n次,求第k(k<n)次事件A发生的时间W k的条件概率密度函数。
解:
例题3-3
设{X 1(t),t ≥0} 和{X 2(t),t ≥0} 是两个相互独立的泊松过程,它们在单位时间内平均出现的事件数分别为λ1和λ2,记为过程X 1(t) 的第k次事件到达时间,为过程X 2(t)的第1次事件到达时间,求
,即第一个泊松过程的k次事件发生比第二个泊松过程的第1次事件发生早的
概率。
)1(k W )2(1W }{)2(1)1(W W P k <
解:
(2)
W
1
y
y
W1(2)合
y
3.4 非齐次泊松过程
定义3.4:称计数过程{X(t),t≥0} 为具有跳跃强度函数λ(t)的非齐次泊松过程,若它满足下列条件:
(1)X(0)=0;
(2)X(t)是独立增量过程;
(3){()()1}()()
{()()2}()
P X t h X t t h o h P X t h X t o h λ+−==++−≥=非齐次泊松过程的均值函数为:
0()()t
X m t s d s
λ=∫(允许速率或强度λ是t的函数)
例题3-5:
设某路公共汽车从早上5时到晚上9时有车发出,乘客流量如下:5时按平均乘客为200人/时计算;5时至8时乘客平均到达率按线性增加,8时到达率为1400人/时;8时至18时保持平均到达率不变;18时到21时从到达率1400人/时按线性下降,到21时为200人/时。
假定乘客数在不相重叠时间间隔内是相互独立的。
求12时至14时有2000人来站乘车的概率,并求这两个小时内来站乘车人数的数学期望。
解:
该商店在(0,t]时间段内的营业额
又例如:
到达体育场的公共汽车数是一泊松过程,而每辆公共汽车内所载的乘客数是一个随机变量。
若各辆车内的乘客数Y n 服从相同分布,且又彼此统计独立,各辆车的乘客数和车辆数N(t)又是统计独立的,则到达体育馆的总人数X(t)是一个复合泊松过程.()
1(),0N t n
n X t Y t ==≥∑
定理3.6
设是复合泊松过程,则
(1){ X(t),t≥0 } 是独立增量过程;
(2)X(t)的特征函数,其中
是随机变量Y 1 的特征函数;λ是事件的到达率;
(3)若E(Y 12)<∞,则:
()1
(),0N t k k X t Y t ==≥∑2
11[()][],[()][]E X t t E Y D X t t E Y λλ==()()exp{[()1]}X t Y g u t g u λ=−()Y g u
例题3-6:
设移民到某地区定居的户数是一个泊松过程,平均每周内有2户定居,但每户的人口数是随机变量,一户4人概率为1/6,一户3人概率为1/3,一户2人概率为1/3,一户1人概率为1/6,求5周内移民到该地区的人口的数学期望与方差。
解:
∑
i=
1
1
例题3-7:
设交换机每分钟接到电话的次数X(t)是强度为λ的泊松过程。
求:
(1)两分钟内接到3次呼叫的概率。
(2)第二分钟内接到第3次呼叫的概率。
作业习题3:
3.1, 3.3, 3.5, 3.9,3.11。