数学建模实验雨中漫步1学习

合集下载

数学建模实验雨中漫步1学习

数学建模实验雨中漫步1学习

数学实验作业雨中漫步系部:数学系专业:s10数学教育学号:103103011013姓名: 张鹏飞实验目的:1.生活中的我们常常会遇到下雨而没带雨具的时刻,我们在那时会有很多选择,其中之一就是淋雨,往往好多人会在雨中快走或奔跑而使自己身体淋雨量最小化,但往往很多人会感觉到淋雨量并不会因为快走或奔跑而减少多少,反而有时候淋雨量倒有所增加,淋雨量和速度等有关参数的关系如何,是否人走得越快雨淋得越少2. 运用matlab软件实验内容: 给定的降雨条件下,分别建立相应的数学模型, 分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

其中文中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水而上积聚的水层深度,它可以直观地表示降雨的多少。

淋雨量,是指人在雨中行走时全身所接收到得雨的体积, 可表示为单位时间单位面积上淋雨的多少与接收雨的而积和淋雨时间的乘积。

1,设降雨淋遍全身不考虑雨的方向,经简化假设得人淋雨面积为前后左右及头顶面积之和。

2,雨迎而吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶而积之和。

因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。

据此可列出总淋雨量W与行走速度v之间的函数关系。

分析表明当行走速度为%•、时,淋雨量最少。

3,雨从背而吹来,雨线与行走方向在同一平面内,人淋雨量与人和雨相对速度有关。

列出函数关系式分析并求解。

实验准备:mat lab软件绘图,从网上查找各种资料旷一长方体的长单位:米b■—长方体的宽单位:米6-一长方体的厚度单位:米Q—-淋雨量单位:升卩-一人行走的速度单位:米每秒D路程单位:米/- 一降雨强度单位:厘米每小时P- 一雨滴的密度单位:“---雨滴下落的速度单位:米每秒0-一雨迎面吹来时与人体的夹角a与从后面吹来与人体的夹角实验步骤:在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

淋雨问题建模心得体会

淋雨问题建模心得体会

淋雨问题建模心得体会在建模淋雨问题过程中,我深刻体会到了建模的重要性以及它对问题解决的影响。

以下是我对建模淋雨问题的心得体会。

首先,建模是解决问题的第一步。

在面对淋雨问题时,我首先必须明确问题要解决的目标是什么。

例如,是要确定何时需要带伞,还是要计算淋雨的概率。

根据不同的目标,我可以采用不同的建模方法和思路。

其次,建模需要考虑问题的多个因素。

淋雨问题不仅仅涉及到雨量的大小,还与时间、空间、风速等因素相关。

因此,在建模过程中,我需要将这些因素都考虑进去,以确保模型的完整性和准确性。

另外,建模需要灵活运用数学工具和方法。

淋雨问题可以被建模为概率问题、统计问题或微积分问题等等。

而且,不同的数学工具和方法可以被同时应用于同一个问题,以提高建模的效果。

因此,我在建模淋雨问题时,尽力找到适合的数学工具和方法,来解决问题。

此外,建模需要有合理的假设和简化。

在面对复杂的淋雨问题时,直接建立准确的数学模型是非常困难的。

因此,我需要基于实际情况,对问题进行假设和简化。

例如,可以假设雨量均匀分布,忽略空间上的影响等等。

但是,假设和简化应该基于对问题的充分了解和实际情况的把握,以避免模型的失真和不准确。

最后,建模需要不断验证和改进。

建立模型只是解决问题的第一步,还需要通过实验、数据分析等方法来验证模型的有效性。

如果模型不符合实际情况,还需要对模型进行改进和修正。

因此,在建模过程中,我需要具备不断学习和改进的能力,以便更好地解决问题。

综上所述,建模淋雨问题是一项复杂而重要的任务。

只有通过有效的建模方法和技巧,才能更好地解决问题。

通过这次建模淋雨问题的经历,我深刻认识到了建模的重要性和技巧,这对我今后的学习和工作都具有积极的影响。

雨中行走数学建模

雨中行走数学建模

雨中行走问题的分析吴珍数学与应用数学二班 A班冯奎艳数学与应用数学二班 A班杨彦云数学与应用数学二班 A班摘要本文讨论了雨线方向、跑步速度与淋雨量关系的问题.针对问题一,将人视为长方体,采用物理学中流体计算的思想方法计算淋雨量,得到速度越大淋雨量越小的结论。

针对问题二,首先引入雨滴降落频率的概念,解决了用雨速来确定降雨量雨滴降落不连续的问题。

然后采用物理学中流体计算的思想方法计算淋雨量,建立跑步速度与淋雨量关系的优化模型,得到速度越大淋雨量越小的结论。

针对问题三,在问题二的基础上,改变雨线方向,采用物理学中流体计算的思想方法,建立与跑步速度与淋雨量关系的优化模型,确定淋雨量最小情况下的跑步速度.针对问题四,综合雨线方向与跑步方向夹角,跑步速度,淋雨量的关系,建立几何模型,采用数形结合的方法建立淋雨量模型。

关键词雨滴降落频率;优化模型;淋雨量一、问题重述一般情况下,行人未带雨具却突降大雨,都会选择加快行走速度以减少淋雨量,但如果考虑风速、雨速,就会发现淋雨量并不光与淋雨时间有关。

那么在雨中以何种速度跑,淋雨量最少。

现假设要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型,讨论是否跑得越快,淋雨量越少。

按以下步骤进行讨论:(1) 不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。

(2) 雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,问速度多大时,总淋雨量最少。

(3) 雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为α,问速度多大时,总淋雨量最少。

(4) 若雨线方向与跑步方向不在同一平面内即异面时,模型会有什么变化。

二、问题分析人在雨中行走时,行走时间即淋雨时间。

把人看成一个长方体,总淋雨量是各个面淋雨量之和。

为解决雨滴不是连续的,引进雨滴频率P (模型建立部分会做具体阐述)的概念。

对于问题一,在不考虑雨速方向的前提下,人的前、后、左、右以及顶部都会被淋到雨,此时淋雨量只与行走时间及单位时间内的降雨量有关。

淋雨问题数学建模

淋雨问题数学建模

s1 bc, s2 ab
淋雨时间:
雨速垂直分量:
分别计算其淋雨量如下:
d t v
u cos
雨速水平分量:
u sin
顶部淋雨量: 迎面淋雨量:
Q1 s1tw cos bc
d w cos v
v d u sin v Q2 s2tw ab w u v u
所以总的淋雨量为:
符号说明
三、模型的建立
人在雨中行走时可能出现以下三种情形: 情形一:雨垂直下落,人以速度v前行,此时降雨淋 遍全身
淋雨的面积
雨中行走的时间 降雨强度
S 2wh 2dh wd (米2 )
D t (秒) v
I (厘米/时) 0.01I (米/时) (0.01/ 3600 ) I (m / s )
s3 bc, s4 ab
d 淋雨时间: t v
雨速垂直分量:
,分别计算其淋雨量如下:
u cos
方向与v相同,故相对雨速
雨速水平分量:u sin 故相对雨速v= u sin v
cos 顶部淋雨量: Q3 s3tw cos bcdw v
v abdw | u sin v | 背面的淋雨量: Q4 s4tw u uv
a b
(3)
由(1)式知总淋雨量
Q stw (2ab 2ac bc)
d w v
易知 v越大,Q值越小,故此时跑得越快,所淋到的 v vm时, Q 最小; 雨量越少。即:当 对(2)式关于v求导可得 :
Q bdw cu cos au sin 0 2 v u v
时,Q最小
2 v u sin
四、结果分析

数学建模_淋雨模型

数学建模_淋雨模型

淋雨量模型一、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。

计算θ=0,θ=30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。

计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.(5)、若雨线方向跑步方向不在同一平面内,试建立模型二、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

可得:淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间(t)=跑步距离(d)÷人跑步速度(v)②由①②得:淋雨量(V)=ω×S×d/v三、模型假设(1)、将人体简化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m.设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v;(参考)(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;四、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω×S×d/vω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得:S=2.2(㎡)V=0.00244446 (cm³)=2.44446 (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹来时与人体夹角为θ. ,且 0°<θ<90°,建立a ,b ,c ,d ,u ,ω,θ之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θsin u ⋅且方向与v 相反,故人相对于雨的水平速度为:()v sin u +⋅θ则前部单位时间单位面积淋雨量为:u /v sin u )(+⋅⋅θω又因为前部的淋雨面积为:b a ⋅,时间为: d/v于是前部淋雨量V 2为 :()()[]()v /d u /v sin u V 2⋅+⋅⋅⋅⋅=θωb a即:()()v u /v s i n u a V 2⋅+⋅⋅⋅⋅=θωd b ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ⋅,顶部面积为()c b ⋅ ,淋雨时间为()v /d ,于是顶部淋雨量为:v /cos b V 1θω⋅⋅⋅⋅=d c ②由①②可算得总淋雨量 :()()v u /v sin u a v /cos c b V V V 21⋅+⋅⋅⋅⋅⋅+⋅⋅⋅⋅=+=θωθωd b d代入数据求得:v1800v 875.1sin 5.7cos V ⋅++=θθ 由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角(θ)两者有关。

数学模型实验报告

数学模型实验报告

数学模型实验报告模型⼀数学建模之⾬中⾏⾛问题模型摘要:考虑到降⾬⽅向的变化,在全部距离上尽⼒地快跑不⼀定是最好的策略。

试建⽴数学模型来探讨如何在⾬中⾏⾛才能减少淋⾬的程度。

若⾬是迎着你前进的⽅向向你落下,这时的策略很简单,应以最⼤的速度向前跑;若⾬是从你的背后落下,你应控制你在⾬中的⾏⾛速度,让它刚好等于落⾬速度的⽔平分量。

①当αsin r v <时,淋在背上的⾬量为[]v vh rh pwD -αsin ,⾬⽔总量()[]v v r h dr pwD C -+=ααsin cos .②当αsin r v =时,此时02=C .⾬⽔总量αcos vpwDdr C =,如030=α,升24.0=C这表明⼈体仅仅被头顶部位的⾬⽔淋湿.实际上这意味着⼈体刚好跟着⾬滴向前⾛,⾝体前后将不被淋⾬.③当αsin r v >时,即⼈体⾏⾛的快于⾬滴的⽔平运动速度αsin r .此时将不断地赶上⾬滴.⾬⽔将淋胸前(⾝后没有),胸前淋⾬量()r v pwDh C αsin 2-=关键词:淋⾬量,降⾬的⼤⼩,降⾬的⽅向(风),路程的远近,⾏⾛的速度1.问题的重述⼈们外出⾏⾛,途中遇⾬,未带⾬伞势必淋⾬,⾃然就会想到,⾛多快才会少淋⾬呢?⼀个简单的情形是只考虑⼈在⾬中沿直线从⼀处向另⼀处进⾏时,⾬的速度(⼤⼩和⽅向)已知,问⾏⼈⾛的速度多⼤才能使淋⾬量最少?2.问题的分析.由于没带伞⽽淋⾬的情况时时都有,这时候⼤多⼈都选择跑,⼀个似乎很简单的事情是你应该在⾬中尽可能地快⾛,以减少⾬淋的时间。

但如果考虑到降⾬⽅向的变化,在全部距离上尽⼒地快跑不⼀定是最好的策略。

,⼀、我们先不考虑⾬的⽅向,设定⾬淋遍全⾝,以最⼤速度跑的话,估计总的淋⾬量;⼆、再考虑⾬从迎⾯吹来,⾬线与跑步⽅向在同⼀平⾯内,且与⼈体的夹⾓为θ,如图1,建⽴总淋⾬量与速度v 及参数a , b , c , d , u , w , θ之间的关系,问速度v 多⼤,总淋⾬量最少,计算0θ=,90θ=?时的总淋⾬量;三、再是⾬从背⾯吹来,⾬线⽅向与跑步⽅向在同⼀平⾯内,且与⼈体的夹⾓为α,如图2.,建⽴总淋⾬量与速度v及参数a ,b, c, d , u,w ,α之间的关系,问速度多⼤,总淋⾬量最少;四、以总淋⾬量为纵轴,对(三)作图,并解释结果的实际意义;五、若⾬线⽅向不在同⼀平⾯内,模型会有什么变化;按照这五个步骤,我们可以进⾏研究了。

数学建模_淋雨模型

数学建模_淋雨模型

专业及班级土木10班学号20136452姓名杨昌友淋雨量模型一摘要:本文主要研究人在雨中行走的淋雨量问题。

在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中奔跑时淋雨多少与奔跑速度、降雨方向等因素的关系。

得出结论:若雨迎面落下,则以最大的速度跑完全程淋雨量最少;若雨从背后落下,则以降雨速度的水平分量时奔跑时淋雨量最少。

关键词:淋雨量雨速大小雨速方向跑步速度路程远近二、问题概述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。

将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论[17]:(1)、不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量;(2)、雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,ω,θ之间的关系,问速度v多大,总淋雨里最少。

计算θ=0,θ=30°的总淋雨量.(3)、雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。

计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)(4)、以总淋雨量为纵轴,速度v为横轴,对(3)作图(考虑α的影响),并解释结果的实际意义.(5)、若雨线方向跑步方向不在同一平面内,模型会有什么变化三、问题分析淋雨量是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

可得:淋雨量(V)=降雨量(ω)×人体淋雨面积(S)×淋浴时间(t)①时间(t)=跑步距离(d)÷人跑步速度(v)②由①②得:淋雨量(V)=ω×S×d/v四模型假设(1)、将人体简化成一个长方体,高a=(颈部以下),宽b=,厚c=.设跑步距离d=1000m,跑步最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,记跑步速度为v;(2)、假设降雨量到一定时间时,应为定值;(3)、此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;五、符号淋雨量V降雨量ω人体淋雨面积S淋浴时间t跑步距离d跑步速度v人高a人宽b人厚c六、模型求解:(一)、模型Ⅰ建立及求解:设不考虑雨的方向,降雨淋遍全身,则淋雨面积:S=2ab+2ac+bc雨中奔跑所用时间为:t=d/v总降雨量V=ω×S×d/vω=2cm/h=2×10-2/3600 (m/s) 将相关数据代入模型中,可解得:S =(㎡)V = (cm ³)= (L)(二)、模型Ⅱ建立及求解:若雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ.,则淋雨量只有两部分:顶部淋雨量和前部淋雨量. (如图1)设雨从迎面吹来时与人体夹角为θ. ,且 0°<θ<90°,建立a ,b ,c ,d ,u ,ω,θ之间的关系为:(1)、考虑前部淋雨量:(由图可知)雨速的水平分量为θsin u ⋅且方向与v 相反,故人相对于雨的水平速度为:()v sin u +⋅θ则前部单位时间单位面积淋雨量为:u /v sin u )(+⋅⋅θω又因为前部的淋雨面积为:b a ⋅,时间为: d/v于是前部淋雨量V 2为 :()()[]()v /d u /v sin u V 2⋅+⋅⋅⋅⋅=θωb a即:()()v u /v sin u a V 2⋅+⋅⋅⋅⋅=θωd b ①(2)、考虑顶部淋雨量:(由图可知)雨速在垂直方向只有向下的分量, 且与v 无关,所以顶部单位时间单位面积淋雨量为()θωcos ⋅,顶部面积为()c b ⋅ ,淋雨时间为()v /d ,于是顶部淋雨量为:v /cos b V 1θω⋅⋅⋅⋅=d c②由①②可算得总淋雨量 :()()v u /v sin u a v /cos c b V V V 21⋅+⋅⋅⋅⋅⋅+⋅⋅⋅⋅=+=θωθωd b d代入数据求得:v1800v 875.1sin 5.7cos V ⋅++=θθ 由V (v)函数可知:总淋雨量(V )与人跑步的速度(v )以及雨线与人的夹角(θ)两者有关。

数学建模之雨中行走设计论文

数学建模之雨中行走设计论文

数学建模作业数学建模之雨中行走摘要:一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。

但如果考虑到降雨方向的变化,在全部距离上尽力地快跑是不是最好的策略?试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。

关键词:淋雨量,降雨的大小,降雨的方向(风),路程的远近,行走的速度。

问题重述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型是否跑的越快,淋雨量越少。

模型假设及符号说明(一)模型假设:1风速始终保持不变2降雨速度和强度保持不变3跑步的全程速度保持不变(二)符号说明(1)将人体转化成一个长方体,高a=1.5m(颈部以下),宽b=0.5m,厚c=0.2m。

(2)跑步距离d=1000m,跑步最大速度Vm=5m/s,雨速u=4m/s,降雨量w=2cm/h(3)雨速为常数且方向不变(4)记跑步速度为v。

模型建立与求解(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。

解:全身面积s=2ab+2ac+bc=2.2m²,淋雨时间t=d/Vm=200s降雨量w=2cm/n=10-4/18m/s∴总淋雨量Q=stw︽2.44L(2)假设雨从迎面吹来,雨线雨跑步方向在同一平面内,且与人体夹角为θ,如图1.建立总淋雨量与速度v及参数a,b,c,d,u,w,a,θ之间的关系,问速度v多大,总淋雨量最少。

计算θ=0, θ=30°的总淋雨量。

解:顶部淋雨量Q1=bcdw cosθ/v雨速水平分量usinθ。

方向与v相反和速度为u sinθ+v迎面单位时间、单位面积的淋雨量w(u sinθ+v)淋雨量Q2=abdw(u sinθ+v)/uv所求总淋雨量Q=Q1+Q2=.)sin(cosvvuaubdwcu++θθ当v=vm时Q最小。

θ=0时Q≈1.15Lθ=30°时Q≈1.55L(3)雨从背面吹来,雨线方向与跑步方向在同一平面内,期望与人体的夹角为a,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,w, α之间的关系,问速度v多大,总淋雨量最少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学实验作业雨中漫步系部:数学系专业:s10数学教育学号:103103011013姓名:张鹏飞实验目的:1.生活中的我们常常会遇到下雨而没带雨具的时刻,我们在那时会有很多选择,其中之一就是淋雨,往往好多人会在雨中快走或奔跑而使自己身体淋雨量最小化,但往往很多人会感觉到淋雨量并不会因为快走或奔跑而减少多少,反而有时候淋雨量倒有所增加,淋雨量和速度等有关参数的关系如何,是否人走得越快雨淋得越少2.运用matlab软件实验内容:给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

其中文中所涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,它可以直观地表示降雨的多少。

淋雨量,是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

1,设降雨淋遍全身不考虑雨的方向,经简化假设得人淋雨面积为前后左右及头顶面积之和。

2,雨迎面吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶面积之和。

因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。

据此可列出总淋雨量v时,淋W与行走速度v之间的函数关系。

分析表明当行走速度为max雨量最少。

3,雨从背面吹来,雨线与行走方向在同一平面内,人淋雨量与人和雨相对速度有关。

列出函数关系式分析并求解。

实验准备: matlab软件绘图,从网上查找各种资料a---长方体的长单位:米b---长方体的宽单位:米c---长方体的厚度单位:米Q---淋雨量单位:升v---人行走的速度单位:米每秒D---路程单位:米I---降雨强度单位:厘米每小时P---雨滴的密度单位:u---雨滴下落的速度单位:米每秒θ---雨迎面吹来时与人体的夹角α---与从后面吹来与人体的夹角实验步骤:在给定的降雨条件下,分别建立相应的数学模型,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系。

其中所针对1,设降雨淋遍全身不考虑雨的方向,经简化假设得人淋雨面积为前后左右及头顶面积之和。

针对2,雨迎面吹来,雨线方向与行走方向在同一平面,人淋雨面积为前方和头顶面积之和。

因各个方向上降雨速度分量不同,故分别计算头顶和前方的淋雨量后相加即为总的淋雨量。

据此可列出总淋v时,雨量W与行走速度v之间的函数关系。

分析表明当行走速度为max淋雨量最少。

针对3,雨从背面吹来,雨线与行走方向在同一平面内,人淋雨量与人和雨相对速度有关。

列出函数关系式分析并求解。

一、问题重述生活中的我们常常会遇到下雨而没带雨具的时刻,我们在那时会有很多选择,其中之一就是淋雨,往往好多人会在雨中快走或奔跑而使自己身体淋雨量最小化,但往往很多人会感觉到淋雨量并不会因为快走或奔跑而减少多少,反而有时候淋雨量倒有所增加,淋雨量和速度等有关参数的关系如何,是否人走得越快雨淋得越少,让我们假设一数学模型模拟计算真实情况。

当我们在雨中从一处沿直线跑到另一处时,如果雨速为常数,走的时候身体的动作的大小和暴露在雨中的面积大小影响着淋雨的多少,并且行走速度也同样影响着淋雨量Q,将人体简化成一个长方体,高a=1.5米,宽b=0.5米,厚c=0.2m,行走距离D,雨速u,降雨量I,行走速度为ν。

1、当我们不考虑风,即雨滴垂直下落时,淋雨量和人行走速度之间的关系?2、当雨滴从前方(斜的)下落时,即雨滴与人体的夹角为θ,建立总淋雨量与速度v及其它参数之间的关系,此时速度与淋雨量的关系?3、当雨从人的背面吹来,即雨滴与人体的夹角为θ,建立总淋雨量与速度v之间的关系?二、模型的假设与符号说明2 基本假设1、假设人行走的路线是直线;2、不考虑风的方向(即假定前后左右都淋雨),这是一种较为理想的假设,主要为了建模的方便,并且假设雨滴的速度为常数;3、为计算淋雨面积的方便,把人体表面积看成长方体,长用a 表示,宽用b表示,厚度用c 表示,且abc都是定值。

三、问题分析2 问题一分析1.当雨滴垂直下落时(即没有风),此时只有顶部淋雨,淋雨量为淋雨面积降雨强度淋雨时间Q=⨯⨯2.雨迎面吹来,雨线方向与跑步方向在同一平面内且与人体夹角为θ,如图所示。

根据实际情况估计人体淋雨可分为头顶和前后左右几个方向上。

雨迎面吹来时,由于雨相对于人的速度有变化,因此人单位时间内接收雨量变化,且与相对速度成正比。

据此,推算出前后侧上单位时间接受雨量。

同理,头顶部位接雨量与雨速垂直于头顶平面的分速度成正比。

分别计算出头顶侧与前后侧单位时间接雨量,,即得到头顶及两侧淋雨的总量。

在并分别乘以各自面积以及时间Dv人体总的淋雨量.据此可得Q与v之间关系。

3.雨从背面吹来,雨线与跑步方向在同一平面内且与人体夹角为α,如图2所示。

左右方向上淋雨量为0。

头顶上单位时间内接收雨以及的量与雨速垂直方向上的分量成正比,头顶面积bc与时间的Dv单位时间内接收雨的量之积。

当sin<时,前方不受雨,后方向上v uθ单位时间内淋雨量与人前进方向上人相对于雨的速度(usinθ-v)成正比,据此推算出后方向上总淋雨量;而当sinv uθ<时,后方不受雨,由于人速已经高于雨速,这时前面会向前撞上雨滴,即前方向上单位时间内淋雨量与sinv uθ-成正比,即这时前方淋雨量为人体前面积ab和跑步时间Dv以及单位时间淋雨量之积。

由此可计算出总的淋雨量。

总的淋雨量=前(后)背淋雨量+顶部淋雨量据此可得Q与v之间关系。

四、模型的建立与求解问题的求解总述:当雨滴垂直下落时(即没有风),此时只有顶部淋雨,淋雨量为Q=⨯⨯淋雨面积降雨强度淋雨时间=淋雨面积bc=pu降雨强度=D v淋雨时间∴D Q bcpu v= 问题求解雨迎面吹来,雨线方向与行走方向在同一平面内且与人体夹角为θ,如图1所示。

根据实际情况估计人体淋雨可分为头顶和前左右几个方向上。

雨迎面吹来时,由于雨相对于人的速度有变化,因此人单位时间内接收雨量变化,且与相对速度成正比。

据此,推算出前后侧上单位时间接受雨量。

同理,头顶部位接雨量与雨速垂直于头顶平面的分速度成正比。

分别计算出头顶侧与前侧单位时间接雨量,并分别乘以各自面积以及时间D v,即得到头顶及两侧淋雨的总量。

在人体总的淋雨量.据此可得Q 与v 之间关系。

=⨯⨯顶部淋雨量淋雨面积降雨强度淋雨时间=cos D bcpu v θ=⨯⨯前方淋雨量淋雨面积降雨强度淋雨时间=(sin )D bap u v vθ+ =+cos (sin )[cos (sin )]D D Q bcpu bap u v v v bpD uc a u v vθθθθ=++=++总淋雨量顶部淋雨量前方淋雨量问题求解雨从背面吹来,雨线与行走方向在同一平面内且与人体夹角为α,如图2所示。

左右方向上淋雨量为0。

先考虑sin v u θ≤的情形,也就是说人走的速度慢于雨滴的水平分速度。

这是雨滴淋在顶部和后背上, 且淋在后背的雨量为:(sin )D abp u v vθ- 其顶部淋雨量为: cos D bcpu v θ 所以总的淋雨量=后背淋雨量+顶部淋雨量如图:(sin )+cos D D Q abp u v bcpu v vθθ=- =[cos (sin )]bpD uc a u v v θθ+- 当sin v u α>时,人速大于垂直于人前后面的雨速,雨会沾到人的前面顶部淋雨量: cos D bcpu v α前面淋雨量:(sin )D abp v u vα- 总的淋雨量:cos (sin )D D Q bcpu abp v u v v αα=+-所以[][]cos (sin )sin (sin )+cos sin D D bcpu abp v u u v v v Q D Dabp u v bcpu u v v v αααθθα⎧+-⨯⎪⎪=⎨⎪-⨯≤⎪⎩>结果表示与分析问题因为假设人体表面积是定的,且降雨强度也是一定的,所以由D Q bcpuv =可以看出,降雨强度Q 只与人的行走速度v 有关,且成反比,即人走得越快淋雨量越少。

问题上式应用了雨滴速度的分解及相对运动速度的概念,所以总的淋雨量Q [cos (sin )]bpD uc a u v vθθ=++ cos sin bpDuc bpDau bpDa v θθ+=+ 其中假设夹角θ一定,淋雨量Q 随着v 的变大而变小,即人走的越快淋雨量越少问题 [][][]cos (sin )sin (cos )sin (sin )+cos sin D D bcpu abp v u u v v v pbD Q uc v u vD D abp u v bcpu u v v v αααααθθα⎧+-⨯⎪⎪⎪==⎨⎪⎪-⨯≤⎪⎩> 此时表明:当sin v u α=时,(cos )pbD Q uc vα=,人仅仅只有头顶被雨水淋了,意味着身体前后都没被雨水淋到,当人的速度低于sin u α时,则由于雨水落在背上,使得淋雨量增加;而人的速度大于sinuα时,人的前面亦要淋到雨;所以人以可能的速度=走是最优策略。

sinv uα还有另外一种较简单的模型:柱状图即将人看成一种柱状物体,雨量固定,但时间不定。

这个比较简单注:涉及到的降雨量是指从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,它可以直观地表示降雨的多少。

淋雨量,是指人在雨中行走时全身所接收到得雨的体积,可表示为单位时间单位面积上淋雨的多少与接收雨的面积和淋雨时间的乘积。

相关文档
最新文档